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Abstract: This paper investigates the effect of repeated time-limited input signals on the output excursion of stable,

linear time-invariant systems. It is first shown that the maximum norm of the output signal remains bounded if the

repeated input signals are separated by a nonzero dwell time. Then a novel method for computing a tight bound on

the output signal norm is proposed. The setting of the paper is motivated by a vehicle platooning application, where

vehicles repeatedly open/close gaps in order to perform lane changes. The developed method analyzes driving safety by

computing a bound on the spacing error between vehicles when performing repeated open/close gap maneuvers.
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1. Introduction

Platooning is a promising concept for improving the road capacity and traffic safety [1–4]. Platooning is based

on vehicle following at a small distance, which is realized by cooperative adaptive cruise control (CACC) in

the recent literature [5–7]. In addition, platoons need to be modified when performing vehicle maneuvers such

as lane changes. This requires designing longitudinal maneuvers such as opening gaps for vehicles entering a

platoon. Since such maneuvers are disturbances for CACC systems, their adverse effect on driving safety within

a platoon needs to be analyzed.

Accordingly, the main subject of this paper is designing longitudinal maneuvers in a vehicle platoon

and analyzing their effect on driving safety. The first contribution is the development of a general framework

for maneuvers that are represented by a set of time-limited input signals and that are applied to linear time-

invariant (LTI) systems. In this framework, a method for quantifying the effect of repeated time-limited input

signals on the output signal norm of stable LTI systems is proposed. As the second contribution, it is shown

that the application of an arbitrary number of such input signals leads to a bounded output signal if the input

signals are separated by a nonzero dwell time. The third contribution is a novel computational method for

calculating a tight bound on the output signal norm. Using this method, the effect of repeated open/close gap

maneuvers on driving safety in vehicle platoons is analyzed.

The existing literature does not consider the vehicle-following application studied in this paper. Related

work focuses on the suitable timing of lane changes using simplified vehicle models [8–10]. In addition, there

is no existing method for quantifying the effect of repeated input signals on the output signal norm of LTI
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systems. Only the response of LTI systems to certain types of input signals is investigated in several research

works. Bounds for the maximum singular value of the impulse response matrix are determined in [11,12], while

[13] computationally evaluates the L∞ -induced norm of LTI systems. Different operator norms are defined in

[14,15], while [16] provides explicit formulas for their evaluation. Several conditions of the L2 and L∞ norm of

the input signal and its slope are used in [17,18]. Different from the setting in this paper, the cited approaches

do not address the application of repeated input signals and do not consider time-limited input signals.

The remainder of the paper is organized as follows. Section 2 motivates the considered platooning

application and formalizes the problem statement. The existence and computation of bounds on the output

response for repeated time-limited input signals is studied in Section 3 and illustrated by a vehicle-platooning

example. Section 4 gives conclusions.

2. Motivation

2.1. Lane change maneuver

The problem considered in this paper is motivated by the application of vehicle following in dense traffic, as

illustrated in Figure 1. Here, each vehicle i must follow its predecessor vehicle i− 1 in a platoon at a small

safe distance dr,i . In the recent literature [5–7], dr,i is specified by the headway time h , the desired distance

at standstill ri , the length Li , and the velocity vi of vehicle i as

dr,i+1

Li+1 Li Li-1

2dr,i

i+1 i-1i

qi qi-1qi+1

N

Figure 1. Vehicle platoon: vehicle following and gap opening for lane changes.

dr,i = ri + Li + hvi (1)

In addition to vehicle following, gaps between vehicles have to be opened/closed if vehicles enter or leave an

existing platoon, as illustrated in Figure 1. Here, vehicle i at position qi opens a gap of length 2dr,i to vehicle

i – 1, such that the new vehicle N can safely enter the platoon.

In this setting, vehicle following is realized by an extension of the CACC architecture in Figure 2,

derived from [6]. Vehicle i + 1 follows vehicle i , assuming that both vehicles have the plant transfer function

G(s) = 1
(1+ τs)s2 with the time constant τ of the driveline dynamics. Vehicle i + 1 receives the input signal

ui via a filter transfer function Kff from vehicle i by vehicle-to-vehicle communication. In addition, vehicle

i + 1 measures the intervehicle spacing di+1 = qi − qi+1 − Li+1 , where di+1 is used to control the distance
error

ei+1 = qi − qi+1 − dr,i+1 = di+1 − ri+1 − hvi+1 (2)

with the controller transfer function Kfb and the spacing policy transfer function H (s) = 1 + hs . Since the

controller design for vehicle following in the described architecture is not the subject of this paper, the existing
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Figure 2. Feedback loop for CACC extended by uff
i and qffi .

