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Abstract: Nature-inspired optimization algorithms have become popular in the past decade. They have been applied

to solve various kinds of problems. Among these would be data clustering, which has become popular in data mining

in recent times due to the data explosion. In the last decade, many metaheuristic algorithms have been used to obtain

improved data clustering optimization for solving data mining problems. In this paper, we applied the seed disperser ant

algorithm (SDAA), which mimics the evolution of an Aphaenogaster senilis ant colony, and we introduced a modified

SDAA that is a hybrid of K-means and SDAA for solving data clustering problems. The solutions obtained for the data

clustering are very promising in terms of quality of solutions and convergence speed of the algorithm.
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1. Introduction

Over the last decade, swarm intelligence has emerged as an efficient search and problem-solving tool based on

behavior modeling of social insects such as ants and bees. Swarm inspired metaheuristics are applied to many

kind of optimization problems, including data clustering, constrained engineering problems, vehicle routing

problems, assignment problems, scheduling, global optimization, control engineering, traffic system design, and

many others.

The seed dispenser ant algorithm (SDAA) [1] was inspired by the Aphaenogaster senilis [2] evolution

process. The colony is populated by sterile female workers and queen ants. Female ants have diploid genes,

whereas male ants are haploid. The males perform nuptial flights [3], where they disperse from their own colony

to mate with a queen inhabiting a different colony. After mating, the queens generate offspring/eggs. These

offspring are sterile female workers that have diploid genes. These diploids are produced when haploid male

genes copy alleles from the queen’s diploid. This allows the offspring to be highly related to each other, useful

in localized approaches for the purpose of search exploitation. Subsequently, in global searches, the colony

produces young queens that migrate to form new colonies. This enhances search exploration. The young queens

establish new colonies and the nuptial flight process resumes again. This cycle of nuptial flight and young queen

production is repeated until the optimization converges to optimal solutions.

The SDAA has an advantage in its searching technique whereby it searches by a binary bit changing

process to generate new solutions. The offspring generation advocates search exploitation where the young
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queen generation explores for a better optimum. Hence, the SDAA aggressively searches for optimum solutions

within the search domain and this helps to escape local optima. The SDAA [1] was developed and validated

using classical unconstrained optimization benchmarks [4] and difficult unconstrained composite optimization

benchmarks problems [5].

In the age of big data, data processing has become a fundamental and critical challenge for data

analysts. Data clustering is the most common technique in data processing, where it is used as an unsupervised

classification technique. The clustering technique groups the data with the same or similar characteristics or

patterns and divides the different groups into clusters.

Many algorithms have been developed to enable the solving of data clustering problems, such as several

swarm intelligence (SI) [6] methods and evolutionary algorithms (EAs) [7]. Particle swarm optimization (PSO)

[8–10] and the genetic algorithm (GA) [11,12] are the most familiar SI and EA methods respectively used for

data clustering optimization. There are also other SI methods developed for solving data clustering problems,

such as honeybee-mating optimization [13] and ant colony optimization (ACO) [14]. On the other hand, there

are also learning-based algorithms developed for optimization in clustering such as cohort intelligence and

modified K-means cohort intelligence (K-MCI) [15]. The motivation for improvement of the SDAA for data

clustering problems focuses on reducing function evaluations by simplifying the SDAA and then combining it

with K-means.

In this paper, we are proposing a modified SDAA (MSDAA) that hybridizes the advantages of both

SDAA and K-means for solving data clustering problems. The purpose of developing the MSDAA is to enhance

the original SDAA to produce improved accuracy and lower standard deviations with lower function evaluations

with the aid of K-means in the algorithm. This paper is organized as follows. Section 1 gives an overview of the

research and acts as an introduction to the study. Section 2 describes the original SDAA and the MSDAA for

clustering. Section 3 presents the results of the experiment followed by an in-depth discussion. Finally, Section

4 presents our conclusions and recommendations for future study.

2. Seed disperser ant algorithm (SDAA) and modified seed disperser ant algorithm (MSDAA)

2.1. Seed disperser ant algorithm (SDAA)

Consider a general minimization problem as follows:

Minimize f (Lh)=f(l1, . . . li, . . . lN ), (1)

where

li = ith variable or dimension (2)

Ψlower
i ≤li≤Ψupper

i , i= 1, . . .N. (3)

For the SDAA, the objective function f (Lh) is treated as the fitness of the male ant in the colony. The

male ants’ gene code is represented by Lh = (l1, . . . li, . . . lN ). The queen of each colony produces many virgin

queens with the reference gene [Rh]Ci
as the identity gene of the colony. The mated queen [Qd]Ci

is represented

by pairing the binary gene code of the male ant and its complement, reference gene [Rh]Ci
= ¯[Lh]Ci

, as shown

in Eq. (4):

[Qd]Ci
= [Lh]Ci

[Rh]Ci
, (4)
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where
Ci = ith colony.

