Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2018) 26: 101 — 114

© TUBITAK
TUBITAK Research Article doi:10.3906//elk-1701-22

http://journals.tubitak.gov.tr/elektrik/

An optimized multiobjective CPU job scheduling using evolutionary algorithms

Santhi VENKATRAMAN?®, Dharshikha SELVAGOPAL
Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamil Nadu, India

Received: 03.01.2017 . Accepted/Published Online: 04.12.2017 . Final Version: 26.01.2018

Abstract: Scheduling in a multiprocessor parallel computing environment is an NP-hard optimization problem. The
main objective of this work is to obtain a schedule in a distributed computing system (DCS) environment that minimizes
the makespan and maximizes the throughput. We study the use of two of the evolutionary swarm optimization techniques,
the firefly algorithm and the artificial bee colony (ABC) algorithm, to optimize the scheduling in a DCS. We also enhance
the traditional ABC algorithm by merging the genetic algorithm techniques of crossover and mutation with the employed
bee phase and the onlooker phase, respectively. The resulting enhanced ABC algorithm is used as the scheduling algorithm
and is evaluated against the firefly and ABC algorithms. The results obtained show that in a distributed environment
with a large number of jobs and resources, multiobjective scheduling using evolutionary algorithms can perform well in

terms of minimizing makespan and maximizing throughput.

Key words: Firefly algorithm, makespan, throughput, artificial bee colony algorithm, crossover, mutation

1. Introduction
Day by day, data are becoming larger and more complex. The resources available for processing huge data are
limited and there is a rising need for high processing capacity. Hence, the available resources should be used
efficiently to handle the problem. Many computing systems like supercomputing, client server computing, and
parallel computing have been proposed to handle huge data. Distributed computing is proving to be an efficient
approach to handle the processing of large amounts of data. High processing capacity of low-cost computers
and high-speed network technologies have driven the use of distributed computing environments to a very great
extent. In a distributed computing system (DCS) many servers are integrated in such a manner that they appear
as one system. There is always a master, which will delegate the tasks to the participating nodes equally. Here
the main aim of the master is to distribute the jobs such that the overall time taken to complete all the jobs is
minimal and no node is overloaded or underloaded. The key problem when using a DCS is to find a schedule to
execute the tasks by assigning the resources in a smart way. Thus, scheduling in a DCS is an NP-hard problem
[1]. Finding an optimized schedule plays an important role in determining the performance of the system. A
typical scheduling algorithm should find a schedule such that the makespan is minimized and the response time
is reduced. Tasks should also be scheduled in such a way that the throughput of the system is increased. Hence,
scheduling in a DCS can be classified as a multimodal optimization problem [2].

Evolutionary algorithms are relatively very powerful techniques used to find solutions for many real-world
search and optimization problems. For problems with multiple objectives, we need to obtain a set of optimal

solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective

*Correspondence: sannthi@yahoo.com

101

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

way of finding multiple effective solutions in a single simulation run [3,4]. Starting with the traditional LPT
algorithm [5], which is a heuristic approach, a number of nature-inspired evolutionary approaches have found
applications in solving such multimodal optimization problems. For the genetic algorithm [6,7], though it uses
an evolutionary approach to find the best schedule, the computation time required is higher. Particle swarm
optimization (PSO) [8] and the artificial bee colony (ABC) algorithm [9,10] are metaheuristic approaches applied
to various multiobjective problems. Unlike the ABC, the PSO algorithm cannot deal with larger instances. The
firefly algorithm (FA) [11-13] outperforms both PSO and ABC algorithms for smaller instances, but when
applied to obtain a schedule with a larger number of jobs and resources the result is not as optimal as that of
ABC. The major drawback of the ABC algorithm is that when used with multimodal optimization problems,
the complexity induced is very high. This drawback is overcome by the FA, which makes it more preferable
with its ease of implementation.

Most of the previous research works done so far considered makespan, flow time, and latency as the criteria
for the objective functions. In the multiobjective simulated annealing approach proposed by Varadharajan
and Chandrasekaran [14], minimizing of total flow time and makespan are considered as the objectives. A
multiobjective approach with PSO technique [15] was proposed by Zhang et al., where they minimized the
makespan and the workload of the machines. Karthikeyan and Asokan et al. [16] proposed a discrete FA for
solving multiobjective problems with some set of resource constraints. In another paper Marichelvam et al.
used a discrete FA for multiobjective scheduling [17], which again considered the minimization of makespan
and mean flow time. In this paper we have considered two objectives: one is minimizing the makespan and the
other is to maximize the throughput. By throughput we mean the number of jobs completed within a given
time unit.