H∞ controller design in [6] is used for the computation of Kff and Kfb . The controllers used in this paper are

Kff =
1.04s4 + 37.8s3 + 350s2 + 1047s + 734

s4 + 36.6s3 + 336s2 + 1036s + 734
and Kfb =

2.7s4 + 93s3 + 747s2 + 884s + 228

s4 + 36.6s3 + 336s2 + 1036s + 734
.

The remaining parameters are τ = 0.1, h = 0.7, Li = 5, and ri = 5. In order to perform gap opening

and closing maneuvers of a vehicle i in the described architecture, a feedforward input signal uff
i and a

feedforward reference signal qffi for vehicle i are introduced. Here, qffi and uff
i are computed such that

Qff
i (s) = G(s)Uff

i (s). Hence, the feedback loop for vehicle following is not affected by the application of uff
i .

2.2. Input signals

If vehicle i opens/closes a gap, the vehicle distance di should be increased/decreased by the velocity-dependent

value dr,i within a certain time T . This behavior can be formulated in the form of a linear optimal control

problem with state constraints:

minJ =

∫ T

0

F
(
zi, u

ff
i , t

)
dt (3)

subject to the constraints

q̇i = vi; v̇i = ai; ȧi = −1

τ
a
i
+

1

τ
uff
i (4)

qi (0) = 0, vi (0) = v, ai (0) = 0, qi (T ) = dr,i, vi (T ) = v, ai (T ) = 0, (5)

vmin ≤ vi (t) ≤ vmax, amin ≤ ai (t) ≤ amax (6)

J denotes the objective function with the terminal time T and Eq. (4) is a state space realization of G(s)

for vehicle i with the state zi = [ qi vi ai ]′ . Eq. (5) states initial and terminal conditions assuming

that the platoon travels at a constant velocity v . In order to maintain driving comfort, the acceleration

and velocity variation during a maneuver are limited using Eq. (6). Depending on the desired maneuver,

different objective functions can be used. In this paper, F1

(
zi, u

ff
i , t

)
= 1 minimizes the maneuver time and

F2

(
zi, u

ff
i , t

)
= (u

ff
i )

2
minimizes the accumulated input signal. Example input signals for opening gaps at

285
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different velocities and with different objective functions are generated using the PROPT solver [19] according

to the Table and are shown together with the created gap and acceleration in Figure 3. The same signals can

be used for closing gaps when multiplying by −1.
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Figure 3. Different input signals for T ≤ 10 s and related output responses.

Table. Input signals for different velocities and objective functions.

v = 10m
s , F1 v = 20m

s F1 v = 30m
s , F1 v = 10m

s , F2 v = 20m
s , F2 v = 30m

s , F2

u1 u2 u3 u4 u5 u6

2.3. Problem statement

It has to be noted that, while uff
i is computed for the maneuver of vehicle i , there is an effect on the distance

error ei+1 of the follower vehicle i+ 1 via the transfer function

Ei+1(s)

Ui(s)
=

G−KffG

1 +KfbG
(7)

This effect is small (below 0.1 m) when opening a single gap, as seen in Figure 4.
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Figure 4. Error signal when opening a gap for different input signals.

However, it cannot be directly deduced how/if the distance error accumulates with a potentially negative

effect on driving safety in the case of arbitrarily repeated open/close gap maneuvers of vehicle i . Accordingly,

the problem addressed in this paper is to quantify the effect of repeated open/close gap maneuvers on the
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distance error ei+1 . Hereby, it has to be noted that the system model in Eq. (7) is linear and the input signals

designed in Section 2.2 are time-limited in the sense that they are nonzero only for a certain time interval, as

seen in Figure 3.

