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Abstract:Template matching is the process of accurately extracting the interesting regions in a source image according

to reference templates. In this paper, the gravitational search algorithm (GSA) is employed as a novel search strategy

for template matching. However, the basic GSA is easily trapped in a local optimum and has a poor exploitation ability.

In this paper, to enhance the optimization performance of GSA, a novel cross-search strategy based on chaotic global

search (CGS) and cloud local search (CLS) is incorporated into GSA. The new variant is named chaotic cloud GSA

(CCGSA). CGS makes full use of the ergodicity of chaos theory to improve global search ability and to avoid premature

convergence. Inspired by the randomness and stable tendency of the normal cloud model, CLS was formed to realize a

refined exploitation in the neighborhood of the current best solution; therefore, it can enhance optimization efficiency.

Comparative experiments on six composite benchmark functions indicate that CCGSA convergence performance is

superior to that of two advanced variants of GSA. Moreover, when applied to template matching, CCGSA performs

better than the other selected intelligent optimization algorithms.

Key words: Template matching, gravitational search algorithm, chaotic global search, cloud local search, optimization

problem

1. Introduction

Template matching is a process for searching a source image for a subgraph that is most similar to that in a

template image. Template matching is one of the key technologies for computer vision [1], target detection [2],

and object tracking [3]. Therefore, developing a matching method that is effective for high-speed searching and

provides accurate matching and outstanding robustness has become the main aim of researchers in this field.

In template matching, the choices of similarity measurement and search strategy determine the matching

efficiency. Typical measures of similarity are the sum of absolute differences (SAD) [4], the sum of squared

differences (SSD) [5], and normalized cross-correlation (NCC) [6]. All of these measures can be used to effectively

evaluate the similarity between two images. However, previous studies show that SAD and SSD are sensitive

to the variations of noise and illumination, and their performance is slightly inferior to that of the NCC model

[7]. Therefore, considering its robustness for matching, the NCC model is used as the similarity measure in this
paper.

To obtain the best matching location, a traditional search method has to measure similarity pixel by pixel

in the feasible search region. This full search method would result in a huge cost and take a long time. In recent

years, to enhance matching efficiency, many effective search strategies have been developed, and these mainly
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fall into two categories. One is scaling down the search area by using a feature-extraction method [8], a pyramid

decomposition method [9], or a wavelet decomposition method [10]. The other strategy is to introduce swarm

intelligence algorithms, such as particle swarm optimization (PSO) [11], differential search algorithm (DSA)

[12], or biogeography-based optimization [13], as an optimization strategy to guide the matching process. In

this paper, GSA [14,15], a novel swarm intelligence algorithm, is introduced to perform the matching task.

GSA has been successfully employed to solve many practical engineering problems, such as feature

selection [16] and parameter identification [17]. However, similar to other swarm intelligence algorithms, GSA

also has such drawbacks as low convergence accuracy and slow optimization speed, and it is easily trapped in a

local optimum. Therefore, in order to overcome these shortcomings, a novel variant of GSA, chaotic cloud GSA

(CCGSA), was developed by incorporating chaos theory and the cloud model into the basic GSA.

Chaos theory, which can provide a powerful global search tool, is usually used to improve the global

search ability of swarm intelligence algorithms [18–20]. The ergodicity of the chaotic mechanism can make the

individuals travel through all positions in the whole space to the greatest extent possible. As an uncertainty

conversion model, the cloud model characterizes the relationship between qualitative concepts and quantitative

expressions [21]. The model possesses the properties of uncertainty with certainty as well as stability through

changes, i.e. randomness and stable tendencies [22]. Using these characteristics, a local search method based

on the cloud model is created to effectively exploit a promising solution around the current best position. In

addition, a cross-search strategy is proposed to switch the chaotic global search and the cloud local search.

Finally, six composite benchmark functions [23] are used to test and evaluate the search ability of CCGSA.

In addition, two novel variants of GSA, chaotic gravitational search constant-based GSA (CGSA) [24] and

escape velocity operator-based GSA (EVGSA) [25], are introduced for the purpose of performance comparison.

The experimental results demonstrate that the proposed algorithm has a competitive convergence performance

compared with CGSA and EVGSA. Moreover, a series of comparative experiments on template matching

indicates that CCGSA is superior to five other selected competitors.