2. Problem formulation

A set of njobs is to be processed on a set of mmachines under the following basic assumptions: preemption
of operations is not allowed; each machine can process only one job at a time; each job may be processed
by only one machine at a time. The processing of a job j on machine k is referred to as an operation.
The processing time (Pji- processing time taken by job j on machine k) of a job is not known at the
time of scheduling. Therefore, we assume that the processing times are independent random variables with
uniform/normal/exponential distribution [18].

Makespan is defined as the completion time of the last job to leave the system. The completion time
includes the processing time and the waiting time. Makespan is important for effective utilization of resources
and it should be minimized for effective performance. If Cp, .y is the makespan that is to be minimized, at any
instance, the completion time of the jth job using the kth resource should be less than or equal to it. Hence,

C’max Z Cjk (1)

If Z; denotes the makespan for a schedules;, C; is the completion time of job j, and if P; is the processing

time of job j, which is a random variable, then

Zi=» Cj, (2)

102

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

The problem is formulated mathematically as
f=min(2). (4)

Here Z = {Z;} where i = 1 to size. Size denotes the population size, i.e. number of fireflies in a population.
Since processing time Pj,is a random variable, the completion time C? for a schedule cis also a random

variable. A minimum makespan, C?

0 ax» Which is also a random variable, can be achieved for each realization

of Pji,. Therefore, the objective function is expressed in the form of an expectation. The obtained makespan
value should be less than or equal to the expected makespan value. The objective function f can be rewritten
as:

f <minE(Cpax)- (5)
The other objective function considered is the throughput. The schedule that is obtained should be achieving
high throughput along with minimal make span. If k is the number of jobs executed for a given time duration,
where k < n, the objective function is given by:

g = max(k). (6)

For finding the best schedule in a population, the intensity value is calculated for each of the fireflies in the
population. This intensity depends on both throughput and makespan, which are calculated for every schedule
in a population. Among the calculated values, the minimum makespan is taken as the optimal makespan and
the maximum throughput is taken as the optimal throughput. The efficiency of each schedule (o) is calculated

based on the optimal makespan and optimal throughput using Egs. (7) and (8), respectively:

Makespan
Effo _ g 100 7
Ffmakespan Optimal M akespan S v
Throughput
- _ °__100. 8
fFehroughput OptimalThroughput ?

Ef frakespan 18 the efficiency of the schedule with respect to makespan and Ef f7,,.ougnpus 13 the efficiency with
respect to throughput. The intensity (Intensity,)of the schedule is then calculated by finding a cumulative of
the efficiency values obtained. Eq. (9) is used to find the intensity of a firefly/schedule:

Intensity, = (Ef [, qkespan ™) + (Eff, xp). (9)

throughput

Here m and p refer to the weightage allocated to makespan and throughput, respectively.
Since in this paper we are trying to achieve an optimal schedule considering both the minimization of
makespan as in Eq. (4) and maximization of throughput as in Eq. (6), the problem can be classified as a

multiobjective optimization problem.

3. Firefly algorithm

The FA is a metaheuristic optimization algorithm based on the flashing characteristics of fireflies [19]. The
algorithm has been formulated with three main assumptions: 1) all fireflies are unisexual, which eliminates
the possibility of attraction based on sex, i.e. each firefly will be attracted by all other fireflies; 2) attraction
depends on the amount of brightness where a less bright firefly is attracted to a brighter one and the brightest
firefly will move randomly; 3) the brightness of the firefly is determined by the objective functions.

103

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

3.1. Pseudocode
The following steps are taken in the FA:

1. Define the representation of a single firefly, X, = (x1... x4), which is a vector. ‘d’ denotes the dimension,
which is the size of the vector. ‘x;’ denotes the value of a single element in the vector wherel < ¢ < dand

p is the index number of a single firefly.
2. Initialize population of fireflies X = {X,;} where (i = 1 to size). ‘size’ refers to the size of the population.

3. Calculate intensity using the objective functions of makespan and throughput.

4. While t < size,
For i = 1: n all n fireflies,
For j = 1: i all n fireflies,
If (Intensity ; > Intensity;), move fireflies i and j according to attractiveness.
Evaluate new solutions. Update light intensity for next iteration. End if.
End for j. End for i.
Sort the fireflies to find the brightest one.
End while.

5. The brightest firefly (optimal schedule) obtained is saved.

3.2. Phases in the algorithm

The algorithm includes three main phases: representation, initialization, and updating.