In order to formalize the stated problem, the paper focuses on the repeated application of time-limited

input signals to LTI systems with the state space model

ẋ = Ax+Bu

y = Cx
(8)

A∈Rn×n is the dynamics matrix, B∈Rn× p is the input matrix, C∈Rq×n is the output matrix, x(t)∈Rn
is

the system state, u(t)∈Rp
is the input signal, and y(t)∈Rq

is the output signal. The impulse response matrix

of the system in Eq. (8) is written as γ . The input signals are time-limited with a maximum magnitude umax

and a time-limit tl < ∞ such that the signal value is zero after tl . Writing ||·|| for the vector 2-norm, the set

of time-limited input signals is defined as

Uumax,tl = {u : R → Rp| ∥u (t)∥ ≤ umax for 0 ≤ t ≤ tl, u (t) = 0 otherwise} (9)

Considering the application example, it can be seen from Figure 3 that the considered gap opening/closing

scenarios require input signal levels that are bounded by ±2.5 m/s2 and their duration is below 10 s. That is,

the set of time-limited input signals U2.5,10 can be employed for this application example.

In order to formulate the repeated application of input signals in Uumax,tl to an LTI system as in Eq. (8),

a minimum dwell time ∆ between two input signal applications is assumed. This assumption is justified by the

practical fact that open gap maneuvers for different lane changes are separated in time. The time instants for

input signal applications are formalized as the set Q∆ of monotonically increasing infinite time sequences with

dwell time ∆:

Q∆ = {(tν)∞ν =0 |t0 ≥ 0, tν +1 − tν≥ ∆,ν=0, 1, . . .} (10)

Then the repeated application of input signals uν ∈ Uumax,tl for a given time sequence (tν)
∞
ν =0 ∈ Q∆ is

represented by the signal

u(tν)
∞
ν=0

(t) =
∞∑

ν =0

uν(t− tν) (11)

In this expression, the time-limited input signal uν ∈ Uumax,tl is applied at tν . Using the notions introduce

above, the aim of the paper is to determine a bound on the output signal norm ∥y (t)∥ over time when applying

a repeated input signal u(tν)
∞
ν =0

(t) to the LTI system in Eq. (8) for arbitrary input signals uν∈ Uumax,tl and

sequences (tν)
∞
ν =0 ∈ Q∆ .

Problem 1. For a stable LTI system with impulse response matrix γ , find Ky such that

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ = sup
(tv)∞ν=0∈Q∆,t≥0

∥∥γ(t) ⋆ u(tν)
∞
ν =0

(t)
∥∥ ≤ Ky < ∞ (12)

Solving Problem 1 for the vehicle following example with input signals in U2.5,10 and the output signal y = ei+1

quantifies the effect of repeated open/close gap maneuvers on the distance error in order to evaluate driving

safety.
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3. Bound existence and computation

3.1. Bound existence

The first important question regarding Problem 1 is if a finite bound Ky in Eq. (12) exists. Theorem 1 shows

that, indeed, Ky < ∞ for any Uumax,tl and stable LTI system.

Theorem 1 Consider a stable LTI system with the impulse response matrix γ . Let ∆ > 0 and Uumax,tl be

given for tlumax > 0 . Then there exists a Ky < ∞ such that Eq. (12) holds.

Note that proofs of all formal results are given in the Appendix. Theorem 1 implies that the output signal

is bounded whenever applying an arbitrary number of bounded input signals with dwell time ∆. Suitable bounds

Ky are computed in the next section. Regarding the vehicle-following example, Theorem 1 ensures that the

distance error is bounded when performing an arbitrary number of open/close gap maneuvers that are separated

in time by at least ∆.

3.2. Prerequisite for the bound computation

This paper develops a method for computing a tight bound on the output signal norm ∥y (t)∥ when applying

repeated input signals in Uumax,tl according to Eq. (12) in Problem 1. As a prerequisite for this computation,

Lemma 1 assumes that the output response after applying a single input signal in Uumax,tl is bounded by a

nonnegative monotonically decreasing function f (t). Then Lemma 1 determines a bound on the output signal

norm ∥y (t)∥ when applying repeated input signals in Uumax,tl .

Lemma 1 Let f : R → R be a function with f (t) = 0 for t < 0, f (t) ≥ 0 for t ≥ 0 and f (t) ≥ f(t′) for

allt, t′ with t ≤ t′. Assume that ∆ > 0 and ∥y (t)∥ = ∥γ(t) ⋆ u(t)∥ ≤ f(t) for any input signal u ∈ Uumax,tl .

