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Abstract: A threshold system is a reliability system whose success/failure is a threshold switching function in the

successes/failures of its components. A coherent system (CS) is one that is causal, monotone, and with relevant

components. The coherent threshold system (CTS), typically called the weighted k-out-of-n system, is consequently

described by strictly positive weights and threshold. This paper presents recursive relations as well as boundary conditions

for eight entities pertaining to a CTS. These are (a) expressions of monoform literals as well as disjoint or probability-

ready expressions for either system success or failure, and (b) all-additive formulas as well as inclusion-exclusion ones

for either system reliability or unreliability. These entities are obtained according to the best policy of implementing the

Boole–Shannon expansion with respect to a higher-weight component before it is made with respect to a lower-weight

one. With this best policy, the success and failure expressions with monoform literals are both minimal and shellable.

Each of the eight entities considered is represented by an acyclic (loopless) signal flow graph (SFG). The SFG for system

success or failure is isomorphic to a reduced ordered binary decision diagram, which is the optimal data structure for

a Boolean function. The interrelations between the SFGs demonstrate optimal procedures for implementing (a) the

probability (real) transform of a Boolean function, (b) inversion or complementation of a Boolean function, and (c)

disjointing or orthogonalization of a sum-of-products expression of a Boolean function. The SFGs discussed herein for a

CT can be extended to a general coherent system. They reduce to elegant symmetric regular graphs for the special case

of a partially redundant system (k-out-of-n system).

Key words: Reliability, coherent threshold system, weighted k-out-of-n system, recursive relations, boundary conditions,

signal flow graph, reduced ordered binary decision diagram

1. Introduction

A threshold system is one composed of n statistically independent 2-state components such that the success

S(X) = S(X1 , X2 , . . . , Xn) of the system is a threshold switching function in the successes X of the system

components [1–3]. By definition, a switching function is a threshold function [1–4] i.f.f. there exists a set of real

numbers W1 , W2 , ..., Wn called weights, and T, called a threshold, such that

S(X) = 1 i . f . f .
n∑

i=1

WiXi ≥ T. (1)
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Similarly to [2,3], a function S(X) satisfying Eq. (1) is denoted herein by H(n; X;W; T), while the corresponding

reliability is called R(n; p; W; T). A threshold system can be neither symmetric nor coherent [2]. However,

threshold systems of significant practical utility are typically coherent. Therefore, we will deal herein with

coherent threshold systems (CTSs). A coherent system is causal, monotone, and of relevant components [5]. A

monotone system is one whose reliability function is a nondecreasing function of each component reliability. The

coherent threshold system is typically referred to in the literature as the weighted k-out-of-n:G system [4]. The

k-out-of-n:G system can be defined as a CTS with a common positive weight for its components and a threshold

equal to k multiplied by this common weight [2,3,5]. A quadratic-time iterative algorithm for computing the k-

out-of-n reliability is based on binary recursive relations together with appropriate boundary conditions [5]. The

algorithm achieves recursion removal by utilizing a signal flow representation of these relations and conditions.

Later, this algorithm was adapted for computing the reliability of a threshold system [2] and further explained

in [3], where a comparison is given for various policies of arranging components. The policy used in [2] is

called the best policy in [3] and demands that a component of a higher weight be handled before one of a lower

weight. This paper presents recursive relations as well as boundary conditions for eight entities pertaining to

a CTS. These are (a) expressions of monoform literals as well as disjoint or probability-ready expressions for

system success and failure, and (b) all-additive formulas as well as inclusion-exclusion ones for system reliability

and unreliability. The system components are arranged according to the best policy of taking a higher-weight

component before a lower-weight one. With this best policy, the success and failure expressions with monoform

literals are both minimal and shellable. Each of the eight entities considered is represented by an acyclic

(loopless) signal flow graph (SFG). The SFG for system success or failure is isomorphic to a reduced ordered

binary decision diagram (ROBDD) [5]. The interrelations between the SFGs demonstrate optimal procedures

implementing (a) the probability (real) transform of a Boolean function, (b) inversion or complementation

of a Boolean function, and (c) disjointing or orthogonalization of a SOP expression of a Boolean function.