3.2.1. Representation

Let N refer to the population size and k refer to the index of the iteration; the firefly population is defined as
Xk = (X{“, Xk o ,Xﬁ,) where X[denotes the firefly i in the kth iteration. Each firefly is a possible schedule;
length of each firefly is a vector of length ‘n’ where ‘n’ is number of jobs; each element inside the vector may take
random values between 1 and ‘m’, where ‘m’ is the number of resources. The continuous position vector X¥is
converted to a discrete permutation S¥ based on the shortest position value (SPV) rule [20]. The resource

values (RF) are determined using the permutation function:
RF = (SFmodm) + 1. (10)

Eq. (10) determines the resource number to which a particular job has been assigned. For example, for 5 jobs
and 3 resources, Table 1 denotes the firefly representation. In Table 1, the first row denotes the continuous
position values Xf generated in the initialization process. The SPV rule is applied to these continuous values.
The corresponding discrete values generated are given in the second row, Sf. These discrete values represent

the job numbers. The third row, R, denotes the resource values allocated for the corresponding job values.

The sequence of the jobs is first-in-first-out, so the jobs are executed in the order they enter the system.

104

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

Table 1. Solution representation example.

Jobs (dimension) | 1 2 3 4 5
Xk 514 | 254 | 3.85 | 0.9 | -2.56
Sk 5 3 4 2 1
R¥ 3 1 2 1 3

3.2.2. Initialization

It takes the following steps:
1. Primary population is generated randomly.
2. The processing times are generated randomly based on the distribution.

3. The initialized fireflies are continuous values given by Eq. (11):
0o _ . oy
Xi’j = Xmm + (Xmax Xmm) XU(O, 1) (11)

Here XR ; stands for the initial population generated. This will be a set of vectors with continuous values.

Xmin = 04 and Xy, = 4.0 and U (0, 1) is a random variable between 0 and 1.

3.2.3. Updating
The brightness Sy of each firefly is calculated using the fitness functions f and g. The distance (r;;) between

any two fireflies is calculated using the Cartesian distance given in Equation (12):

d
rij =llzi—ajll=| Y @ik — z50)% (12)
k=1

The attractiveness () of a firefly is given as follows, where 3y is the initial brightness:
B = Boe ", m > 1. (13)

Based on the brightness function and the distance, the fireflies in the population show movements. The random

position value for a firefly is obtained using the following equation:

x,(t+1)=z; (t) + Be*W?J' (x; — x;) + a(rand — %) (14)

4. Artificial bee colony algorithm: the original version

The ABC algorithm is an optimization algorithm based on the foraging behavior of honey bees [21]. The main

steps of the algorithm are:

1. Initialization: The food sources are initialized for the employed bees to go explore.

2. Iterate:

105

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

i. The employed bees go to their respective food source and explore the neighbor sources.
ii. They share the information with the onlookers.
iii. The onlookers select the sources based on the information and go evaluate the source.

iv. The abandoned sources are replaced with the new sources found by the scouts.

3. Until the stop conditions are met.

4.1. Phases in the algorithm

The three main phases in the search process are the employed bees phase, onlookers phase, and scouts phase.
The parameters used in the algorithm are the number of food sources, termination criteria, and the limit after

which the source is to be abandoned.

4.1.1. Initialization

Each food source is generated randomly using the below equation:
Xij = lbij + mnd(O, 1) (ub” — lb”) . (15)

Here X;is a vector in a population (i = 1... size, size: population size). X, contains n variables, which are
denoted by X;; where j = 1...n (n is the vector size, i.e. number of food sources). ‘rand’ is a random variable

between 0 and 1 and ub;; and lb;; are the upper bound and lower bound of the variable X;.

4.1.2. Employed bee phase

The employed bees will update the present solution based on the fitness value of the new solution. The position
update equation is given by:

Vij = Xij + ¢ij (Xi; — Xij) - (16)

Here ‘7', is the new food source vector and V;; is a variable in the vector. X; is the randomly selected food
source vector and X;; is a value in the vector (i = 1... size, size: population size and j=1...n).y;; is a random

number within —1 and 1. Once 171 is generated, its fitness is compared with its parent, X'z A greedy selection

is applied between them.

4.1.3. Onlooker bee phase
In this phase the employed bees share the fitness information about the new food sources with the onlookers.
The onlookers evaluate the food source and calculate the selection probability (F;) of each source using the
below probabilistic selection function:

fit;

P ==
Zj fit;

(17)

Here fit; is the fitness value of the ith solutionX; and >_; [it; is the sum of the fitness values of all the

solutions in the population (j = 1...size, size: population size).

106

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

4.1.4. Scouts phase

If a position cannot be improved over a predefined number of cycles determined by the parameter limit, then

the food source is abandoned. A new food source is then discovered by the scouts using Eq. (15).