The remainder of this paper is organized as follows: Section 2 reviews the principle of GSA; Section

3 elaborates on the cross-search mechanism based on chaotic global search and cloud local search; Section 4

introduces a normalized cross-correlation function and describes the procedure of template matching based on

CCGSA; Section 5 verifies the search ability of CCGSA on six composite functions and conducts the template

matching with CCGSA for two complicated cases. The study’s conclusions are presented in the last section.

2. GSA

GSA was developed from the law of universal gravity [14]. Each individual is viewed as an object with mass.

Any two objects attract each other through the force of gravity and move according to the rules of kinematics.

The motion of the objects will always tend toward the heavier objects. In the iterative process of GSA, the

performance of each individual is evaluated according to its mass, and all the objects eventually converge to

the heaviest one, i.e. the global optimal solution. Consider that the position of the ith object at time t in D

dimensional space is defined as

Xi(t) = (x1
i , x

2
i , . . . , x

d
i , . . . , x

D
i ), (1)

where xd
i denotes the position of the dth dimension of object i . After all the objects are evaluated by the

fitness function, the inertial mass Mi of object i is calculated as follows:
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Mi(t) =
fiti(t) − worst(t)∑N

j = 1 fitj(t) − worst(t)
, (2)

where fit i is the fitness value of object i ; N is the population size; worst(t) denotes the worst fitness value

among the population.

The resultant force F d
i of direction d acting on the object i is the sum of the component forces F d

ij of

the other N− 1 objects respectively acting on it. The formula is given as follows: F d
ij(t) = G(t)

Mi(t) × Mj(t)
Rij(t) + ε (xd

j (t) − xd
i (t))

F d
i (t) =

∑
j = 1, j ̸= i

randjF
d
ij(t)

, (3)

where Mi and Mj denote the masses of object i and j , respectively; rand j is a random number generated

from [0, 1]; Rij(t) is the Euclidean distance between objects i and j ; ε is a small positive constant; G(t) is

the gravitational constant and G(t) = G0 × e−αt/T , where G0 and α are the initial constants and T is the

maximum iterations.

Next, the acceleration αd
i of object i in direction d is computed as follows:

adi (t) =
F d
i (t)

Mi
(4)

Subsequently, the next velocity vdi and position xd
i are updated according to Eqs. (5) and (6):

vdi (t + 1) = randi × vdi + adi (t) (5)

xd
i (t + 1) = xd

i (t) + vdi (t + 1) (6)

The simplified procedure of GSA is

Step 1: Initialize the population X randomly.

Step 2: Evaluate fit(t) with the object function.

Step 3: Update the worst and current best solution Xbest .

Step 4: Calculate M(t) according to Eq. (2).

Step 5: Update α(t), v(t), and x(t) by using Eqs. (3) through (6).

Step 6: Repeat steps 2–5 until the maximum iteration is reached.

3. CCGSA

3.1. Chaotic global search (CGS)

Using chaos theory’s properties of randomness, ergodicity, and nonrepetition [18], CGS is constructed to guide

the population to search all over the solution space and thus help the algorithm jump out the local optimum.

In this paper, a logistic map [20] is introduced as a typical chaotic sequence to fulfill the requirements of CGS.

The iterative formula of a one-dimensional logistic map is

cxi+1 = µ × cxi × (1 − cxi) , (7)
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Figure 1. Logistic map function.

where i = 1, 2, ... ; µ = 4; cxi denotes the chaotic variable and satisfies 0 ≤ cxi ≤ 1; the initial value cx 0 is

generated randomly in [0, 1] and cx 0 ̸= {0, 0.25, 0.5, 0.75, 1} . Figure 1 demonstrates the iterative curve of a

logistic map. The procedure of CGS is as follows:

Step 1: Initialize the corresponding parameters of the logistic map; assume the j th element in the ith

chaotic vector is cxj
i , j = 1, 2, ..., D; i = 1, 2, ..., Tchaos , where Tchaos denotes the maximum iteration of the

chaotic search.

Step 2: Generate a D dimensional starting vector cx0 in [0, 1] randomly and set i = 1.

Step 3: Generate a D dimensional chaotic vector by using Eq. (7); then set j = 1.