The SFGs discussed herein for a CTS (weighted k-out-of-n system) can be extended to a general coherent

system. They reduce to elegant symmetric regular graphs for the special case of a partially redundant system

(k-out-of-n system). The organization of the remainder of this paper is as follows. Section 2 presents some

useful nomenclature necessary for understanding the rest of the paper. Section 3 presents useful expansions for

general switching (Boolean) functions and specifies these to monotonically nondecreasing and monotonically

nonincreasing switching functions. Section 4 develops the aforementioned expansions to ones for the success,

failure, reliability, and unreliability of a CTS and translates them (together with boundary conditions) into

appropriate SFGs. This is followed by a detailed discussion in Section 5 on the merits and interrelations of the

SFGs introduced in Section 4. Section 5 also points out what happens when symmetry is imposed on the TS

to reduce it to an ordinary k-out-of-n system. Section 6 concludes the paper.

2. Nomenclature

Probability-Ready Expression (PRE): A Boolean expression that is directly convertible, on a one-to-one

basis, to a probability expression called the probability or real transform [6]. In a PRE:

1. All ORed terms (products) are disjoint, and

2. All ANDed alterms (sums) are statistically independent.
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The transition from a PRE to a probability expression is achieved by replacing Boolean variables by their

expectations, AND operations by multiplications, and OR operations by additions [6–8].

Shellability: A shelling of the sum-of-products formula (DNF)

m∨
k=1

Ck (2)

is a permutation (Cπ(1) , Cπ(2) , . . ., Cπ(m)) of its terms such that, for each k = 2, 3, . . . , m, the expression

C̄π(1)C̄π(1). . . C̄π(k−1)Cπ(k) (3)

is equal to an elementary conjunction or to 0. A DNF is called shellable if it admits a shelling [9].

Shadow: Let A1 , A2 , . . ., Am be an ordered list of subsets of {1, 2, . . . , n} . For k = 1, 2, ..., m, the

shadow of Ak depends on the order in which these subsets are listed and is given by the set S(A1 , A2 , . . . Ak)

= {j ∈ {1, 2, . . ., n} : there exists ℓ < k ≤ m such that Aℓ / Ak = {j} } [9].

3. On expansions of Boolean functions

An arbitrary Boolean function f(X) = f(X1 , X2 , . . . , X i−1 , X i , X i+1 , . . . , Xn) can be expanded as

f(X) = Xif0 ∨Xif1 = Xif0 ⊕Xif1 = f0 ⊕Xif2 = Xif2 ⊕ f1, (4)

where f0 and f1 are restrictions, subfunctions, ratios, quotients, or cofactors of f(X) given by

f0 = f(X|0i) = f(X1, X2, . . . , Xi−1, 0, Xi+1, . . . , Xn), (5)

f1 = f(X|1i) = f(X1, X2, . . . , Xi−1, 1, Xi+1, . . . , Xn), (6)

f2 = f0 ⊕ f1. (7)

Eq. (4) expresses f(X) by two versions of the Boole–Shannon expansion [10], the positive Davio expansion

[11], and the negative Davio expansion [11], respectively. A coherent system is characterized by a monotonically

nondecreasing success function S(X) and a monotonically nonincreasing failure function S(X) [3]. The

subfunctions S1 = S(X|1i) and S0 = S(X|0i) for such a system satisfy the pairs of identities shown in Table

1, which are evident from the Venn diagram in Figure 1, and hence the success of a coherent system is given

via Eqs. (4) and (8e1) as

Table 1. Pairs of identities satisfied by the subfunctions of a coherent success.