5. Artificial bee colony algorithm: the enhanced version

In the enhanced ABC algorithm (E-ABC), the genetic algorithm (GA) operators of crossover [22] and mutation
[23] are included in the original ABC algorithm. The main steps of the algorithm are:

1. Initialization: The food sources are generated randomly using Eq. (15) for the employed bees to go

explore.
2. Evaluate the fitness value of each food sources using Eq. (16).
3. Iterate:
i) The employed bees go to their respective food source and explore the neighbor sources.
ii) Apply the crossover operation to the selected food sources.
ili) Calculate the probability for each source using Eq. (17).
iv) The employed bees share the information with the onlookers.

v) The onlookers select the sources based on the information and go evaluate the source and then

update the probability for each source.
vi) Apply the mutation operation on the selected food source.

vii) The abandoned sources are replaced with the new sources found by the scouts.

4. Until the stop conditions are met.

5.1. Crossover

Crossover is the process of producing an offspring from more than one parent solution. Here two parent
solutions are selected and one-point crossover is applied where the median position is selected as the single
point of crossover. Then the resource values beyond that point for both parents are swapped. This operation
is applied after the employed bee phase.

5.2. Mutation

Mutation is the process of altering one or more values in the solution. In E-ABC, uniform mutation is applied.
A uniform random value is chosen between the upper and lower bounds and the value is used to replace the

chosen resource value. This operation is applied after the onlooker phase.

107

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

6. Experimental setup and evaluation

The three algorithms are coded in JAVA and are run with NetBeans 8.0 on a system with the following
configuration: processor: Intel CORE i3 2.13 GHz; RAM: 3.00 GB; Java Version: JDK1.8. The simulation
parameters used for analysis of the FA are given in Table 2. Alpha denotes the randomization factor. It is kept
at a medium level (0.5). The attractiveness of a firefly (beta = 1) is kept at a high level and the light absorption
coefficient (gamma = 0.1) is kept at a low level in order to promote more movement among the fireflies and
also to speed up the process. The simulation parameter values for the ABC algorithm are taken based on [9].
With 6 = 0.1, 0.2, and 0.3 three distribution patterns are considered for generating the random values for
processing times: normal distribution, uniform distribution, and exponential distribution. Here 6 denotes the

level of variability. In all cases, the mean values are generated from the uniform distribution U (1, 99).

Table 2. Simulation parameters for firefly algorithm.

Definitions
Parameters - - —
Algorithmic description Symbols used | Values
Brightness | Objective functions fand g Already defined
Alpha Randomization parameter « 0.5
Beta Attractiveness 15} 1
Gamma Absorption coefficient y 0.1
Population | Number of solutions per iteration max 100
Problem di i ize of th t
Dimension robiett IITIEHSIOH, Stae oL the vector | g n (number of jobs)
(number of jobs ‘n’)

Theoretically for an optimal makespan, we consider that there is no waiting time between jobs, so the
makespan is calculated by only using the expected value of the processing times in each distribution. In the
uniform distribution the processing times are taken in the range of [1, 99]. The expected value of a single
variable (X) of range [a, b] in a uniform distribution is given by the below formula:

b+a

B(X) ===

The expected processing time is 50 in a uniform distribution. With this the makespan is calculated for each
instance. For example, in a 5 x 3 instance the makespan will be 5 x 50, which equals 250. For a normal
distribution the expected value of a random variable is given by its mean valuey, which is 49.5. The makespan
value is calculated in a similar way as for uniform distribution. For exponential distribution the expected value
is given by 1 /A, which is the mean value 1. Based on the expected values of processing times the expected value
of makespan is calculated for each distribution. Table 3 gives the expected values of makespan min (E (Cpax)),
which is calculated from the expected values of processing times in each distribution. The experimental value
obtained should be less then the expected value of makespan obtained in this theoretical evaluation.

The algorithms are run in multiple instances with 5 jobs and 3 resources (5 x 3), 30 jobs and 20 resources
(30 x 20), and 80 jobs and 60 resources (80 x 60). Each algorithm is run ten times for a single instance and for
a single input file. For throughput calculation the unit time taken in 5 x 3 instances is 100. For 30 x 20 the
unit time taken is 1000 and for 80 x 60 instances the unit time taken for calculating the throughput is 3000.

That is, if the time taken is in seconds, for 3000 s how many jobs in a schedule have completed their execution

108

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

Table 3. Expected makespan values in each distribution.

min(E(Cpax)) | Uniform | Normal | Exponential
5x3 250 247.5 247.5
30 x 20 1500 1485 1485
80 x 60 4000 3960 3960

gives the throughput for that schedule. The results of individual runs are not shown due to space limitations.
The values computed in each run are consolidated and the best (Bst), average (Avg), and worst (Wrst) values
are computed for each algorithm.

