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Abstract: Model order reduction (MOR) is a process of obtaining a lower order surrogate model that accurately

approximates the original high-order system. Since no actuator or plant operates over the entire time and frequency

ranges, the reduced-order model should be accurate in the actual range of operation. In this paper, model reduction

techniques for discrete time systems are presented that ensure less reduction error in the specified time and frequency

intervals. The techniques are tested on the benchmark numerical examples and their efficacy is shown.
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1. Introduction

Model order reduction (MOR) has been studied for the past few decades, especially the design and analysis of

large-scale circuits and complicated systems [1–4]. MOR techniques aim to find a fairly accurate lower order

approximation of the original system, so that its fundamental characteristics are retained.

Balanced truncation (BT) [5] is one of the most commonly used MOR techniques, known for character-

istics such as less approximation error and preservation of stability. The discrete time counterpart of BT was

presented in [6,7].

BT [5] does not follow any time or frequency domain error criteria. However, in many situations, the

approximation error at a certain desired time and frequency interval is of critical importance. For instance,

if a lower order approximation of a large-order filter is required, the approximation error should be much less

in certain frequency regions [8]. Frequency weights in BT [5] were introduced in [9] to emphasize the desired

frequency region. The use of input-, output-, or both-sided frequency weighting is possible; however, guaranteed

stable reduced-order models (ROMs) are only achieved in the single-sided case [9]. Several modifications in [9]

to guarantee stability have been presented in the literature [10–13].

In [9], frequency weights have to be initially defined in order to emphasize the desired frequency region,

which is a problem in itself. Gawronski and Juang [14] proposed an alternative, where the desired frequency

interval should be defined instead of the frequency weights. In addition, they studied MOR in the limited time

interval.

Wang and Zilouchian [15] proposed the discrete time counterpart of Gawronski and Juang’s technique

[14], which yields less approximation error in the desired frequency interval. However, the ROMs may not be

stable [16], as they are in Enns’ [9] and Gawronski and Juang’s techniques [14]. Ghafoor and Sreeram [16]
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proposed two algorithms to overcome this shortcoming, whereas Imran and Ghafoor [3] proposed a technique

to ensure stability.

Aldhaheri defined a limited frequency interval cross Gramian for discrete time single input single output

(SISO) systems in [8], and proposed a frequency-limited MOR algorithm based on this Gramian. Similarly,

Jazlan et al. [17] proposed cross Gramian-based algorithms for MOR of continuous and discrete time systems

in the limited time interval. These algorithms are less computational, since only one Gramian needs to be

computed instead of two. To the best of our knowledge, no MOR algorithm for discrete-time systems exists in

the literature that satisfies both limited time and limited frequency requirements at the same time.

This paper presents MOR algorithms for discrete time systems, which tackle the limited time and

frequency scenario simultaneously, and yield ROMs such that the reduction error is small in the desired time

and frequency intervals. Numerical results show that the ROMs yielded by these algorithms are accurate within

the specified time and frequency intervals.

2. Preliminaries

Consider a stable and minimal n-th order discrete time system:

H (z) = C (zI −A)
−1

B +D, (1)

where A ∈ Rn×n , B ∈ Rn×m , C ∈ Rp×n , and D ∈ Rp×m .

The goal of MOR in limited intervals is to find a ROM

Hr(z) = Cr (zI −Ar)
−1

Br +D

of order r (r < n), such that the approximation error (H(z)−Hr(z)) is small in the desired time T = [n1, n2]

and frequency intervals Ω = [ω1, ω2] rad/s, such that 0 ≤ ω1 ≤ ω2 ≤ π .

2.1. Wang and Zilouchian’s technique

The limited frequency interval controllability Pzw and observability Qzw Gramians for the desired frequency

interval Ω are defined as

Pzw =
1

2π

∫
δω

(
I −Ae−jω

)−1
BBT

(
I −AT ejω

)−1
dω (2)

Qzw =
1

2π

∫
δω

(
I −AT ejω

)−1
CTC

(
I −Ae−jω

)−1
dω, (3)

which are obtained by solving the following Lyapunov equations:

APzwA
T − Pzw + Xzw = 0 (4)

ATQzwA − Qzw + Yzw = 0, (5)

where

Xzw = SBBT +BBTSH (6)
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Yzw = SHCTC + CTCS (7)

S = − ω2 − ω1

4π
I +

1

2π

∫
δω

(
I −Ae−jω

)−1
dω (8)

SH is Hermitian of S and δω = [−ω2,−ω1] ∪ [ω1ω2] . The transformation matrix Tzw is calculated as

TT
zwQzwTzw = T−1

zw PzwT
−T
zw = diag{σ1, σ2, · · · , σn} , where σk ≥ σk+1 and k = 1, 2, · · · , n − 1. σk are

the Hankel singular values, which are the quantitative measure of the contribution of each state in the energy

transfer. The states with the least contribution are then truncated. The transformed system At, Bt, Ct, Dt =

{T−1
zw A}Tzw, Tzw,

−1 B,CTzw, D} is then given by

At =

[
Ar A12

A21 A22

]
, Bt =

[
Br

B2

]
, Ct =

[
Cr C2

]
, Dt = D

Hr(z) = Cr (zI −Ar)
−1

Br +D is the rth order ROM.

Remark 1 Since Xzw and Yzw may be indefinite, the ROMs are not guaranteed to be stable [16].