The SDAA procedure is initialized with parameters such as decimal points of precisions for input variables,

maximum number of iterations nmax , number of colonies C , shrinking factor r , convergence parameter ε ,

and saturation number S . Initially, upper boundary UBi and lower boundary LBi are fixed as given in the

equations below. Decimal points of precisions for input variables are used to determine the number of bits The

researchers used 5 decimal points of precisions for input variables (Lh) in this research.

UBi=Ψupper
i (5)

LBi=Ψlower
i , i= 1, . . .N (6)

Step 1: Male ant Lh is generated randomly as shown in Eq. (7) below:

[Lh]Ci
= [l1, . . . li, . . . lN ]Ci

, (7)

where
li=LBi+rand× (UBi−LBi) , rand∼ ∪([0, 1]).

Step 2: Every li is converted to binary form for the male gene [Lh]Ci
in every colony. The binary coded

gene is complemented to form colonies’ identity reference gene [Rh]Ci
as shown in Eq. (8) below:

[Rh]Ci
= ¯[Lh]Ci

= [l′1, . . . l
′
i, . . . l

′
N ]Ci

, (8)

and every mated queen [Qd]Ci
is formed as given in Eq. (4).

Step 3: Offspring generated. The mated queens then generate offspring. This is carried out when

the gene (Lh) copies binary bits from the reference gene (Rh), commencing from the least significant bit (LSB)

to the most significant bit (MSB) and vice versa. For example, given a three-dimensional gene Lh of colony

1, [Lh]C1
= [l1, l2, l3 ]C1

with the reference gene [Rh]C1
= [l′1, l

′
2, l

′
3 ]C1

, dimension l1 = 1110010 and the

complement of it in the reference gene is l′1 = 0001101. The dimensions l1 of the offspring are generated as

shown below:

• Generated by LSB to MSB and MSB to LSB example copying process:

l1 = 1110010, l1
′ = 0001101

LSB to MSB: MSB to LSB:
11100101110010
1110011 0110010
1110001 0010010
...

...
0001101 0001101

Step 4: By evaluating the fitness based on the objective function, the best offspring of each colony was

selected
[
Lh(fit)

]
Ci

and the associated best gene denoted as Lh(best) was stored. It is accepted as the current

best solution if it does not improve for a considerable number of iterations. In such a situation, progress to Step

6; otherwise, continue to Step 5.

4524



CHANG et al./Turk J Elec Eng & Comp Sci

Step 5: Nuptial flight. In nuptial flights, every male flies out from its colony to mate with a queen

inhabiting its colony. This process is mimicked by pairing the best offspring
[
Lh(fit)

]
Ci

of each colony with the

next colony reference gene [Rh]Ci+1
. The last colony’s best offspring

[
Lh(fit)

]
CN

will be paired with the first

colony’s reference gene [Rh]C1
. This process is represented in Eq. (9) as shown below and continues to Step 3.

In colonyCi+1 ,

[Lh]Ci+1
[Rh]Ci+1

=
[
Lh(fit)

]
Ci

[Rh]Ci+1
(9)

where i = 1, 2, . . . N

and for the 1st colony C1 :

[Lh]C1
[Rh]C1

=
[
Lh(fit)

]
CN

[Rh]C1
.

Step 6: The search boundary is reduced by shrinking factor r based on Lh(best) as the center of the

boundary. The shrinking process is given in Eq. (10) as below:

Boundary size, Bi = r× (UBi−LBi) (10)

where
i= 1, . . .N.

Then UBi and LBi are generated as shown below:

UBi= [li]Lh(best)
+
1

2
Bi, (11)

LBi= [li]Lh(best)
−1

2
Bi. (12)

Step 7: After several nuptial flights in a colony, new queens are produced that will lead new colonies.

This is carried out by regenerating all the [Lh]Ci
and [Rh]Ci

, similar to Step 1 and Step 2. However, the

current generation’s best gene Lh(best) will replace one of the randomly chosen queen’s reference gene [Rh]Ci
.