Table 4 shows the computational results of the three algorithms under uniform distribution with varying
levels of variability (6) as 0.1, 0.2, and 0.3. Similarly, Table 5 shows the computational results of the algorithms
under normal distribution also with varying levels of variability. Finally, Table 6 shows the performance of the
algorithms with respect to the exponential distribution. The makespans obtained from the results are compared
with the expected makespan values given in Table 3 to evaluate the performance of these algorithms. In the 5
x 3 instance the expected value for makespan is 250 and all three algorithms give a makespan that is less than
this expected value. Similarly, in the 30 x 20 instance the expected value of makespan (=1500) is greater than
the obtained makespan values in all three algorithms. In the 80 x 60 instance the obtained makespan values
are much less than the expected value of makespan, which is 4000.

Now we have three different samples: FA, ABC, and E-ABC. The dependent variable, makespan, is
measured at a continuous level. The independent variable, instance (jobs X resources), is measured as a
categorical variable. To obtain the best performing algorithm among the three, we need to prove that the
makespan obtained from one algorithm is less than the makespan obtained from the others. The Kolmogorov—
Smirnov (KS) test is performed to determine whether a parametric or a nonparametric test is to be conducted on
the samples. The null hypothesis for the KS test is “data follow a normal distribution”. If the test is statistically
significant, i.e. P < 0.05, then the null hypothesis can be rejected. From the tests conducted on all three samples,
the P-value obtained is less than 0.05. Thus, it is proven that the data are not normally distributed. Hence, a
nonparametric statistical test is to be performed to compare the three different populations.

The Mann—Whitney U test [24] is a nonparametric test performed to compare the makespan of the
computational results statistically. The algorithms are run 10 times each. They are compared with each other:
FA against ABC, FA against E-ABC, and ABC against E-ABC. The null hypothesis taken is “there is no
difference in performance between the two algorithms”. The critical value of U is 23 at significance level P <
0.05, so if the obtained U value is less than 23 at the 5% level then the null hypothesis can be rejected. The

obtained values of U are listed in Table 7. From the U test we can see that in a smaller instance the U values
obtained in FA vs. ABC and FA vs. E-ABC are less than 23. We can conclude that in a smaller instance
with fewer number of jobs, FA has a significant performance difference when compared to ABC and E-ABC.

However, when performing the test between ABC and E-ABC, the null hypothesis is proved, which denotes no
performance difference between those algorithms. In larger instances, both ABC and E-ABC outperform FA
by overruling the null hypothesis. The E-ABC algorithm gives optimal results in smaller and larger instances,
but the complexity induced is high owing to the additional GA operators.

The histogram comparison of throughput of the three algorithms obtained from the results of the
individual runs is shown in the Figure. The first three boxes correspond to the instance 5 x 3, the second three
boxes correspond to the instance 30 x 20, and the third three boxes correspond to the instance 80 x 60. The
Figure shows that the FA works better than ABC and E-ABC.

109

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

99| VL | 8L| 996 | L'919V | ¢CVE L9 | G¢L| 8L| 006V | 8L9GE | €91€ 89| €L| 9L | VWOV | VY | TVIE | 09 X 08
L¢ | 1'8¢ | 0€ | ¢OVI | L'€6¢T | 61CT 8C | 8'8C | 6¢ | CCET | §'€8CT | 8LTT 8C | 7'8C | 6¢ | SG€T | 6'LLCT | LETT | 0T X 0€ | DGV-d
€] 9¢ V| ¥e€c| 9061 | 991 i i V| 9¢€¢ L0 | 981 €] 8¢ V| €C¢ G0c | €8I € XxXg
89| <L | 8L| 88ESG| 6187|0007 99| TL| LL| CC8V | <CCEV | €SVE 89| T.| V.| ¥I0G| €0LV |cLO€| 09 X 08
LG | 8C| 6C| ¢E9T | 8OST | OCET LG | C'8C| 6C | GPST | T9¥T | 80CT LG | €8C| 6¢| 0L9T | L8YT|€8ET | 0C X 0€ ngayv
€] 6'¢ V| 9¢€¢ 10¢ | 691 €| g€ V| 8¥¢C ¢Ic | 981 €] 6¢ V| ¢&¢ €1c | L8I € XxXg
69| SVL | LL|89CS | GCTSG | 089€ 69| <CL| GL| LLVG| TOOV | TCLE 99| TL| 91| ¢E€LG| 69¢V | 1¢8€ | 09 X 08
GC | 89¢ | 6¢ | I8ST | 899T | OVET GC | L'9¢ | 0€|908T | 0.L9T | 9.¢1 Ve | 9¢| 8¢ | ¢98T | GLIT | LVET | 0C X x0€ | Lpoarg
€] 8¢ V| T¢c ¢0c | 18T €| 9¢ V| €€¢ 60¢ | 06T €] 9¢ V| 61¢ 00c | €8I € XxXg
ISIN | SAY | 98¢ | 1SIM SAY | 18g | 91SIM | SAVY | 189 | 1SIM\ SAY | 95d | 1SIM | SAY | 189 | ISIM\ SAy | 18g
mdysnoay T, uedsoyeA mdySnoay T, uedsoye mdy3noay T, uedsoyeIN
N — N o soouR)Suf
€0=29 c0=20 10=46