Step 4: Project the chaotic variable cxj
i to decision variables chaos xj

i by using Eq. (8).

chaos xj
i = lowj + cxj

i × (upj − lowj), (8)

where lowj and upj are the lower and upper bounds of the j th dimensional decision variables, respectively.

Step 5: Set j = j+ 1; repeat Step 4 until the ith decision vector is completely projected from D

dimensional chaotic space.

Step 6: Set i = i+ 1; if the maximum iteration is not reached, return to Step 3; otherwise proceed to

Step 7.

Step 7: Evaluate the Tchaos new individuals chaos x and determine the best individual, CCbest . If

CCbest is superior to the current best position Xbest , substitute Xbest for CCbest .

3.2. Cloud local search (CLS)

The cloud model is an uncertain conversion tool for characterizing the relationship between qualitative concepts

and quantitative expressions [21,22]. In the cloud model, three digital feature values (the expectation Ex, the

entropy En, and the hyperentropy He) are used to reflect the randomness and stable tendency of a concept in

an exact quantitative manner. Ex is the center of gravity of the cloud representing the most typical sample for

quantifying the concept; En denotes the distribution scope of the cloud; He reflects the thickness and dispersion

of the cloud.

3.2.1. Definition of normal cloud model

The normal cloud model is a commonly used cloud model and is constructed based on normal distribution.

The definition [22] is as follows: Let C be the qualitative concept related to the quantitative domain U . If the
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quantitative value x in U denotes a random implementation of C , and if x follows the two conditions:(i) x ∼
Normal(Ex, H), where H ∼ Normal(En, He); (ii) the certainty degree µ(x) that x belongs to C satisfies:

µ(x) = e−
(x − Ex)2

2H2 (9)

then the overall distribution of x in U is seemed as a normal cloud and each x can be regarded as a cloud

droplet. The normal cloud generator is used to generate the cloud droplets and can be formulated as follows:

x = NCG(Ex, En, He) (10)

Figure 2 demonstrates various normal cloud models based on different digital feature values. Digital feature

values directly determine the distribution of cloud droplets. More specifically, the greater En is, the wider the

distribution range of cloud droplets is; the larger He is, the more discrete the cloud droplets are.
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Figure 2. Normal cloud models with various parameters.

3.2.2. Procedure of CLS

There is a higher probability of finding the global optimum or a more promising solution around the current best

location [17]. To achieve this, the normal cloud model is utilized to conduct a fine search around the current

optimal location. The motivation for this is that the cloud model could embody the essence of population

evolution: Ex corresponds to the genetic quality of the parent and the stability of inheritance by the offspring;

En corresponds to the mutation scope and search extent; He corresponds to the degree of evolutionary stability

and the agglomeration of the offspring. Therefore, the cloud droplets are considered as the new objects swarm,

and the randomness and stable tendency of these new individuals are helpful for better movement to the Xbest

to obtain a more accurate solution. The steps of CLS are as follows:

Step 1: Initialize the number of cloud droplets Ncloud ; the j th element in the ith cloud droplet is denoted

as cloud xj
i , i = 1, 2, ..., Ncloud , j = 1, 2, ..., D ; set i = 1, j = 1.
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Step 2: Update the three digital feature values, Exj , Enj , and Hej , by using Eq. (11).


Exj = Xj

best

Enj = (upj − lowj)/(0.5 × (1 + rm) × t)

Hej = Enj

, (11)

where rm is a random number generated in [0, 1]. From Eq. (11), En and He are dynamically decreased over

time t . In this manner, the population diversity can be better kept in the initial stage, and, as the iteration

proceeds, the gradual reduction in En and He ensures the convergence rate and precision.

Step 3: Generate a Gaussian distribution-based random value Hj with the mean value Enj and variance

Hej .

Step 4: Generate a Gaussian distribution-based random value cloud xi with the mean value Exj and

variance Hj .

Step 5: Set j = j+ 1 and repeat Steps 2–5 until the ith cloud droplet is completed in Ddimensional
space.

Step 6: If the Ncloud cloud droplets are all completed, skip to Step 7; otherwise let i = i+ 1 and return

to Step 2.