S1 ≤ S0, (8a2) S0 ≤ S1, (8a1)

S0 = S0 ∨ S1, (8b2) S1 = S1 ∨ S0, (8b1)

S0 = S0S1, (8c2) S1 = S1S0, (8c1)

S0 ∨ S1 = 1, (8d2) S0S1 = 0, (8d1)

S2 = S0.S1 = S0 ∨ S1 (8e2) S2 = S0 ⊕ S1 = S0S1, (8e1)
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S2  

S0

S1  

Figure 1. Venn diagram representing the subfunctions S0 and S1 of the success of a coherent system, together with

their Boolean difference S2 .

S(X) = S0 ⊕XiS0S1 = S0 ∨XiS0S1 = S0 ∨XiS1, (9)

where the XOR operator (⊕) is replaced by the OR operator (∨) since the terms S0 and X iS0 S1 are disjoint

and the literal S0 is dropped by virtue of the reflection law [12]. Eq. (9) indicates that S(X) can be expressed

solely in terms of uncomplemented literals X i {1 ≤ i ≤ n} . Similarly, the failure S (X) of a coherent system

is given via Eqs. (4) and (8b2) as

S(X) = XiS0 ∨XiS1 = Xi(S0 ∨ S1) ∨XiS1 = XiS0 ∨ (Xi ∨Xi)S1 = XiS0 ∨ S1. (10)

Eq. (10) indicates that S (X) can be expressed solely in terms of complemented literals Xi .

4. Application to a coherent threshold system

The subfunctions of threshold system success are also successes of threshold systems [2,3], namely

S0 = S(X|0i) = H(n− 1,X/Xi, W/Wi, T ), (11)

S1 = S(X|1i) = H(n− 1,X/Xi, W/Wi, T −Wi). (12)

We now want to develop expansions for eight entities pertaining to a CTS. These eight entities are displayed in

the Karnaugh-map-like structure of Figure 2 [13]. The structure is characterized by:

 Probability Domain Boolean Domain 

Negative 
Expression  

Inclusion-Exclusion 
Formula for 

Unreliability:  
UIE 

All-Additive Formula 
for Unreliability: 

U 

PRE Failure: 

SPRE 

Minimal and 
Shellable Failure: 

S  

Positive 
 Expression  

Inclusion-Exclusion 
Formula for 
Reliability: 

RIE 

All-Additive Formula 
for Reliability: 

R 

PRE 
Success: 

SPRE 

Minimal and 
Shellable Success: 

 S 

Orthogonal expression Disjointness 

Figure 2. A Karnaugh-map-like depiction of the eight entities discussed in this paper.

1. The set of four entities in the right half of the map is in the Boolean domain with a related set of

corresponding four entities in the probability domain in the left half of the map. Transfer from each entity

in the former set to the corresponding one in the latter set is obtained via the probability or real transform

[6].
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2. The set of four entities in the top half of the map is negative entities (failures or unreliabilities), with

a related set of corresponding four positive entities (successes or reliabilities) in the bottom half of the

map. Bidirectional transfer between two entities corresponding to one another is obtained via inversion

or complementation [3,12,14].

3. The set of four entities in the middle half of the map is orthogonal expressions while the ones in the two

extreme columns are not. Transfer from the fourth to the third column is achieved via the disjointness

operation [15].

In summary, the eight entities include expressions of monoform literals as well as disjoint or probability-

ready expressions for either system success or system failure. They also include all-additive formulas as well

as single-polarity ones for either system reliability or system unreliability. The eight entities are handled via

recursions indicated in Table 2. The system success and failure are governed by recursions that have already

appeared in Eqs. (9) and (10), respectively, while the PRE success and failure are governed by Eqs. (13) and

(14), respectively, which are versions of Eq. (4). Eqs. (15) and (16) for the system reliability and unreliability

are obtained by taking the expectation of both sides of each of Eqs. (13) and (14), respectively. Finally, the

single-polarity expressions of Eqs. (17) and (18), for reliability and unreliability expressions, are obtained by

rewriting (qi = 1 − pi) in Eqs. (15) and (16), respectively. These are essentially a rephrasing of recursive

inclusion-exclusion [15], namely

Table 2. The recursions used to obtain the eight entities in Figure 2. Each of these recursions must be supplemented

by appropriate limiting cases or boundary conditions.