This ensures that the best gene found in the current generation is retained in the next generation, i.e. elitism.

This is represented as follows:

[Rh]Crandom
=Lh(best). (13)

If there is no significant improvement in f(Lh(best)) for a significant number of iterations, the evolution process

is considered converged. The SDAA flowchart is shown in Figure 1. The best gene Lh(best) is accepted as the

final solution when either of the criteria listed below is valid or else continue to Step 2.

• If the SDAA converged by satisfying the conditions shown below:∥∥∥max
(
f(Lh(best))

)n −max
(
f(Lh(best))

)n−1
∥∥∥ ≤ ε and∥∥∥min

(
f(Lh(best))

)n −min
(
f(Lh(best))

)n−1
∥∥∥ ≤ ε and∥∥max

(
f(Lh(best))

)n −min
(
f(Lh(best))

)n∥∥ ≤ ε.

• If maximum number of iterations nmax is exceeded.
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Figure 1. Flowchart of SDAA.

2.2. Modified seed disperser ant algorithm (MSDAA)

The SDAA was modified to perform better in terms of accuracy as well as to help function evaluations reduction.

This was carried out by making changes in Step 1 and removing Step 6 and Step 7 of the SDAA. In the

initialization, the control parameters such as decimal points of precisions for input variables, number of colony

C , and saturation number S were set. The upper boundary UBi and lower boundary LBi were generated in

the same way as in the original SDAA.

In Step 1, K-means search was used instead of random generating solutions. The solution or centroid was

generated using K-means optimization and became the reference point to generate male ant gene Lh . By using

the same concept of Step 6, the boundary size, Bi was fixed to be 2
3 of the original boundary size. Male ant

gene Lh was generated randomly around the reference point. Step 2 to Step 5 was the same as in the original

SDAA. Once the saturation was reached in Step 5, Lh(best) was accepted as the final solution. Step 6 and Step

7 of the original SDAA were removed completely as they consume large numbers of function evaluations. The

modification implemented on SDAA resulted in significant reductions of function evaluations for data clustering
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in comparison with the original SDAA as well as other optimization algorithms. The MSDAA was developed

by adopting the K-means search potential solution that speeds up the overall search process and removing the

excess steps of new queen spawn iteration from the original SDAA. This enabled the MSDAA to obtain better

results in a shorter period of time in conjunction to the SDAA as well as other algorithms. The main difference

between the MSDAA and SDAA is that the MSDAA has only 1 randomization compared to the SDAA’s 2. In

the MSDAA, the initial randomization (Step 1) of the SDAA is replaced with K-means. This means that the new

queen’s colonies establishment is replaced by K-means, and this simplifies the evolution process by K-means,

which directly produces a fit generation and consequently the nuptial flight search ensures the best solution.

This nuptial flight convergence stops when the solution saturates after several iterations. Existing offspring

generation (Step 3) and nuptial flight (Step 5) combined with initial K-means produces sufficient randomness

to lead the solution to convergence; hence, removing Steps 6 and 7 helps reduce the converging speed.

In clustering, for a set of data, D with N data objects is clustered to K sets of clusters:

D = [Y1, Y2, . . . , YN ] , where Yi ∈ RD,

Clusters, S = [X1, X2, . . . , XK ].

Each data point in set D was allocated to one of the K clusters in such way that it minimized the

objective function. The objective function is the sum of squared Euclidean distance between each object Yi

and the center of the cluster Xj to which it belongs [15]. This objective function is given by Eq. (14):

F (X,Y ) =

N∑
i=1

Min ∥Yi −Xj∥2, (14)

j = 1, 2, . . . , K.

Also,

Xj ̸= ∅, ∀j {1, 2, . . . , K} , Xi ∩Xj ̸= ∅, ∀i ̸= j and ∀ij {1, 2, . . . , K} ,∪K

j=1
Xj = D.

For data clustering problems, the objective function f (x) = F (XY ) is represented by the sum of squared

Euclidean distance between each object Yi and the center of the cluster Xj as shown in Eq. (15):

Minimize f (Lh)=f(l1, . . . li, . . . lN ), (15)

Subject to Ψlower
i ≤li≤Ψupper

i , i= 1, . . .N .

In the MSDAA, the male ant gene Lh = [l1, . . . lj , . . . lK ] represents the center of the cluster, where

dimension Xj is represented by lj ,

where
Lh = [X1, . . . Xj , . . . XK ] = [l1, . . . lj , . . . lK ]. (16)

Thus, the objective is shown as:

f (x) = F (LhY ). (17)

The MSDAA flowchart is shown in Figure 2.
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Figure 2. Flowchart of MSDAA.

