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Abstract: Diffraction of the H -polarized electromagnetic wave by a semi-infinite strip grating is considered. The

scattered field is represented as a superposition of the field induced by the currents on the strips of an infinite periodic

grating and the field induced by the correction current excited due to end of the grating. Singular integral equations

with additional conditions for infinite and semi-infinite periodic gratings are obtained. The current on the strips and

spectral function of scattered field are expressed in terms of the solution of these equations. Numerical results for the

near and far fields distribution are represented.
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1. Introduction

Periodic strip gratings have a variety of applications in microwave engineering and optics. Often, actual gratings

consist of a large number of identical elements. To simulate such objects, the model of infinite periodic grating

(IPG) can be used. However, it does not take into account the influence of the end of a real finite grating.

Effects caused by the truncation can be described by the semi-infinite gratings (SIG) and these results can be

used to analyze finite arrays [1–4]. The semi-infinite periodic structures are infinitely extended in one direction

but they are bounded in the other one. Thus, Floquet’s theorem cannot be applied here. The methods of

analysis of finite gratings also cannot be applied directly to the SIG because of their infinite size.

In [5,6], the SIG of the cylinder scatterers is considered. The cylinder radius is small as against the

wavelength. The correction for the current on the first four wires is obtained. The problem is reduced to the

heterogeneous Gilbert one and is solved using the variational approach. In [7] and [8], a similar problem is

analyzed using the discrete Wiener–Hopf method. The application of the Wiener–Hopf technique to the SIG

of cylindrical and spherical scatterers is also described in [9–11]. In [12], the Wiener–Hopf technique is applied

to the plane SIG of strips. The E -polarization case is considered. The current on the strips is represented

as a superposition of the current on the IPG and the correction current. The single-shape basic function

approximation for the correction current is used. The comparison with the method of moments (MoM) with

the same basic functions choice is given. Strip width is much smaller than the wavelength so as the single basis

function approximation is justifiable.

In [1], the current on the strips is also represented as a sum of the current on the IPG and the correction
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current. The electric field integral equations in the E -polarization case are solved in the assumption that the

phase of the current on the strips is constant over the strip, but the amplitude has singularities at the strip

edges. In this solution, the strip width should be much smaller than the wavelength. In a subsequent paper

[2], the solution is obtained with no restriction on the strip width and period. The MoM is used with the pulse

functions taken as the bases functions and the delta functions taken as the weighting functions. Numerical

results are given for the resonance case when the strip width is equal to the wavelength.

In [13], the diffraction problem by the SIG is reduced to the so-called canonical one, which is solved by

the Sommerfeld–Maliuzhinets method. The approximate boundary condition technique is used. The solution

is obtained in the assumption of the small period as compared to the wavelength.

In [14], SIG of strips on the grounded slab excited by the surface mode is considered. The current on

the strips of the IPG on the grounded slab is obtained by the MoM. It is used to find the approximation of the

solution for the SIG.

Specific translation symmetry of the semi-infinite structures meaning that no SIG properties change

with its last element removed is used in [15–19]. Scattered field is expressed with the use of the reflection

operator obtained by the operator method from the nonlinear operator equation. In [20], different approaches

to diffraction by one-dimensional semi-infinite array are discussed.

In the E -polarization case, when representing fields in the form of single-layered potentials, the kernel

function of the electric field integral equations has logarithmic singularity. However, in the H -polarization

case, the kernel function has hyper-singularity. Several papers propose the regularization procedure connected

to the exclusion of singularities. As a result, the second-kind equation of the Fredholm type can be obtained

[21,22]. In [23,24], a method of analytical preconditioning is discussed. Papers propose the Galerkin-projection

technique with the set of orthogonal eigenfunctions of the singular part of the integral operator as a basis,

which results in a regularized discretization scheme. It combines both regularization and discretization in one

single procedure. In [25], a new analytically regularizing procedure, based on Helmholtz decomposition and the

Galerkin method, employed to analyze the electromagnetic scattering by a zero-thickness perfectly electrical

conducting circular disk is presented. In [26], the MoM is used. The derivatives in the electric field integral

equations are evaluated using the finite-difference scheme, and then sinc functions are used to approximate the

unknown current distribution on strips. Other papers give the Nystrom-type algorithm [27–33]. It proposes

direct discretization of the singular or hyper-singular integral equations. The integrand is exchanged by the

polynomials and then the Gauss–Chebyshev quadrature formulas of interpolation type, which take into account

the edge behavior of the current on the scatterers, are applied.