Probability domain Boolean domain

UIE(p) = U(p|0i)− piU(p|0i) + piU(p|1i), 1 ≤ i ≤ n, (18) S(X) = XiS0 ∨ S1, 1 ≤ i ≤ n, (10)

RIE(p) = R(p|0i)− piR(p|0i) + piR(p|1i), 1 ≤ i ≤ n, (17) S(X) = S0 ∨XiS1, 1 ≤ i ≤ n, (9)

U(p) = qiU(p|0i) + piU(p|1i), 1 ≤ i ≤ n, (16) SPRE(X) = XiS0 ∨XiS1, 1 ≤ i ≤ n, (14)

R(p) = qiR(p|0i) + piR(p|1i), 1 ≤ i ≤ n, (15) SPRE(X) = XiS0 ∨XiS1, 1 ≤ i ≤ n, (13)

R1 = E{T1}, (19a)

Rj = E{
j∨

i=1

Ti} = Rj−1 + E{Tj} − E{Tj ∧
j−1∨
i=1

Ti} (19b)

= Rj−1 + E{Tj ∧
j−1∧
i=1

T i}, 2 ≤ j ≤ j
T
. (19c)

U1 = E{C1}, (20a)

Uj = E{
j∨

i=1

Cj} = Uj−1 + E{Cj} − E{Cj ∧
j−1∨
i=1

Ci} (20b)
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= Uj−1 + E{Cj ∧
j−1∧
i=1

Ci}, 2 ≤ j ≤ jC . (20c)

Note that the subfunctions used in Table 2 are obtained from Eqs. (11) and (12), or their expectations

R(p|0i) = E{S(X|0i)} = R(n− 1,p/pi, W/Wi, T ), (21)

R(p|1i) = E{S(X|1i)} = R(n− 1,p/pi, W/Wi, T −Wi), (22)

with obviously similar results for the complementary quantities S and U. All the expansions in Table 2 are

implemented for 1 ≤ i ≤ n, employing the best policy of Rushdi [2] and Rushdi and Alturki [3]. This policy

requires that an expansion or recursion be made w.r.t. a higher-weight component before it is made w.r.t. a

lower-weight one. The recursive relations in Table 2 are not sufficient to decide the pertinent quantities. They

must be supplemented with limiting cases or boundary conditions [2,3]. A typical set of such conditions for a

CTS is shown in Table 3.

Table 3. Typical sets of boundary conditions for a CTS.

For T ≤ 0
S(n; X; W; T) = 1, (23a) S(n; X; W; T) = 0, (23b)

R(n; p; W; T) = 1.0, (23c) U(n; p; W; T) = 0.0, (23d)

For
n∑

i=1

Wi < T
S(n; X; W; T) = 0, (24a) S(n; X; W; T) = 1, (24b)

R(n; p; W; T) = 0.0, (24c) U(n; p; W; T) = 1.0, (24d)

The information of the recursive relations in Table 2 and the conditions of Eqs. (23), (24), (19a), and

(19b) now allow us to draw a SFG for computing each of the eight entities in Table 2, for a system of n = 6, W

= [1 2 3 4 5 5], and T = 7. Each SFG is drawn on an appropriate grid of weights and threshold. The source

nodes in any of the SFGs are of two types: black nodes of value 1 or white nodes of value 0. Except for Figure 4

for computing R(6, p, W, T), which is similar to the figures of Rushdi [2] and Rushdi and Alturki [3], all other

figures are novel ones that have not appeared earlier in the open literature. Though the SFGs are strikingly

similar, they have subtle differences in their transmittances as well as nature of source nodes. These differences

are shown in Table 4. The SFGs are acyclic (loopless), and a simple application of Mason’s gain formula [16]

produces the following expressions for the pertinent eight quantities:

S = X5X6 ∨X4X6 ∨X4X5 ∨X3X6 ∨X3X5 ∨X3X4 ∨X2X6 ∨X2X5 ∨X1X2X4, (25)