3. Numerical experiments and results

The SDAA was coded in MATLAB (R2012a) using a computer with the Windows 7 platform, Intel i7-4770,

3.40 GHz processor, and 16 GB RAM. The simulations were carried out 30 times for every data clustering

problem. To validate the SDAA, six real data sets from the UCI Machine Learning Repository were used. Each

data set had different numbers of clusters, data objects, and features, as described in Table 1. Iris setosa, Iris

versicolour, and Iris virginica are the Iris flowers species that constitute the Iris data set. Fifty samples of each

species with four features, which are sepal length and width and petal length and width, were collected. The

Wine data set is the result of a chemical analysis of wines from three different cultivators in the same region

in Italy. The three different types of cultivators are derived into class 1 (59 instances), class 2 (71 instances),

and class 3 (48 instances). Thirteen features including alcohol, malic acid, ash, alkalinity of ash, magnesium,

total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 of diluted

wines, and proline are analyzed to determine the quantities found in each type of wine. Six types of glass in the

Glass data set consist of building windows float processed (70 objects), building windows not float processed

(76 objects), vehicle windows float processed (17 objects), containers (13 objects), tableware (9 objects), and

headlamps (29 objects). The nine features for each type of glass are refractive index, sodium, magnesium,

aluminum, silicon, potassium, calcium, barium, and iron. The Contraceptive Method Choice (CMC) data set is

a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples are married women who

were either not pregnant or did not know if they were at the time of interview. The problem is to predict the

current contraceptive method choice (no use, long-term methods, or short-term methods) of a woman based on
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her demographic and socioeconomic characteristics. The Breast Cancer Wisconsin data set contains 2 categories

and 683 objects, which are malignant (444 objects) and benign (239 objects). The nine features in each category

are clump thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single epithelial cell size, bare

nuclei, bland chromatin, normal nucleoli, and mitoses. The Vowel data set consists of 871 Indian Telugu vowels

sounds with six overlapping vowel classes. The vowel classes included d (72 instances), a (89 instances), i

(172 instances), u (151 instances), e (207 instances), and o (180 instances). There are three input features

corresponding to the first, second, and third vowel frequencies for each class.

Table 1. UCI machine learning repository data set information.

Data set
Number of

Dimensions, D
Number of

data sets, N clusters, K
Iris 150 4 3
Wine 178 13 3
Breast Cancer Wisconsin 683 9 2
Contraceptive Method Choice (CMC) 1473 10 3
Glass 214 9 6
Vowel 871 3 6

Table 2a shows the clustering results of 6 different data sets solved by 6 different algorithms. The results

of the 6 different data sets solved included the Iris data set, Wine data set, Cancer data set, CMC data set,

Glass data set, and Vowel data set. Comparing the mean results, the MSDAA performed very well whereby it

enabled minimum results for all the cases to be achieved. The MSDAA also shows a low standard deviation
(SD), which means it is able to obtain minimum results frequently. On the other hand, the MSDAA has the

lowest function evaluation (FEs) and computation time compared to all other algorithms in Table 2b. It showed

significant improvement in comparison to the FEs of the MSDAA and SDAA. Based on the overall average FEs

in Table 2b, the MSDAA can be seen to perform well with 2900 FEs. This shows that the MSDAA is not

affected much by cluster size and dimension. The enhancement from the SDAA to the MSDAA resulted in

improvement to the overall average FEs from 9928 to 2900, which is about 70% reduction of FEs. Besides,

the MSDAA was able to solve these problems in the shortest time compared to the other algorithms based on

the computation times of Table 2b. The higher number of dimensions increases the complexities that require

more computation time. The MSDAA was able to perform well on the Cancer data set and Glass data set

problems. Table 3 shows the parameters used by the MSDAA compared to the SDAA. The parameters used for

the MSDAA were reduced compared to the SDAA. The overall average FEs of all data clustering algorithms

were compared and the MSDAA used the least FEs for solving all these data clustering problems.

The objective function of intercluster variance is defined as the sum of squared Euclidean distance, which

means that a different objective function was produced by a different found centroid. The different locations of

the centroid create chances for different data to be grouped into the cluster. Thus, a minor improvement of the

results should take into consideration the boundaries of the data set given. For example, the Iris data set has

smaller values compared to other data sets. Thus, more significant figures were taken into consideration.