In recent years, the Nystrom-type algorithms have attracted attention and are developed for analysis of

diffraction by the IPG or finite number of thin strips-like scatterers. In this paper, we are going to extend one

of such algorithms for the infinite but not ideally periodic grating. Here we are going to consider the SIG. We

represent the scattered field in the spectral-domain as a sum of the field of the IPG and unknown correction field

excited due to the end of the grating. The singular integral equations (SIE) obtained relatively to derivative of

the x-component of the magnetic field on the strips are solved by using the Nystrom-type method of discrete

singularities (MDS) [31–33]. It should be mentioned that the x-component of the magnetic field equals up

to a factor to the current distribution on the strips. MDS being an efficient method of discretization of SIE

has theoretically guarantied and controlled convergence. It is not connected with the appropriate choice of the

basic-functions as in the MoM. As it was mentioned in [32], in contrast with other Nystrom-type algorithms

where a segment of integration is divided into parts, and the specific interpolation scheme, which takes into
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account the current singularity, is applied only to the edge segments [29], here a quadrature rule is applied to

the whole strip and takes into account edge singularity. In order to study effects caused by the truncation of the

real finite array, numerical calculations are carried out for current and near field distributions and diffraction

patterns.

2. Solution of the problem

Consider a SIG placed in the z = 0 plane. The middle of the strip with number n = 0 coincides with the right-

side Cartesian coordinate system. The strip width is 2 d and period is l . Strips are infinite along the x-axis.

The structure geometry is shown in Figure 1. The time factor is exp(−iωt). Suppose that an H -polarized

plane wave is incident on the grating

Figure 1. Structure geometry.

Hi
x(y, z) = exp (ik(y cosϕ0 − z sinϕ0)) ,

where k is the wavenumber and ϕ0 is the incidence angle to the y -axis. The scattered field we represent as the

superposition of the field induced by the currents on the strips of the IPG, Hs,inf
x (y, z), and the field induced

by the correction current excited due to end of the SIG, Hs,c
x (y, z),

Hs
x(y, z) = Hs,inf

x (y, z) +Hs,c
x (y, z). (1)

Field Hs,inf
x (y, z) can be represented as a sum of the fields excited by the currents on the strips of the IPG.

Field of the mth strip of the IPG we represent in the form of the double-layered potential

i

4

d∫
−d

µ∞
m (y′ + lm)

∂

∂z′
H

(1)
0

(
k
√

(y − y′ − lm)2 + (z − z′)2
)
dy′.

Then

Hs,inf
x (y, z) =

i

4

∞∑
m=0

d∫
−d

µ∞
m (y′ + lm)

∂

∂z′
H

(1)
0

(
k
√

(y − y′ − lm)2 + (z − z′)2
)
dy′, z′ = 0, (2)

where µ∞
m (y′ + lm) is equal up to a factor to the current density on the strips of the IPG. Summation is

performed over all strips of the SIG, m = 0, 1, ... . Correction field Hs,c
x (y, z) we represent in the form of the

Fourier integral

Hs,c
x (y, z) =

∞∫
−∞

c(ξ) exp (ik(ξy + γ(ξ)z)) dξ, z > 0, (3)

4498



KALIBERDA et al./Turk J Elec Eng & Comp Sci

Hs,c
x (y, z) = −

∞∫
−∞

c(ξ) exp (ik(ξy − γ(ξ)z)) dξ, z < 0,

where c(ξ) is the spectral function, γ(ξ) =
√
1− ξ2 , Reγ ≥ 0, Imγ ≥ 0.