UOTINLIISTP WLIOJIU()

‘€'0 PU® ‘Z°0 ‘T°'0 =¢ YIM UOIINGLIJSIP WLIOJIUN Iopun sjnsal reuoryeindwo)) ‘§ o[qeL,

110

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

69 ¢L| VL | 088¥ | 89¥07 | ¢60¢ G9 | G0L| 9L | 088G | ¥'0L6¥ | 0CLE 79 0L | GL | 9008 | 89487 | ¢99¢ | 09 X 08
LG | T'8C | 06| 9LLT | €€0ST | 70CT 8¢ | €6¢ | 0| 99T | L'9IVT | ¥OET 8C | 6'8¢ | 6C | TE€ST | G°96€T | €TCT | O¢ X 0€ | DgV-A
€| C¢ V| G0¢| ¥'02¢ °té €| 8¢ V| 08C| G9¥c | 661 €l 9¢ V| €6C| 6°¢€c| €81 € XxXg
89 €L | LL | L9€9 | L'G997 | 9L0¢ 89 TL | GL | L9€G | 9°LLVV | €81G 69 T. | VL | TLGG 8¢0S | 08¢¢ | 09 X 08
9¢ | V'Lc | 8C | CCST | 6'CVVT | €CET 9¢ | L'9¢ | 6C | CCLT | 9°CEST | LOVI LG | LT | SC | 99971 | ¢°¢eST | P9€T | 0c X 0¢ Nav
€| 9¢ V| 0P¢| 996¢ | 60¢ ¢l ¥e V| 99¢ | 9°¢cc | 661 €| €€ V| 68¢| G¢vec | 961 € XxXg
¢9 69 | ¥.L | 2809 | ¢'089G | Y00V ¥9 1669 | €L | 8EIG | ¥'899¥ | Lcse 19 69 | QL | 8BEO9 | ¥'CcES | CLYE | 09 X 08
CG | 6°Cc| VG| 6IGT | L'PIVI | 98€T €C | ¢V | 9¢ | L6ST | G°C€I9T | 9TV T €C | C'9T | 8T | CSST | 9°LELT | CIVT | 0C X 0S| Apgeirg
€| €¢ V| 99¢ €9¢ | 60¢ €| C¢ V| ¢0¢ gvec | €1¢ €| €€ 7| 06¢ 6¢C | 961 € XxXg
ISIM | SAY | 98¢ | 9SIM SAY | 95g | 1SIM | SAY | 98¢ | ISIA\ SAY | 95g | 1SIM\ | SAVY | 9s5g | ISIM\ SAy | 18g
mdy3noayJ, uedsoyeIN mdySnoayJ, uedsoyeN mdySnoayJ, uedsoyeN
€0 =49 z0=4 10=4 SOOHESHL

UOTINLIISTP [ULION

‘€'0 PU® ‘Z°0 ‘T°'0 =¢ YIM UOIINGLIJSIP [BULIOU Iopun sjnsal feuoryeindwo)) ‘¢ a[qeL,

111

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

Table 6. Computational results under exponential distribution.

Exponential distribution
Instances Makespan Throughput
Best | Average | Worst | Best | Average | Worst
5% 3 185 | 209 243 4 3.2 3
Firefly | 30 x 20 | 1248 | 1398.7 | 1452 | 27 25.8 24
80 x 60 | 3883 | 4283.4 | 5675 | 77 75 73
5% 3 204 | 225.6 262 4 3.7 3
ABC 30 x 20 | 1263 | 1434.1 1584 | 29 27.6 27
80 x 60 | 3580 | 4102.9 | 5542 | 76 72.7 69
5% 3 181 | 207.5 241 4 3.7 3
E-ABC | 30 x 20 | 1128 | 1378.9 | 1545 | 29 26.8 25
80 x 60 | 3325 | 4008.1 | 4512 | 78 77 72

Table 7. Mann—Whitney U test results under uniform, normal, and exponential distributions.