Then it holds that

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ ≤ sup
(tv)∞ν=0∈Q∆,t≥0

∞∑
ν =0

f (t− tν) =
∞∑

ν =0

f (ν∆) (13)

That is, the bound in Eq. (12) can be evaluated by the sum in Eq. (13) if it is possible to find a monotonic

bound f (t) on the output signal when applying any input signal in Uumax,tl .

3.3. Monotonic bound for a single input signal

This section develops a method for determining a monotonic bound for the output response after a single input

signal application (such as a single open/close gap maneuver) that is required for the computation of the output

response bound according to Eq. (13). First, a bound on the output response for any input signal in Uumax,tl

is determined using a monotonic bound for the impulse response of the LTI system.

Lemma 2 Consider a stable LTI system with the impulse response matrix γ . Let c(t) be a function that is

zero for t < 0 and nonnegative monotonically decreasing for t ≥ 0 such that ∥γ(t)∥ ≤ c(t) for all t ∈ R. Then

it holds for any u∈ Uumax,tl that

∥y(t)∥ ≤ umax

∫ tl

0

c(t− τ)dτ. (14)

288
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The bound in Eq. (14) is zero for t < 0, has a maximum at t = tl and is nonnegative monotonically decreasing

for t ≥ tl.

Respecting Lemma 2, a nonnegative monotonically decreasing bound for ∥y (t)∥ is

∥y (t)∥ ≤ f (t) := umax

{ ∫ tl
0

c (tl − τ)dτ for t ≤ tl∫ tl
0

c (t− τ)dτ otherwise.
(15)

That is, the output signal norm ∥y(t)∥ is bounded by f (t) in Eq. (15) when applying an arbitrary input signal

u∈Uumax,tl .

3.4. Tight bound computation

It is now possible to evaluate the effect of repeated input signals in Uumax,tl on the output signal norm ∥y (t)∥
according to Eq. (12) in Problem 1. Using Lemma 1 and Eq. (15) and writing N0 =

⌈
tl
∆

⌉
, it holds that

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ ≤
∞∑

ν =0

f (ν∆) (16)

= umax

(
N0 ×

∫ tl

0

c (tl − τ)dτ +
∞∑

ν =N0

∫ tl

0

c (ν∆− τ)dτ

)
(17)

Here, Eq. (16) directly follows from Eq. (13) in Lemma 1 and Eq. (17) follows from Eq. (15).

Eq. (17) can be used as a bound for ∥y (t)∥ if c(t) ≥ ∥γ (t)∥ can be chosen to fulfill the assumptions

in Lemma 2 such that the infinite sum
∞∑

ν =N0

∫ tl
0

c (ν∆− τ)dτ converges. In addition, c(t) should constitute a

tight bound for ∥γ (t)∥ .
In [11,12], analytical bounds for ∥γ (t)∥ exist in the form

∥γ (t)∥ ≤ b (t) := ∥C∥ ∥B∥ e−µt

(
n− 1∑
k=0

akt
k

)
(18)

whereby ak depends on the system matrices A , B , C in Eq. (8) and n depends on the bounding method.

Such a bound is nonnegative, monotonically decreasing, and tight for large enough values of t . Accordingly,

a threshold value θ is selected and the bound b(t) is employed only for large enough times t ≥ tf , such that

b(t) ≤ θ for t ≥ tf . In the remaining interval [0, tf ] , a monotonic bound a(t) ≥ ∥γ (t)∥ can be found as

follows. Using a simulation run of ∥γ (t)∥ for t ∈ [0, tf ] a bounding function a(t) ≥ ∥γ (t)∥ for t ∈ [0, tf ] with

a(tf ) = b(tf ) is determined. In this work, a suitable bounding function is

a(t) = me−ηt (19)

with appropriate values of m and η ; a(t) is nonnegative and monotonically decreasing and a(t) ≥ ∥γ (t)∥ for

all t ∈ [0, tf ] . The overall bound c (t) according to Lemma 2 is

c (t) :=

 0 for t < 0
a (t) for 0 ≤ t ≤ tf
b (t) for t > tf .

(20)
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For illustration, the bound in Eq. (20) is computed for the vehicle-following example based on a minimal

realization that is determined from Figure 2. The input signal is uff
i and the output signal is y = ei+1 .