Denote the set of strips as L =
∞∪

m= 0
(−d+ lm; d+ lm). By applying boundary and continuity conditions,

the dual integral equations can be obtained

∞∫
−∞

c(ξ) exp(ikξy)dξ = 0, y /∈ L, (4)

∞∫
−∞

c(ξ)γ(ξ) exp(ikξy)dξ =
i

k

(
∂

∂z
Hi
x(y, 0) +

∂

∂z
Hs,inf
x (y, 0)

)
= g(y), y ∈ L. (5)

2.1. Singular integral equation

In this section, we are going to reduce (4) and (5) to the singular integral equation relatively unknown derivative

of the correction current density on the strips. Introduce the Fourier transform of the unknown spectral function

of the correction field c(ξ)

U(y) =

∞∫
−∞

c(ξ) exp(ikyξ)dξ. (6)

Function U(y) is up to a constant factor the correction current on the strips, U(y) = 0 when y /∈ L . The

derivative of U(y) is denoted as [31,33]

U ′(y) = F (y) =

∞∫
−∞

ikξc(ξ) exp(ikyξ)dξ, (7)

and F (y) = 0 when y /∈ L . Then using the inverse Fourier transformation obtain

c(ξ) =
1

2 π iξ

∫
L

F (y) (exp(ikyξ)− 1) dy. (8)

From (5) and (7) it follows that

1

πik
PV

∞∫
−∞

F (ξ)

ξ − y
dξ −

∞∫
−∞

c(ξ) exp(ikyξ) (i |ξ| − γ(ξ)) dξ = g(y). (9)

The Hilbert transform 1
πPV

∞∫
−∞

exp(ikξζ)
ξ−y dξ = isgn(kζ) exp(ikζy) was applied here. The first integral in (9) is

understood in the sense of Cauchy principal value integral.
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Using (8), from (9) we have SIE

1

π
PV

∫
L

F (ξ)

ξ − y
dξ +

1

π

∫
L

K(y, ξ)F (ξ)dξ = ikg(y), y ∈ L. (10)

The kernel function K(y, ξ) is

K(y, ξ) = k

∞∫
0

sin(kζ(y − ξ))

ζ
(ζ + iγ(ζ))dζ.

The integral in K(y, ξ) converges as 1/ζ2 , when ζ → ∞ . Using the asymptotic for γ(ζ) ∼ iζ−i/(2 ζ)−i/(8 ζ3),
when ζ → ∞ , and expression for sine integral one may increase the convergence rate. In our calculations the

integral converges as 1/ζ6 , when ζ → ∞ . For details, see e.g. [30].

The additional conditions, which are necessary to choose a unique solution of (9), follow from (4)

1

π

d∫
−d

F (ξ + lm)dξ = 0, m = ±1, ±2, .... (11)

Note that SIE (10) with additional conditions (11) is fully equivalent to the original boundary-value problem.

To solve (10) and obtain total scattered field (1), we should evaluate Hs,inf
x (y, z).

2.2. Field Hs,inf
x (y, z)

In spectral domain field scattered by the IPG is expressed using the Fourier series

Hinf
x (y, z) =

∞∑
n=−∞

an exp (ik(ζny + γnz)), z > 0,

Hinf
x (y, z) = −

∞∑
n=−∞

an exp (ik(ζny − γnz)), z < 0,

where ζn = 2πn
kl + cosϕ0 , γn =

√
1−

(
2πn
kl + cosϕ0

)2
, Reγn ≥ 0, Imγn ≥ 0. Then

µ∞
m (y) =

 2
∞∑

n=−∞
an exp(ikζny), |y −ml| ≤ d,

0, |y −ml| > d.
(12)

By substituting (12) into (2) obtain the expression for Hs,inf
x (y, z) and for the right-hand side of (10)

Hs,inf
x (y, z) =

i

2

∞∑
m=0

d∫
−d

∞∑
n=−∞

an exp(ikζn(y
′ + lm))

∂

∂z′
H

(1)
0

(
k
√
(y − y′ − lm)2 + (z − z′)2

)
dy′, z′ = 0,

g(y) =
1

2

−1∑
m=−∞

d∫
−d

∞∑
n=−∞

an exp (ikζn(y
′ + lm))

H
(1)
1 (k |y − y′ − lm|)
|y − y′ − lm|

dy′.
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Notice that integrands in g(y) do not contain singularities when y ∈ L .