Uniform Normal)
Instance Exponential
0.1 0.2 0.3 0.1 0.2 0.3
FA & ABC 22.5 | 23 22 22 11 21.5 | 21.5

5% 3 ABC & E-ABC | 35.5 | 30 36.5 | 35.5 | 34 35.5 | 29
FA & E-ABC 11 275 | 22 14 11.5 | 22.5 | 17.5
FA & ABC 11 10 16 75 |8 0 17

30 x 20 | ABC & E-ABC | 0 3 4 15 1 10 17.5
FA & E-ABC 0 7 0 1 0 0)
FA & ABC 17 7 17 24 24 25 32

80 x 60 | ABC & E-ABC | 2 0 0 0 0 0
FA & E-ABC 0 3 0 0 0 0

120

100 E-ABE

®©
(=}

ABC DB

Frequency
SR
S S S

4 3 4 25 24 28 75 71 76
Throughput

Figure. This histogram shows the frequency of throughput values obtained when the three algorithms are run in
5 x 3,30 x 20, and 80 x 60 instances.

7. Conclusion and future work

The FA uses the process of attraction based on the brightness of fireflies to optimize an objective function. Prior
research has shown that the algorithm can solve both continuous and discrete optimization problems. Given the
algorithm’s capability to be useful in both continuous and discrete domains, it is used to solve the task allocation
problem, which falls under the category of NP-hard. The algorithm is also compared with two other algorithms,

112

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

the ABC and the enhanced ABC. The makespan values are evaluated using the Mann—Whitney U test and the
throughput is evaluated with the help of histograms. Though the performance of E-ABC is significant when

compared to the other two algorithms, owing to its complexity, the FA gives a better performance overall. Our

future work lies in experimenting and making use of the many new evolutionary algorithms that have been

proposed to improve the performance of distributed system environments.

[1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

Drozdowski M. Selected Problems of Scheduling Tasks in Multiprocessor Computer Systems. Poznan, Poland:
Politechnika Poznanska, Monografie, 1997.

Xia W, Wu Z. An effective hybrid optimization approach for multiobjective flexible job-shop scheduling problems.
Comput Ind Eng 2005; 48: 409-425.

Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, USA: John Wiley & Sons,
2011.

Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms — a comparative case study. In:
Eiben AE, Back T, Schoenauer M, Schwefel H, editors. Parallel Problem Solving from Nature. Berlin, Germany:
Springer, 1998. pp. 292-301.

Koulamas C, Kyparisis GJ. An improved delayed-start LPT algorithm for a partition problem on two identical
parallel machines. Eur J Oper Res 2008; 187: 660-666.

Muthiah A, Rajkumar R. A comparison of artificial bee colony algorithm and genetic algorithm to minimize the
makespan for job shop scheduling. In: 12th Global Congress on Manufacturing and Management; 8-10 December
2014; Vellore, India. Amsterdam, the Netherlands: Elsevier. pp. 1745-1754.

Zalzala AMS, Fleming PJ. Genetic Algorithms in Engineering Systems. London, UK: Institution of Electrical
Engineers, 1997.

Singh MR, Mahapatra SS. A swarm optimization approach for flexible flow shop scheduling with multiprocessor
tasks. Int J Adv Manuf Tech 2012; 62: 267-277.

Li JQ, Xie S, Pan Q, Wang S. A hybrid artificial bee colony algorithm for flexible job shop scheduling problems.
Int J Comput Commun 2011; 6: 286-296.

Zhang R, Wu C. An artificial bee colony algorithm for the job shop scheduling problem with random processing
times. Entropy 2011; 13: 1708-1729.

Khadwilard A, Chansombat S. Thepphakorn T, Thapatsuwan P, Chainate W, Pongcharoen P. Application of firefly
algorithm and its parameter setting for job shop scheduling. J Ind Tech 2012; 8: 1-10.

Udaiyakumar KC,Chandrasekaran C. Application of firefly algorithm in job shop scheduling problem for minimiza-
tion of makespan. In: 12th Global Congress on Manufacturing and Management; 8-10 December 2014; Vellore,
India. Amsterdam, the Netherlands: Elsevier. pp. 1798-1807.

Yousif A, Abdulah AH, Nor SM, Bashir MB. Optimizing job scheduling for computational grid based on firefly
algorithm. In: TEEE Conference on Sustainable Utilization and Development in Engineering and Technology; 6-9
October 2012; Kuala Lumpur, Malaysia. New York, NY, USA: IEEE. pp. 97-101.

Varadharajan TK, Rajendran C. A multi-objective simulated-annealing algorithm for scheduling in flowshops to
minimize the makespan and total flowtime of jobs. Eur J Oper Res 2005; 167: 772-795.