Figure 5a shows the impulse response norm ∥γ (t)∥ and the corresponding bound c (t) in Eq. (20). The bound

b (t) = 10.1e−0.55t
8∑

k=0

11.4ktk

k! in Eq. (18) is found using θ = 10−5 (tf = 135) and a (t) = 0.016e−0.33t is

determined by simulation. In addition, Figure 5b shows the bound in Eq. (14) and the corresponding function

f(t) in Eq. (15) for tl = 10. For comparison, these figures also show example input responses for the following

time-limited input signals in the Table. Some conservatism is introduced when comparing the computed bounds

and the actual simulations. This is expected, since the bound is valid for all possible input signals in U2.5,10 ,

whereas the specific input signals u1 to u6 are used for the simulations.
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Figure 5. Bounds: a) Impulse response; b) Corresponding outputs and f(t) for tl = 10.

Using the monotonic bound f (t) in Eq. (15) for the output signal y(t) with c (t) in Eq. (20), Lemma 1

can be directly applied to evaluate the bound on the output response in Eq. (17) in the case of repeated input

signals. In particular, Theorem 2 shows that the infinite sum in Eq. (17) converges and can be evaluated using

c(t) in Eq. (20).

Theorem 2. Consider a stable LTI system with the set of input signals Uumax,tl and the impulse response

bound c(t) in Eq. (20). Let ∆ > 0 and tf ≥ 0. Write N0 =
⌈
tl
∆

⌉
, N1 =

⌈
tf
∆

⌉
, andN2 =

⌈
tf + tl

∆

⌉
. Define

cl =
n− 1− l∑
j =0

al+ j

(
l+ j
j

) ∫ tl
0

τ jeµtdτ for l = 0, ..., n− 1. Then a suitable bound in Eq. (12) is given by

Ky = umax
m

η

(
N0

(
1− e−ηtl

)
+
(
e−ηtl − 1

) N2∑
ν=N0 +1

e−ην∆

)

+umaxe
−µN1∆

n− 1∑
l=0

cl

l∑
i=0

(
l

i

)
(N1∆)

l− i
(−∆)

i di

d (µ∆)
i

1

1 − e−µ∆
(21)
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In words, Theorem 2 computes the bound Ky based on the parameters of the impulse response bound c(t)

in Eq. (20), the set of time-limited input signals Uumax,tl , and the dwell time ∆. In summary, the following

procedure is suitable to determine a bound for the output signal norm of the stable LTI system in Eq. (8) when

repeatedly applying input signals from Uumax,tl .

P1 Determine the analytical bound b(t) in Eq. (18) and tf for a given threshold θ .

P2 Determine the bounding function a(t) in Eq. (19) by simulation.

P3 Evaluate the bound Ky on ∥y (t)∥ in Eq. (21).

The results in Theorem 2 and the related steps P1 to P3 are next used to compute the bound in Eq. (21) for

the vehicle-following example with input signals in U2.5,10 and the output signal ei+1 (distance error). Hereby,

it has to be noted that steps P1 and P2 were already performed when illustrating Eq. (20). Regarding step P3,

scenarios where vehicle i potentially opens a gap every ∆ = 10 s and ∆ = 20 s are chosen and the bounds Ky

= 0.25 m and Ky = 0.13 m are obtained, respectively. Figure 6 shows a comparison of the computed bounds

with simulations using the different repeated input signals from U2.5,10 in the Table. The computed bounds are

valid for the repeated input signals. For example, it is confirmed that the error signal of vehicle i+ 1 remains

below 0.25 m even if the predecessor vehicle i performs gap opening maneuvers every 10 s. Considering that

the desired distance at a speed of v = 10 m/s is dr,i = 17 m, this does not cause a violation of driving safety.
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Figure 6. Comparison: bound and simulation for repeated inputs: a) ∆ = 10 s; b) ∆ = 20 s.

3.5. Discussion

In this section, the evaluation of the bound in Eq. (21) is discussed. It is first noted that the bound in Eq. (21)

has two addends. The first addend is computed based on a(t) in Eq. (19) that is obtained by simulation. It

determines a bound for up to N2 repetitions of input signals in Uumax,tl . The second addend depends on b(t)

in Eq. (18) and captures the effect of applying an arbitrary number of input signals.