Unknown Fourier amplitudes an can be obtained from the dual summatory equations

∞∑
n=−∞

an exp

(
i
2πn

l
y

)
= 0, for slots, (13)

∞∑
n=−∞

anγn exp

(
i
2πn

l
y

)
= γ0, for strips. (14)

Equations (13) and (14) can be reduced to the singular integral equation with additional condition similar

to (10) and (11) [31,33]

1

π
PV

δ∫
−δ

F (ξ)

ξ − ψ
dξ +

1

π

δ∫
−δ

K2π(ψ, ξ)F (ξ)dξ = iκγ0, |ψ| < δ,

1

π

δ∫
−δ

F (ξ)dξ = 0,

where

an =
1

2πin

δ∫
−δ

F (ξ) exp(−inξ)dξ, n ̸= 0,

a0 = − 1

π

δ∫
−δ

ξ

2
F (ξ)dξ,

ψ = 2πy/l δ = 2πd/l, κ = kl/(2π) are nondimensional quantities. The kernel function is

K2π(ψ, ξ) = −κ
2

∞∑
n=−∞
n̸=0

(
i|n|
κ

− γn

)
exp (in(ψ − ξ))

n
++iγ0κ

ψ − ξ

2
+

(
1

ψ − ξ
− 1

2
ctg

(
ψ − ξ

2

))
.

Using the asymptotic for γn ∼ i |n|
κ − i|n|

n sinα , when n→ ∞ , one may obtain expression for K2π(ψ, ξ), which

converges as 1/n3 , when n→ ∞ (see [30]).

2.3. Method of discrete singularities

Notice that according to the edge condition function F (ξ) have root type singularities,

F (t(M)
q,m ) =

u(t
(M)
q,m )√(

t
(M)
q,m − (−d+ lm)

)(
(d+ lm)− t

(M)
q,m

) .
In (10) and (11) exchange the integrands by the polynomials and then apply the Gauss–Chebyshev quadrature

formulas of interpolation type for the weight-function 1/
√
1− x2 with nodes taken at the zeros of the Chebyshev
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polynomials of the first kind. Represent integral over L as a sum of integrals over every segment (−d+ l ·n; d+

l · n),
∫
L

(· · · ) =
∞∑
n= 0

d+l·n∫
−d+l·n

(· · · ). Then using the MDS the following system of linear algebraic equations can

be obtained from (10) and (11) [30–33]

1

M

∞∑
n= 0

(
M∑
q=1

u(t
(M)
q,n )

t
(M)
q,n − t̂

(M− 1)
l,m

+
M∑
q=1

K(t̂
(M− 1)
l,m , t(M)

q,n )u(t(M)
q,n )

)
= ikg(t̂

(M− 1)
l,m ), (15)

1

M

M∑
q=1

u(t(M)
q,m ) = 0, l = 1, 2, ..., M − 1, m = 0, 1, ..., (16)

where t
(M)
q,m ∈ (−d+ lm; d+ lm) are the zeros of the Chebyshev polynomials of the first kind on every segment,

q = 1, 2, ...M ; t̂
(M− 1)
q,m ∈ (−d + lm; d + lm) are the so-called collocation points, which are zeros of the

Chebyshev polynomials of the second kind on every segment, and M is the number of nodes on every segment.

After solving (15) and (16) the values of F (ξ) in the interpolation nodes can be obtained. The values of F (ξ)

in other points, ξ ∈ (−∞;∞), can be obtained from the corresponding interpolation polynomial.

3. Field representation

3.1. Far field

In the far field region, the scattered field can be represented as a superposition of plane waves (Floquet’s

modes) Hp
x(ρ, ϕ) and a cylindrical wave. Function Hp

x(ρ, ϕ) obviously does not decrease if kρ → ∞ , where

ρ =
√
y2 + z2 is distance. The amplitude and direction of propagation of plane waves coincide with those of

IPG [7]. However, plane waves exist only in the domain ϕ > wq , where wq is propagation angle of the q th

plane wave relative to the y -axis. Line ϕ = wq acts as a shadow boundary. Near the shadow boundary, the first

order solution of the saddle point method fails since the poles and saddle point are close to each other. Then

the field in the transition region near ϕ = wq is represented in terms of the Gauss error function Herfc
x (ρ, ϕ).