Step 7: Calculate the fitness values of the Ncloud cloud drops cloud x and determine the best individual,

CCbest , among cloud x. If CCbest is superior to Xbest , then substitute CCbest for Xbest .

3.3. Cross-search strategy

From Sections 3.1 and 3.2, CGS and CLS are developed to improve the solution quality of Xbest at each

iteration. As shown in Figure 3, CGS can search for the global optimization solution in a larger area to improve

the ability to break away from local optima. CLS works in the surrounding area of the current optimal location

Xbest to obtain a better solution. To balance the exploration and exploitation ability of GSA better, a cross

search strategy is proposed for switching CGS and CLS with probability pm . The expression for the strategy is

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

CGS

CLS

Global optimum

Figure 3. Schematic diagram of chaotic cloud search.

Conduct

{
chaotic global search if rand < pm

cloud local search otherwise
(12)

Thus, CCGSA is developed by integrating a cross-search strategy into the basic GSA. To clearly illustrate

CCGSA, a complete flowchart for CCGSA is shown in Figure 4.
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Output the optimal solution

Yes

Initialize the iterative population randomly

Evaluate the fitness value for each individual
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Figure 4. A flowchart for CCGSA.

4. Template matching based on CCGSA

4.1. Fitness function

In this paper, the search task in template matching is performed by using CCGSA. The similarity criterion,

normalized cross correlation (NCC) [7], is regarded as the fitness function. The scalar product form of NCC is

as follows:

R (u, v) =
tempT · sub(u, v)√

tempT · temp ·
√
subT(u, v) · sub(u, v)

, (13)

where temp is the template image; sub is a subset of the source image; temp T and sub T are the transpositions

of temp and sub, respectively; and (u, v) is the top left coordinate of the subset image.

Figure 5 illustrates the basic principle of template matching. S represents the source image; the size of

S is M ×N ; the size of temp is m × n ; sub is covered by temp and they have an equal size; and the feasible

search region is: u ∈ [1,M − m + 1], v ∈ [1, N − n + 1]. The matching process finds the optimal coordinate

(u, v) in the feasible search region by calculating the similarity between the template image and the subset of

the source image. R(u, v) = 1 represents the best matching location being obtained.
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Figure 5. Basic principle of template matching.

4.2. Implementation of CCGSA in template matching

Step 1: Load source image and the template image, and convert them (both are RGB) to gray scale format.

Step 2: Set the population size N , the maximum iterations T for GSA; set the Tchaos for CGS and Ncloud for

CLS; set probability pm for the cross search strategy.

Step 3: Initialize N individuals randomly. For image matching, the dimension D is 2.

Step 4: Conduct the basic GSA to update the individuals.

Step 5: Conduct the cross-search strategy to improve the Xbest .

Step 6: If the algorithm reaches the maximum iteration or finds out the best matching location, terminate the

CCGSA; otherwise go back to Step 4.

5. Simulation and comparison

In this section, two types of experiments were conducted to evaluate the CCGSA model. One is model

verification on six challenging benchmark functions; the other is model application to template matching.

The test environment was configured with a 3.20 GHz CPU, 3568 MB RAM under the Windows XP operating

system. All experiments are simulated with MATLAB R2011b.

5.1. Model verification on composite benchmark functions

To verify the performance of the proposed algorithm, six composite test functions [23] (CF1–CF6) were used

to test its search ability. The dimension of the six functions was 10 and the search range is [–5, 5]. Detailed

information about these six functions is listed in [23,25]. Moreover, two novel improved versions of GSA, CGSA

[24], and EVGSA [25], were introduced to conduct a comparative experiment. The related parameters of CGSA

and EVGSA are in accordance with those in [24,25]. For CCGSA, Tchaos = Ncloud = N , pm = 0.5. To ensure

the fairness of the comparison, the population size N is 30, and the fitness evaluation number is 15,000, G0=

100, α = 20.

Table 1 lists the statistical results including mean and standard deviation over 30 independent runs.

CCGSA outperformed CGSA and EVGSA on all six functions in terms of convergence accuracy and robustness.

To more intuitively reflect the optimal effect, Figure 6 shows the average evolutionary curves of the three

algorithms over 30 independent runs. It is clear that CCGSA demonstrates a stronger global convergence ability
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and faster convergence rate. The superiority of CCGSA indicates that the cross-search strategy combining CGS

and CLS contributes to GSA to achieve a perfect compromise between global exploration and local exploitation.