In principle, it could be argued that the rather intricate second addend can be avoided if it is ensured

that the input signal is repeated no more than N2 times. Nevertheless, such an assumption places a restriction

on the possible system behavior. In the application example, this would mean that only a limited number of
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N2 opening/closing gap maneuvers are permitted while guaranteeing the bound on the error signal. Precisely,

the advantage of the bound in Eq. (21) including the second addend is that the bound is valid for any number

of input signal repetitions. In addition, the evaluation of Eq. (21) is an offline computation that only depends

on the range of the possible input signals in Uumax,tl and the impulse response bound of the LTI system in Eq.

(20). Choosing θ small enough (and hence tf large enough) ensures that the contribution of the second addend

in Eq. (21) is small. For example, when computing Ky = 0.25 m for the input signal u3 and ∆ = 10 s in

Section 3.3., the first addend is 0.249 m and the second addend is 0.001 m.

Finally, the set Uumax,tl is obtained by inspecting the expected input signals to be applied to the LTI

system as illustrated in Section 2.2. A benefit of the proposed method is that any new input signal can be

applied without violating the computed bound as long as it belongs to Uumax,tl .

4. Conclusions

This paper considers the repeated application of time-limited input signals to stable LTI systems. Such input

signals are encountered, for example, when performing longitudinal maneuvers such as opening/closing gaps

in vehicle platoons. In this context, output signals such as the distance error between vehicles should remain

bounded in order to ensure driving safety even if maneuvers are repeatedly executed.

Accordingly, the paper first shows that a bound on the output signal norm exists if the repeated input

signals are separated by a nonzero dwell time. Moreover, an original computational procedure for finding a

tight bound on the output signal norm is developed. Using this method, a suitable bound for the distance error

of vehicles in a vehicle platoon is determined. A safe driving distance is guaranteed even if an arbitrary number

of longitudinal maneuvers is performed.
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Appendix

Proof of Theorem 1. Consider time instant t and N∆ =
⌈
tl
∆

⌉
. If t > tl ,

∥∥u(tν)
∞
ν =0

(t)
∥∥ ≤ N∆umax , since at

most N∆ successive input signals can be nonzero and the norm of any input signal is bounded by umax . If t < tl ,

less-than N∆ input signals are nonzero such that
∥∥u(tν)

∞
ν =0

(t)
∥∥ ≤ N∆umax . Together,

∥∥u(tν)
∞
ν =0

(t)
∥∥ ≤ N∆umax

is bounded for all t . Since the LTI system is stable, ∥y(t)∥ is bounded and Eq. (12) holds.

Proof of Lemma 1. Eqs. (11) – (13) and the assumption in Lemma 1 imply

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ = sup
(tv)∞ν=0∈Q∆,t≥0

∥∥γ (t) ⋆ u(tν)
∞
ν =0

(t)
∥∥

= sup
(tv)∞ν=0∈Q∆,t≥0

∥∥∥∥∥
∞∑

ν =0

γ (t) ⋆uν (t− tν)

∥∥∥∥∥ ≤ sup
(tv)∞ν=0∈Q∆,t≥0

∞∑
ν =0

∥γ (t) ⋆ uν (t− tν)∥

≤ sup
(tv)∞ν=0∈Q∆,t≥0

∞∑
ν =0

f(t− tν) (A1)

Now consider the finite sum
k∑

ν =0
f (t− tν) with k addends. Then f(t − tν) assumes its supremum for

tk = t , since f (t) monotonically decreases. Second, since the tν are separated by the dwell time ∆, the

maximum value of f(t − tν) is obtained for tν = tk − (k − ν)∆=t − (k − ν)∆. That is,
k∑

ν =0
f (t− tν) =

k∑
ν =0

f (t− t+ (k − ν)∆) =
k∑

ν =0
f (ν∆). Taking the limit for k → ∞ , Eq. (13) in Lemma 1 directly follows.

Proof of Lemma 2. ∥y (t)∥ = ∥γ (t) ⋆ u (t)∥ =
∥∥∥∫ t

0
γ (t− τ)u (τ) dτ

∥∥∥ ≤
∫ t

0
∥γ (t− τ)∥ ∥u (τ)∥ dτ ≤

∫ tl
0

c (t− τ)dτ .