Using the integral representation of the Hankel function for Hs,inf
x (ρ, ϕ) obtain

Hs,inf
x (y, z) =

ksgnz

2π

∞∫
−∞

exp(ikξy + ik|z|γ(ξ))
1− exp (ikl(cosϕ0 − ξ))

d∫
−d

∞∑
n=−∞

an exp (ik(ζn − ξ)y′) dy′dξ

=
ksgnz

2π

∞∫
−∞

cinf (ξ) exp(ikξy + ik|z|γ(ξ))
f(ξ)

dξ, (17)

where

cinf (ξ) = 2
∞∑

n=−∞
an

sin (kd(ζn − ξ))

kl(ζn − ξ)
,

f(ξ) = 1− exp (ikl(cosϕ0 − ξ)) .
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The integrand in (17) has singularities at the points that correspond to the cut-off frequencies of Floquet’s

modes. After accounting for the higher order term of uniform asymptotic presentation obtain the far field

representation of the scattered field [34]

Hs,inf
x (ϕ, ρ) = Hp

x(ϕ, ρ) +Herfc
x (ϕ, ρ),

and

Hs
x(ϕ, ρ)

∼= Hp
x(ϕ, ρ) +Herfc

x (ϕ, ρ) +Hs,c
x (ϕ, ρ), kρ→ ∞,

where

Hp
x(ϕ, ρ) =

∑
q

εq(ϕ)aq exp(ikρ cos(ϕ− wq)), Herfc
x (ϕ, ρ) = exp

(
ikρ− πi

4

)

×

[
π

kl

∑
q

sgn(wq − ϕ)cinf (− coswq)× exp

(
−2 ikρ

(
sin

ϕ− wq
2

)2
)

×
(
1 + i√

2
−

√
2C(ψ)−

√
2iS(ψ)

)

− i

kl

√
π

2kρ

(
2 cinf (− cosϕ)

f(− cosϕ)
sinϕ+

∑
q

cinf (− coswq)

sin
wq−ϕ

2

)]
,

Hs,c
x (ϕ, ρ) ∼=

√
2π

kρ
c(− cosϕ) exp (i(kρ− π/4)) , 0 < ϕ < π.

Summation is over all q , which corresponds to the propagating plane waves, |ζq| < 1.

εq(θ) =

{
0, ϕ < wq,
1, ϕ > wq.

Fresnel integrals are C(ψ) =
ψ∫
0

cos
(
π
2 t

2
)
dt , S(ψ) =

ψ∫
0

sin
(
π
2 t

2
)
dt , where ψ = 2

√
kρ
π sin

∣∣∣wl−ϕ
2

∣∣∣ ,
wq = π/2 + arcsin ζq .

Using (8) after solving (15) and (16), the spectral function of the correction field can be calculated

c(ξ) ≈ 1

2i

∞∑
n= 0

1

M

M∑
q= 1

u(t(M)
q,n )

exp(−ik ξ t(M)
q,n )− 1

ξ
.

4. Current on the strips

According to (3) and (6), function U(y) equals up to a constant factor 1/m to a correction current density on

the strips. From (7) it follows that U(y) =
y∫

−∞
F (ξ)dξ . Then

U(y) ≈ π
∑
n

1

M

∑
q

u(t(M)
q,n ).

The summation is over all n and q for which t
(M)
q,n ≤ y .
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4.1. Numerical results

To obtain numerical results we exchange an infinite set of strips L by the bounded one LN =
N∪

m= 0
(−d+ lm; d+ lm).

This means that we assumed the correction current influenced at the finite number of strips placed near the

SIG edge.

First, we should validate the presented algorithm. Convergence of the method is provided by the theorems

[31]. To demonstrate the rate of convergence, we computed the root-mean-square deviations of the correction

current function, εM = |(JcM − Jc2M ) /Jc2M | , where JcM =
∫
L

|U(y)|2 dy ; M is the number of nodes on every

strip. The results are presented in Figure 2. Figure 3 shows the near field distribution at the distance z = 0.1λ

for the case of normal incidence ϕ0 = 900 , kd = π/2, kl = 7. The results obtained using the proposed method

are in very good agreement with the data of [19] obtained by the operator method.
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Figure 2. Computation error εM as a function of the

number of nodes on every segment.