Figures 3 and 4 show convergence plots of the Wine and Cancer clustering problems. The convergence

plots show the fitness/objective function f (x) of all 10 Lh mated with the queen in every colony in every

nuptial flight. The fitness/solution of male ants in every nuptial flight was improved compared to previous

nuptial flights, clearly showing that the nuptial flight helps to improve the fitness of male ants. This necessarily

demonstrated the ability of the K-SSDAA to jump out of local minima and further reach the global minimum.
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Table 2a. Simulation results of data sets for different algorithms.

Data set GA ACO PSO K-MCI SDAA MSDAA

Iris

Mean 125.19 97.17 97.23 96.65 96.65 96.65

SD 14.563 0.367 0.347 0 0 0

FEs 38128 10998 4953 3500 7080 2800

Wine

Mean 16,530.53 16,530.53 16,417.47 16,292.70 16,292.24 16,292.24

SD 0 0 85.497 0.130 8.24E-02 0.1782

FEs 33,551 15,473 16,532 6250 10,150 2900

Cancer

Mean 3249.46 3046.06 3050.04 2964.38 2964.38 2964.38

SD 229.734 90.500 110.801 0 0 0

FEs 20,221 15,983 16290 5000 9860 2900

CMC

Mean 5756.59 5819.13 5820.96 5693.75 5694.01 5693.75

SD 50.369 45.634 46.959 0.014 2.47E-01 0.01366

FEs 29483 20,436 21,456 15,000 11,020 2900

Glass

Mean 282.32 273.46 275.71 212.57 220.05 210.50

SD 4.138 3.584 4.550 0.135 9.453 0.0142

FEs 199,892 196,581 198,765 25,000 11310 3000

Vowel

Mean 159,153.49 159,458.14 151,999.82 148,967.55 148,969.63 148,967.45

SD 3105.54 3485.38 2881.34 36.08 1.79 1.16

FEs 10,548 8046 9635 7500 10,150 2900

Table 2b. Function evaluation and computation time for different algorithms.

Data set GA ACO PSO K-MCI SDAA MSDAA

Iris
FEs 38,128 10,998 4953 3500 7080 2800

Time(s) 83.56 87.04 17.34 15.89 22.85 12.37

Wine
FEs 33,551 15,473 16,532 6250 10,150 2900

Time(s) 257.73 378.06 151.95 81.38 103.89 36.51

Cancer
FEs 20,221 15,983 16,290 5000 9860 2900

Time(s) 953.58 1269.59 754.37 251.57 446.84 139.64

CMC
FEs 29,483 20,436 21,456 15,000 11,020 2900

Time(s) 926.78 1523.82 731.84 532.46 348.74 105.57

Glass
FEs 199,892 196,581 198,765 25,000 11310 3000

Time(s) 3385.57 4575.76 2917.70 693.85 297.86 123.72

Vowel
FEs 10,548 table 8046 9635 7500 10150 2900

Time(s) 314.74 492.48 328.96 247.61 312.11 107.57

Avg. FEs 55,303 44,586 43,634 10,375 9928 2900

Table 3. Parameters used for the SDAA and MSDAA for data clustering.

SDAA MSDAA

C S G r ε C S

10 10 200 0.75 1E-05 10 10
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Figure 3. Convergence of Wine clustering problem.

Figure 4. Convergence of Cancer clustering problem.

4. Conclusions and future directions

The SDAA has the potential to solve optimization problems such as data clustering. This technique is

successfully developed using the concept of male ants performing nuptial flights to generate new superior colonies.

The nuptial flights and production of young queens ensures that the optimization continuously improves to find

the global minimum. The production of young queens helps the optimization to escape local optima. The
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SDAA shows comparable results for solving data clustering. However, the SDAA has potential for improvement

by reducing FEs. With this purpose, the researchers proposed a hybrid algorithm of K-means and the SDAA,

namely the MSDAA. K-means solves data clustering problems with low FEs. K-means in the MSDAA is used

to expedite the process of searching to provide a near optimum followed by the SDAA search. The results

show that the MSDAA is able to solve a variety of clustering problems with low FEs. Moreover, no significant

variations in FEs were observed despite differences in dimensions and cluster size among the problems. Taken

as a whole, the MSDAA performs better than all other metaheuristics shown in this work in terms of best

result, mean result, and FEs. The researchers would like to improve the MSDAA for solving real-life clustering

problems in the future.
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