SPRE = X5X6 ∨X4X5X6 ∨X4X5X6 ∨X3X4X5X6 ∨X3X4X5X6 ∨X3X4X5X6 ∨X2X3X4X5X6

∨X2X3X4X5X6 ∨X1X2X3X4X5X6, (26)

R = p5p6 + p4q5p6 + p4p5q6 + p3q4q5p6 + p3q4p5q6+p3p4q5q6 + p2q3q4q5p6+

p2q3q4p5q6 + p1p2q3p4q5q6, (27)

RIE = p5p6 + p4p6 + p4p5 + p3p6 + p3p5 + p3p4 + p2p6 + p2p5 + p1p2p4 − 2p4p5p6 − 2p3p4p6

−2p3p5p6 + 3p3p4p5p6 − 2p3p4p5 − p2p3p6 − p2p4p6 − 2p2p5p6 + p2p3p4p6 + 2p2p3p5p6
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Table 4. Comparison of the eight signal flow graphs.

+2p2p4p5p6 − 2p2p3p4p5p6 − p2p3p5 − p2p4p5 + p2p3p4p5 − p1p2p3p4 − p1p2p4p5 − p1p2p4p6

+p1p2p3p4p5 + p1p2p3p4p6 + p1p2p4p5p6 − p1p2p3p4p5p (28)

S = X4X5X6 ∨X2X3X5X6 ∨X2X3X4X5 ∨X2X3X4X6 ∨X1X3X5X6, (29)

SPRE = X4X5X6 ∨X2X3X4X5X6 ∨X2X3X4X5X6 ∨X2X3X4X5X6 ∨X1X2X3X4X5X6, (30)

U = q4q5q6 + q2q3p4q5q6 + q2q3q4q5p6 + q2q3q4p5q6 + q1p2q3p4q5q6, (31)

UIE = q4q5q6 + q2q3q5q6 − 3q2q3q4q5q6 + q2q3q4q5 + q2q3q4q6 + q1q3q5q6

−q1q2q3q5q6 − q1q3q4q5q6 + q1q2q3q4q5q6. (32)

In passing, we demonstrate via Table 5 that S in Eq. (29) is not only minimal, but it is also shellable.

Shellability of the formula S in Eq. (29) is evident since its disjointed version SPRE in Eq. (30) has exactly the

original terms of Eq. (29) with each term (beyond the first) replaced by a subsuming one that has additional

noncomplemented literals ANDed with it.

5. Features and interrelations of the eight SFGs

We have already pointed out certain interrelations among the eight SFGs of Figures 3–10, as they are evenly

divided among the three independent dimensions of Boolean versus probability, monoform versus biform, and

positive versus negative. Figures 3–6 represent the positive expressions, while Figures 7–10 represent the negative

expressions. As stated earlier, the eight SFGs in Figures 3–10 are very similar with possible differences in their

transmittances and nature of source nodes, as shown in Table 5. These SFGs constitute pictorial proofs for

many important results:
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Table 5. Demonstration that the threshold system achieves shellability for the minimal failure.
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Figure 3. A shellable and minimal representation for the

threshold-system success S = H(6; X; {1, 2, 3, 4 , 5, 5};
7).

Figure 4. A PRE representation for the threshold-system

success SPRE = H(6; X; {1, 2, 3, 4 , 5, 5}; 7).

5.1. The functions S and S for a CTS system are unate

A function is called unate if it is possible to express it using only noncomplemented literals or complemented

ones. In the former case, the function is said to be a monotonically nondecreasing function in its variables, while

in the latter case it is said to be a monotonically nonincreasing function in its variables. The SFG in Figure