Figure 3. Field distribution for kz = 0.628, kd = π/2,

kl = 7. Presented approach (solid line) and method from

[19] (dotted line).

Figures 4 and 5 show the diffraction patterns D(ϕ, ρ) =
∣∣Herfc

x (ϕ, ρ) +Hs,c
x (ϕ, ρ)

∣∣ and Hs,c
x (ϕ, ρ) at

distance kρ = 30 for different values of period and strip width. For comparison, the Kirchhoff solution

(Hs,c
x (ϕ, ρ) ≡ 0) is also shown in Figure 4. We take M = 15 nodes on every strip, N = 50, and to calculate

g(y) we take 9 nodes and 1000 summands. Therefore, the matrix dimension is 750 × 750. Total calculation

time by the method of SIE was about 45 min for Figure 4a. When we use the operator method, a nonlinear

operator equation is obtained. To solve it the iterative procedure is used. Seven matrixes with dimension 1457

× 1457 each were stored in the computer memory. Total number of iterations was 3, and total calculation time

by the operator method was about 55 min for Figure 4a. Thus, the operator method requires about 25 times

more computer memory than the method of SIE. In the case when kl = 2π ( l = λ) we take N = 150. The

kernel functions in the singular integral equations are calculated with an error less than 10−5 . The plots are

normalized by the maximum value for kd = π/2, kl = 2π . The strip width kd = π/2 (2d = λ/2) and kd = π

(2d = λ) relates to the resonant region. When kl < 2π , one can observe the presence of one main lobe in

the diffraction patterns. Case kl = 2π ( l = λ) corresponds to the regime of Wood’s anomalies when high

order propagating Floquet’s modes arise. For a finite structure, this regime leads to exciting of a leaky wave.

An additional lobe appears near ϕ = 00 . A significant increase in Hs,c
x (ϕ, ρ) especially near the directions of
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propagation of Floquet’s modes ϕ = 00 , ϕ = 900 , and ϕ = 1800 is observed in this case. The discontinuities of

diffraction patterns D(ϕ, ρ) in the directions of propagation of Floquet’s modes are present. However, the total

reflected field Href
x (ϕ, ρ) does not contain discontinuities since the field of Floquet’s modes Hp

x(ϕ, ρ) is added.

The appearance of discontinuities for the E -polarization case was discussed in [2]. To validate the obtained

results we have also presented the results obtained by the operator method as asterisks [18,19]. Good agreement

is observed.
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Figure 4. Diffraction patterns, kρ = 30. a) kd = π/2, kl = 5; b) kd = π/2, kl = 2π ; c) kd = π/2, kl = 7; d) kd = π ,

kl = 7. Results obtained by the operator method [18,19] are represented as asterisks.

Figures 6 and 7 show the field distribution |Hs,c
x (y, z)| and |Hs

x(y, z)| in the plane of the SIG z = 0.

Field Hs,c
x (y, z) = U(y) equals up to a constant factor to the correction current density and Hs

x(y, z) equals up

to a constant factor to the total current density. To obtain smooth curves we take M = 50. The maximum

is observed near the center of the strips for kd = π/2. For kd = π two maxima of |Hs,c
x (y, z)| are observed

for every strip. The correction current is relatively large near the end of the SIG. With the y increase the

amplitude of a correction current decreases. In cases when kl = 2π , the correction current extends on a larger

part of the grating. The field of the IPG Hs,inf
x (y, z) in the center of strips, y = lm , is shown by a dashed line.

Let us quantify the correction current influence by the value Jc =
∫
L

|U(y)|2 dy . This allows us to estimate

the value of the end-effect contribution [1,2]. Figure 8 shows the dependence of Jc vs. l . The strips interaction

in a plane strip grating is weak, and with the increase in l it becomes negligible except for the values that
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Figure 5. Diffraction patterns of correction field, kρ = 30, kl = 5, kd = π/2 (dotted line), kl = 7, kd = π/2 (dashed

line), kl = 7, kd = π (solid line).
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Figure 6. Field distribution |Hs,c
x (y, z)| in the plane of the SIG, z = 0, for kl = 5, kd = π/2 (dashed line), kl = 2π ,

kd = π/2 (dotted line), kl = 7, kd = π (solid line).

correspond to the cut-off of Floquet’s modes. The significant increase in the correction current density occurs

near the Wood’s anomalies region, l = mλ for ϕ0 = 900 (see also Figure 4b).