Moreover,
∫ tl
0

c (t− τ)dτ = 0 for t < 0, since c(t) = 0 for t < 0. For t ≤ tl , it holds that
∫ tl
0

c (t− τ)dτ =∫ t

0
c (t− τ)dτ . Since c (t) is nonnegative,

∫ tl
0

c (t− τ)dτ ≤
∫ t

0
c (tl − τ)dτ for any t ≤ tl . Since c(t) mono-

tonically decreases,
∫ tl
0

c (t′ − τ)dτ ≤
∫ tl
0

c (t− τ)dτ for t′ ≥ t ≥ tl . Hence,
∫ tl
0

c (t− τ)dτ has a maximum at

t = tl and monotonically decreases for ≥ tl.

Proof of Theorem 2. Using Eq. (17), it is computed as

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ ≤ umax

(
N0 ×

∫ tl

0

c (tl − τ)dτ +
∞∑

ν =N0

∫ tl

0

c (ν∆− τ)dτ

)

= umax

(
N0 ×

∫ tl

0

c (tl − τ)dτ +

N1−1∑
ν =N0

∫ tl

0

a (ν∆− τ)dτ

+

N2∑
ν =N1

(∫ ν∆tf

0

b (ν∆− τ)dτ +

∫ tl

ν∆− tf

a (ν∆− τ)dτ

)

+
∞∑

ν =N2 +1

∫ tl

0

b (ν∆− τ)dτ

)
(A2)

1
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This computation considers that the convolution integral is applied to a(t) before t = tf (until ν = N1 − 1),

to a(t) and b(t) for tf≤t≤tf + tl(N1 ≤ ν ≤N2), and to b(t) for t≥tf + tl(ν >N2). Further noting that a(t)

and b(t) are nonnegative, it also holds that

sup
(tv)∞ν=0∈Q∆,t≥0

∥y (t)∥ ≤ umax

(
N0 ×

∫ tl

0

a (tl − τ)dτ +

N2∑
ν =N0

∫ tl

0

a (ν∆− τ)dτ +

∞∑
ν =N1

∫ tl

0

b (ν∆− τ)dτ

)
(A3)

It can be directly computed for t≥tl that∫ tl

0

a (tl − τ)dτ =
m

η

(
1− e−ηtl

)
and

∫ tl

0

a (t− τ)dτ =
m

η

(
eηtl − 1

)
e−ηt (A4)

In order to evaluate
∫ tl
0

b (ν∆− τ)dτ , Eq. (12) and the binomial theorem are used and written:

∫ tl

0

b (ν∆− τ)dτ =

∫ tl

0

n− 1∑
k=0

ak(t− τ)
k
e−µ(t−τ)dτ = e−µt

∫ tl

0

n− 1∑
k=0

ak

k∑
i=0

(
k

i

)
tk− i(−τ)

i
eµtdτ

Reorganizing the summations and the integral according to powers of t leads to∫ tl

0

b (t− τ)dτ = e−µt
n− 1∑
l=0

tl
n− 1− l∑
j =0

al+ j

(
l + j

j

)∫ t

0

(−τ)
j
eµτdτ

e−µt
n− 1∑
l=0

tl
n− 1− l∑
j =0

al+ j

(
l + j

j

)∫ tl

0

(−τ)
j
eµτdτ

≤ e−µt
n− 1∑
l=0

tl = e−µt
n− 1∑
l=0

clt
l

Then the infinite sum in Eq. (A2) results in

∞∑
ν =N1

∫ tl

0

b (ν∆− τ)dτ =

∞∑
ν =N1

e−µν∆
n− 1∑
l=0

cl(ν∆)
l

= e−µN1∆
∞∑

ν =0

e−µν∆
n− 1∑
l=0

cl(N1∆+ ν∆)
l

= e−µN1∆
n− 1∑
l=0

cl∆
l

∞∑
ν =0

e−µν∆(N1 + ν)
l

= e−µN1∆
n− 1∑
l=0

cl∆
l

l∑
i=0

(
l

i

)
N l− i

1

∞∑
ν =0

νie
−µν∆

= e−µN1∆
n− 1∑
l=0

cl∆
l

l∑
i=0

(
l

i

)
N l− i

1 (−1)
i di

d(µ∆)
i

1

1− e−µ∆
(A5)

Here, the last two identities are derived based on the binomial theorem and the geometric series. Using Eqs.

(A3) and (A4), the result in Eq. (21) directly follows. Since all the summations in Eq. (21) are finite, Ky < ∞ .
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