Zhang G, Shao X, Li P, Gao L. An effective hybrid particle swarm optimization algorithm for multi-objective flexible
job-shop scheduling problem. Comput Ind Eng 2009; 46: 1309-1318.

Karthikeyan S, Asokan P, Nickolas S, Page T. A hybrid discrete firefly algorithm for solving multi-objective flexible
job shop scheduling problems. Int J Bioisp Comp 2015; 7: 386-401.

113

http://dx.doi.org/10.1016/j.cie.2005.01.018
http://dx.doi.org/10.1016/j.cie.2005.01.018
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1016/j.ejor.2007.04.013
http://dx.doi.org/10.1016/j.ejor.2007.04.013
http://dx.doi.org/10.1007/s00170-011-3807-3
http://dx.doi.org/10.1007/s00170-011-3807-3
http://dx.doi.org/10.15837/ijccc.2011.2.2177
http://dx.doi.org/10.15837/ijccc.2011.2.2177
http://dx.doi.org/10.3390/e13091708
http://dx.doi.org/10.3390/e13091708
http://dx.doi.org/10.1016/j.proeng.2014.12.333
http://dx.doi.org/10.1016/j.proeng.2014.12.333
http://dx.doi.org/10.1016/j.proeng.2014.12.333
http://dx.doi.org/10.1109/STUDENT.2012.6408373
http://dx.doi.org/10.1109/STUDENT.2012.6408373
http://dx.doi.org/10.1109/STUDENT.2012.6408373
http://dx.doi.org/10.1016/j.ejor.2004.07.020
http://dx.doi.org/10.1016/j.ejor.2004.07.020

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

114

VENKATRAMAN and SELVAGOPAL/Turk J Elec Eng & Comp Sci

Marichelvam MK, Prabaharan T, Yang XS. A discrete firefly algorithm for the multi-objective hybrid flow shop
scheduling problems. IEEE T Evolut Comput 2014; 18: 301-305.

Tavakkoli-Moghaddam R, Jolai F, Vaziri F;, Ahmed PK, Azaron A. A hybrid method for solving stochastic job shop
scheduling problems. App Math Comput 2005; 170: 185-206.

Yang XS. Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T, editors. Stochastic
Algorithms: Foundations and Applications. Berlin, Germany: Springer, 2009. pp. 169-178.

Tasgetiren F, Chen A, Gencyilmaz G, Gattoufi S. Smallest position value approach. In: Godfrey C Onwubolu, Dav-
endra D, editors. Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization.
Berlin, Germany: Springer, 2009. pp. 121-138.

Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm
and applications. Artif Intell Rev 2014; 42: 21-57.

Kumar S, Sharma VK, Kumari R. A novel hybrid crossover based artificial bee colony algorithm for optimization
problem. Int J Comput Applic 2013; 82: 18-25.

Singh A, Gupta N, Sinhal A. Artificial bee colony algorithm with uniform mutation. In: Proceedings of the
International Conference on Soft Computing for Problem Solving; 20—22 December 2011; Roorkee, India. Berlin,
Germany: Springer. pp. 503-511.

Nachar N. The Mann-Whitney U: a test for assessing whether two independent samples come from the same
distribution. Tutorials in Quantitative Methods for Psychology 2008; 4: 13-20.

http://dx.doi.org/10.1109/TEVC.2013.2240304
http://dx.doi.org/10.1109/TEVC.2013.2240304
http://dx.doi.org/10.1016/j.amc.2004.11.036
http://dx.doi.org/10.1016/j.amc.2004.11.036
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1007/978-3-540-92151-6_5
http://dx.doi.org/10.1007/978-3-540-92151-6_5
http://dx.doi.org/10.1007/978-3-540-92151-6_5
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.5120/14136-2266
http://dx.doi.org/10.5120/14136-2266
http://dx.doi.org/10.1007/978-81-322-0487-9_49
http://dx.doi.org/10.1007/978-81-322-0487-9_49
http://dx.doi.org/10.1007/978-81-322-0487-9_49
http://dx.doi.org/10.20982/tqmp.04.1.p013
http://dx.doi.org/10.20982/tqmp.04.1.p013

	Introduction
	Problem formulation
	Firefly algorithm
	Pseudocode
	Phases in the algorithm
	Representation
	Initialization
	Updating

	Artificial bee colony algorithm: the original version
	Phases in the algorithm
	Initialization
	Employed bee phase
	Onlooker bee phase
	Scouts phase

	Artificial bee colony algorithm: the enhanced version
	Crossover
	Mutation

	Experimental setup and evaluation
	Conclusion and future work