The near field around the edge of the SIG, component Re(Hs
x(y, z)), is shown in Figure 9. As can be

seen, the two types of waves are propagating away from the grating. One of them is a plane wave that exists

only in the domain y > 0 (ϕ > 900). Another one is a cylindrical wave that is excited due to the end of the

SIG. Line y = 0 (ϕ = 900) acts as a shadow boundary.

5. Conclusions

Here, in this paper, a rigorous solution of the H -polarized plane wave diffraction by the semi-infinite periodic

strip grating is obtained. The scattered field is represented as the field of currents on the infinite periodic

grating and the correction field. The spectral function of the correction field as well as Fourier amplitudes of

the field of infinite periodic grating is obtained from the singular integral equations with additional conditions.

The Nystrom-type method of discrete singularities is used for discretization of these equations. The results

are validated by comparison with those obtained by the operator method. The numerical results revealed the

influence of the end of the grating. It is shown that a significant increase in the correction current density occurs

near the Wood’s anomalies region and correction current extends on a larger part of the grating.
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Figure 7. Field distribution |Hs,c
x (y, z)| (dotted line), |Hs

x(y, z)| (solid line), Hs,inf
x (lm, z) (dashed line) in the plane

of the SIG, z = 0, kd = π/2. a) kl = 5; b) kl = 2π .
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[26] Oğuzer T, Kuyucuoğlu F, Avgın İ. Electromagnetic scattering from layered strip geometries: the method of moments

study with the sinc basis. Turk J Electr Eng & Comp Sci 2011; 19: 397-412.

[27] Shapoval OV, Sauleau R, Nosich AI. Scattering and absorption of waves by flat material strips analyzed using

generalized boundary conditions and Nystrom-type algorithm. IEEE T Antenn Propag 2011; 59: 3339-3346.

[28] Tsalamengas J. Exponentially converging Nystrom’s methods for systems of SIEs with applications to open/closed

strip or slot-loaded 2-D structures. IEEE T Antenn Propag 2006; 54: 1549-1558.

[29] Tong MS, Chew WC. Nystrom method with edge condition for electromagnetic scattering by 2-D open structures.

Prog Electromagn Res 2006; 62: 49-68.

[30] Kaliberda ME, Lytvtnenko LM, Pogarsky SA. Singular integral equations in diffraction problem by an infinite

periodic strip grating with one strip removed. J Electromagnet Wave 2016; 30: 2411-2426.

[31] Gandel YV. Method of discrete singularities in electromagnetic problems. Problems of Cybernetics 1986; 124:

166-183 (article in Russian with an abstract in English).

[32] Nosich AA, Gandel YV. Numerical analysis of quasioptical multireflector antennas in 2-D with the method of

discrete singularities: E-wave case. IEEE T Antenn Propag 2007; 55: 399-406.

[33] Gandel YV. Boundary-value problems for the Helmholtz equation and their discrete mathematical models. Journal

of Mathematical Sciences 2010; 171: 74-88.

[34] Felsen LB, Marcuvits N. Radiation and Scattering of Waves. Englewood Cliffs, NJ, USA: Prentice-Hall Inc., 1973.

4509

http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-3/elk-19-3-7-0905-5.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-3/elk-19-3-7-0905-5.pdf
http://dx.doi.org/10.1109/TAP.2011.2161547
http://dx.doi.org/10.1109/TAP.2011.2161547
http://dx.doi.org/10.1109/TAP.2006.874348
http://dx.doi.org/10.1109/TAP.2006.874348
http://dx.doi.org/10.2528/PIER06021901
http://dx.doi.org/10.2528/PIER06021901
http://dx.doi.org/10.1080/09205071.2016.1254071
http://dx.doi.org/10.1080/09205071.2016.1254071
http://dx.doi.org/10.1109/TAP.2006.889811
http://dx.doi.org/10.1109/TAP.2006.889811

	Introduction
	Solution of the problem
	Singular integral equation
	Field Hxs,inf (y,z)
	Method of discrete singularities

	Field representation
	Far field

	Current on the strips
	Numerical results

	Conclusions