3 is pictorial proof that the success S of the CTS considered (as expressed in Eq. (25)) is a monotonically

nondecreasing function in its arguments. Note that no edge transmittance in Figure 3 is a complemented

variable (each edge transmittance is either 1 or X i). Similarly, Figure 7 is pictorial proof that the failure S of

the CTS considered (as expressed in Eq. (29)) is a monotonically nonincreasing function in its arguments. This

is due to the fact that no edge transmittance in Figure 7 is an uncomplemented literal (each edge transmittance

is either 1 or Xi). Note that similar pictorial proofs for the unateness of the success and failure of a general

coherent system (not necessarily threshold) are also possible.
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Figure 5. A representation for the threshold-system reli-

ability R(6; p; {1, 2, 3, 4 , 5, 5}; 7).
Figure 6. Inclusion-exclusion representation for the

threshold-system reliability R(6; p; {1, 2, 3, 4, 5, 5}; 7).
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Figure 7. A shellable and minimal representation for the

threshold-system failure S̄ = H (6; X; {1, 2, 3, 4, 5, 5}; 7).
Figure 8. PRE representation for the threshold-system

failure S̄PRE = H (6; X; {1, 2, 3, 4 , 5, 5}; 7).

5.2. The expressions for S and S̄ are complete and minimal sums

Each of the expressions of Eq. (25) and Eq. (29) for S and S̄ is a syllogistic formula (a sum-of-products formula

that contains all the prime implicants of the pertinent function [17]), and also an absorptive formula (one that

has no term that can be absorbed by another [17]). Hence, each of these expressions is a complete sum or a

Blake canonical form (a disjunction of all prime implicants, and nothing else). Since the complete sum and

minimal sum are identical for a unate function [9,12], the expressions of Eqs. (25) and (29) are also the minimal

expressions for the unate functions S and S̄ .

265



RUSHDI and ALTURKI/Turk J Elec Eng & Comp Sci

{1} {2, 1} {3, 2, 1} {4, 3, 2, 1} {5, 4, 3, 2, 1} {5, 5, 4, 3, 2, 1}Ø
– 4

– 3

– 2

– 1

0

1

2

3

4

5 

6

7

0 0 0 

0 

0 

0 

1 

1 

1 

1 

q1 

p1 

q2 

q2 q3 

q3 q4 

q5 

q5 

q4 q6 

p5 

p5 

p6 

p4 

p4 

p3 

p3 

p2 

p2 

{1} {2, 1} {3, 2, 1} {4, 3, 2, 1} {5, 4, 3, 2, 1} {5, 5, 4, 3, 2, 1}Ø
– 4

– 3

– 2

– 1

0 

1

2 

3 

4 

5  

6

7

0 0 0 

0 

0 

0 

1 

 

 

1 

q
1

1
2

 

q2 

q2 q3 

q3 q4 

q5

5

q4 q6 

1 1 

1 

1 

1 

1 

1 
1 

1 
1 

–q 
– q

– q2 

– q3 

0 11– q3 

– q4 

– q4 

– q5 

– q5 

– q6 

Figure 9. A representation for the threshold-system un-

reliability U(6; p; {1, 2, 3, 4 , 5, 5}; 7).
Figure 10. Inclusion-exclusion representation for the

threshold-system unreliability U(6; p; {1, 2, 3, 4, 5, 5}; 7).

5.3. The expressions for S and S̄ are shellable

The expression S in Eq. (25) is obtained from Figure 3, while the expression SPRE in Eq. (26) is obtained

from Figure 4. The only difference between Figure 3 and Figure 4 is that each horizontal transmittance of 1

in Figure 3 is replaced by a complemented literal transmittance Xi in Figure 4. The paths contributing to

SPRE in Figure 4 are exactly those contributing to S in Figure 3 with the sole exception that the horizontal

edge transmittance (for paths beyond the first) are changed from 1 to complemented literals. This means that

the number of terms of the formula S in Eq. (25) does not change while going to SPRE in Eq. (26), i.e. S is

shellable, and the algorithm for constructing SPRE via Figure 4 is a shelling for it. Likewise, the expression s̄

obtained via Figure 7 in Eq. (29) is shellable, and the algorithm for constructing S̄PRE in Eq. (30) via Figure

8 is a shelling for it. This is an immediate result of the fact that each oblique transmittance of 1 in Figure 7

is replaced by a noncomplemented transmittance X i in Figure 8, and the fact that the paths contributing to

S̄PRE are identical (apart from differences in oblique transmittances) to those contributing to S̄ in Figure 7.