Table 1. Comparative results on composite benchmark functions.

CF
CGSA EVGSA CCGSA
Mean Std Mean Std Mean Std

CF1 60.215 53.525 108.501 38.015 16.667 37.929
CF2 37.541 69.560 133.803 106.977 16.921 46.025
CF3 172.538 38.922 207.901 40.998 131.326 27.860
CF4 323.679 56.089 374.032 105.251 286.238 10.080
CF5 108.127 61.459 191.992 120.856 32.075 45.347
CF6 847.553 111.766 869.658 87.517 522.873 82.309

5.2. Model application to template matching

To evaluate the performance of CCGSA in solving the template matching problems, a series of experiments was

conducted on two complicated cases. Several intelligent algorithms were introduced to compare with CCGSA:

PSO, CPSO, DSA, and CDSA [11,12]. The population size and maximum iterations for all algorithms were set

to 100 and 500, respectively. The parameter settings of all algorithms are given as follows:

(1) GSA and CCGSA: G0 = 1, α = 5, Tchaos = Ncloud = 30, pm = 0.5.

(2) PSO and CPSO: C1 = C2 = 2, ωmax = 1.2, ωmin = 0.3.

(3) DSA and CDSA: p1 = 0.8rand, p2 = 0.8rand.

Figure 7 respectively demonstrates the source images, template images, and matching results on the two cases.

The matching results marked by the red rectangles shows that CCGSA is practical and effective in finding out

the best matching subimage from the complex source image. Figures 8a and 8c show the evolutionary curves

for CCGSA over 10 independent runs on the two cases. It is obvious that the proposed method possesses a fast

convergence speed and stable convergence performance. Figures 8b and 8d demonstrate the average comparative

curves for the GSA, CCGSA, PSO, CPSO, DSA, and CDSA obtained with 20 independent runs. The basic

GSA has difficulty successfully obtaining an accurate matching location. The proposed method, on the other

hand, can converge to the global optimal value, i.e. R(u, v) = 1 with the fewest average iterations among these

algorithms. In addition, the comparative results also reflect that CCGSA has a higher robustness and matching

success rate than the other competitors.

Table 2 lists the average time consumption for GSA, CCGSA, CDSA, CPSO, DSA, and PSO, which

are the algorithms that successfully located the best matching position over 30 times. It is clear that CCGSA

takes the shortest time out of these competitors. In sum, the experimental results indicate that the cross-search

strategy greatly improves GSA performance in matching accuracy and efficiency; additionally, CCGSA shows

high competitiveness among these algorithms in template matching.

6. Conclusion

This paper proposes a novel variant of GSA by incorporating a new cross-search strategy based on CGS and

CLS into GSA. In CCGSA, CGS, which is based on chaos theory, can enhance population diversity and help
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Figure 6. Average evolutionary curves using CGSA, EVGSA, and CCGSA.

overcome the premature convergence problem of GSA. CLS can allow GSA to quickly determine the potential

most-promising solution around the current best solution. The experimental results of six composite benchmark

functions show that with the help of the cross-search strategy CCGSA has a favorable balance of exploration
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Case 1:          

Case 2:          

(a)                (b)                 (c)  

Figure 7. Test cases: a) Source images. Size: case 1: 419 × 709, case 2: 570 × 870; b) Template images. Size: case 1:

49 × 75, case 2: 59 × 72; c) Matching results using CCGSA.
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Figure 8. Convergence curves on two cases.
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Table 2. Average cost time(s) of the comparative algorithms.

Case PSO CPSO DSA CDSA GSA CCGSA
Case 1 3.6479 3.5602 2.6759 1.7397 2.3659 1.5694
Case 2 4.2366 3.8034 3.1557 2.3979 8.6585 1.9030

and exploitation. In addition, the proposed algorithm demonstrates higher matching efficiency and robustness

in template matching than the other selected competitors.

Future work will further investigate the influence of CCGSA on convergence performance with various

chaotic maps and cloud models. The proposed algorithm will be applied to various optimization fields, such as

multiobjective, multimodel, and binary optimization.
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