5.4. The SFGs of S and S̄ are essentially ROBDDs

The ROBDD was proposed by Bryant [18] as an extension of the BDD methodology of Akers [19]. The

ROBDD deals with general switching (two-valued Boolean) functions and is now considered the state-of-the-art

data structure for handling such functions, with extensive applications in reliability [20,21]. The SFGs for S

in Figure 3 and S̄ in Figure 7 are, in fact, implementations of the ROBDD for the class of unate switching

functions. Apart from the unateness restriction, these SFGs have the same features as the ROBDD algorithm,

namely both these SFGs and the ROBDD algorithms are based on the Boole–Shannon expansion in the Boolean

domain.

1. Both entities visit the variables in a certain order, typically monotonically ascending or monotonically

descending.

2. Both entities reduce the resulting expansion tree (which is exponential in size) to a rooted acyclic graph

that is both canonical and hopefully compact or subexponential. The reduction rules [21] require (a)
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merging isomorphic subtrees, and (b) deletion of useless nodes whose outgoing edges point to the same

child node.

5.5. Efficient inverse algorithms

Availability of complementary SFGs allows for a pedagogical understanding of many existing complementation

or inversion algorithms [14] both for the Boolean and probability domains. For example, one can start from

the sink node of SPRE in Figure 4, use expansion until the leaf nodes are reached, complement the value of

each leaf node (replace 0 by 1 and 1 by 0), thereby effectively transferring to Figure 8, and finally go back

to the sink of Figure 8, which is S̄PRE . Other ways for complementation are possible. One can perform the

converse operation of going from S̄ to S (expand in Figure 8, complement leaves, transfer to Figure 4, and go

to its sink). One can also achieve disjoint complementation by going from S (Figure 3) to S̄PRE (Figure 8).

Complementation is also possible in the probability domain by going from R (Figure 5) to U (Figure 9) or vice
versa.

5.6. Symmetric coherent threshold systems

The SFGs discussed herein for a CT (weighted k-out-of-n) system reduce to elegant symmetric regular graphs

for the special case of a partially redundant system (k-out-of-n system). A sample of these graphs is given in

Figures 11 and 12 for the success and failure of the symmetric coherent system H (4; X; {1, 1, 1, 1}; 3), which
can be identified as a 3-out-of-4:G or a 2-out-of-4:F system. To stress symmetry, these graphs are drawn on a

rectangular grid of axes k1 = k and k2 = n− k.
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Figure 11. A shellable and minimal representation for the success of a 3-out-of-4:G system.

6. Conclusions

A CTS is a very useful reliability model. Many of its features, probabilities, and algorithms are studied herein in

terms of various recursive relations and boundary conditions, which are pictorially displayed in terms of various

loopless SFGs. The success and failure of a CTS are shown to be unate Boolean functions whose minimal and
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Figure 12. A shellable and minimal representation for the failure of a 2-out-of-4:F system.

complete sum expressions are identical. These expressions are shellable and allow the introduction of PRE

expressions of the same number of terms. Interrelations among the SFGs demonstrate optimal procedures for

mutual complementation among S and S̄ , for disjointing S and S̄ to obtain the PRE expressions SPRE and

S̄PRE . The probability or real transforms of SPRE and S̄PRE (namely, the reliability R and unreliability U)

are obtained by replacing logical variables by their expectations and replacing ANDing and ORing operations

by arithmetic multiplication and addition. The probability transforms of S and S̄ are exactly the same as

those of SPRE and S̄PRE and can be obtained in a two-step fashion by first converting S and S̄ to SPRE and

S̄PRE and then transforming them. These transforms are also obtained directly via the conventional inclusion-

exclusion principle or via a recursive version of it. The graph complexity of each of the SFGs encountered

herein is exponential in the worst case (even with the best policy). However, it becomes subexponential in

many prominent cases. For example, it becomes quadratic for the symmetric CTS, i.e. the k-out-of-n system.
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