2.2. Aldhaheri’s technique

Aldhaheri [8] defined frequency-limited cross Gramian Raas:

Ra =
1

2π

∫
δω

(
I −Ae−jω

)−1
BC

(
I −AT e−jω

)−1
dω, (9)

which is the solution to the following Sylvester equation:

ARaA−Ra + SBC +BCS = 0 (10)

The transformation matrix Ta is calculated as T−1
a RaTa = diagξ1, ξ2, · · · , ξn , where ξk ≥ ξk+1 and k =

1, 2, · · · , n− 1. ROM is obtained by truncating the transformed system up to the desired order.

2.3. Jazlan et al.’s technique

Jazlan et al. [17] defined time-limited cross Gramian Rj as

Rj =

n2−1∑
i=0

AiBCAi −
n1−1∑
i=0

AiBCAi, (11)

which is the solution to the following Sylvester equation:

ARjA−Rj +An1 BCAn1 −An2BCAn2 = 0 (12)

The transformation matrix Tj is calculated as T−1
j RjTj = diagξ1ξ2, · · · , ξn , where ξk ≥ ξk+1 and k =

1, 2, · · · , n− 1. ROM is obtained by truncating the transformed system up to the desired order.
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3. Main work

In this section, time- and frequency-limited Gramians are first defined. These Gramians contain the information

of the input–output behavior of the system at the specified time and frequency intervals. MOR algorithms are

then presented based on these definitions. ROMs thus obtained ensure accuracy in the desired time and

frequency intervals.

Since A is Hurwitz, the Lyapunov Eqs. (4) and (5) can be written in summation form as

Pzw =

∞∑
i=0

AiXzw

(
AT
)i

(13)

Qzw =
∞∑
i=0

(
AT
)i
YzwA

i (14)

Definition 1 The controllability and observability Gramians of the limited time and frequency intervals in the

specified time, and frequency intervals T = [n1n2] and Ω = [ω1ω2] rad/s, respectively, are defined as

PT,Ω =

n2−1∑
i=n1

AiXzw

(
AT
)i

(15)

QT,Ω =

n2−1∑
i=n1

(
AT
)i
YzwA

i (16)

Theorem 1 PT,Ω and QT,Ω can be computed from Pzw and Qzw , respectively, as

PT,Ω = An1 Pzw

(
AT
)n1 −An2Pzw

(
AT
)n2

(17)

QT,Ω =
(
AT
)n1

QzwA
n1 −

(
AT
)n2

QzwA
n2 (18)

Proof Consider the term AnPzw

(
AT
)n

first.

Pzw −AnPzw

(
AT
)n

=
∞∑
i=0

Ai Xzw

(
AT
)i −An

∞∑
i=0

Ai Xzw

(
AT
)i (

AT
)n

=

∞∑
i=0

Ai Xzw

(
AT
)i − ∞∑

i=0

An+i Xzw

(
AT
)n+i

=

∞∑
i=0

Ai Xzw

(
AT
)i − ∞∑

i=n

An Xzw

(
AT
)n

=
n−1∑
i=0

Ai Xzw

(
AT
)i

Therefore, AnPzw

(
AT
)n

= Pwz −
n−1∑
i=0

Ai Xzw

(
AT
)i
.
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The right side of Eq. (17) can then be written as

An1Pzw

(
AT
)n1 −An2Pzw

(
AT
)n2

=

n2−1∑
i=0

Ai Xzw

(
AT
)i − n1−1∑

i=0

Ai Xzw

(
AT
)i

=

n2−1∑
i=n1

Ai Xzw

(
AT
)i

= PT,Ω

Similarly, it can be proven that QT,Ω =
(
AT
)n1

QzwA
n1 −

(
AT
)n2

QzwA
n2 .

Theorem 2 PT,Ω and QT,Ω satisfy the following Lyapunov equations:

APT,Ω AT − PT,Ω + XT,Ω = 0 (19)

ATQT,ΩA − QT,Ω + YT,Ω = 0, (20)

where

XT,Ω = An1 SBBT
(
AT
)n1

+An1 BBT SH
(
AT
)n1 −An2SBBT

(
AT
)n2 −An2BBTSH

(
AT
)n2

(21)

YT,Ω =
(
AT
)n1

SHCTCAn1 +
(
AT
)n1

CTCSAn1 −
(
AT
)n2

SHCTCAn2 −
(
AT
)n2

CTCSAn2 (22)

Proof By putting Eq. (13) in Eq. (17), we get

PT,Ω = An1

( ∞∑
i=0

AiXzw

(
AT
)i)(

AT
)n1 −An2

( ∞∑
i=0

AiXzw

(
AT
)i) (

AT
)n2

=

∞∑
i=0

AiAn1
(
SBBT +BBTSH

) (
AT
)n1
(
AT
)i − ∞∑

i=0

AiAn2
(
SBBT +BBTSH

) (
AT
)n2
(
AT
)i

=
∞∑
i=0

Ai
(
An1SBBT

(
AT
)n1

+An1BBTSH
(
AT
)n1 −An2SBBT

(
AT
)n2 −An2BBTSH

(
AT
)n2
) (

AT
)i

=
∞∑
i=0

AiXT,Ω

(
AT
)i

(23)

Therefore, the summation in Eq. (15) can be computed using Eq. (19). Similarly, it can be proven that QT,Ω

satisfies Eq. (20).

Remark 2 When the specified frequency interval is Ω = [0, π] rad/s, S = 1
2I , Xzw = BBT , Yzw = CTC ,

XT,Ω = An1BBT
(
AT
)n1 − An2BBT

(
AT
)n2

, YT,Ω =
(
AT
)n1

CTCAn1 −
(
AT
)n2

CTCAn2 , PT,Ω = PT and

QT,Ω = QT , where PT =
n2−1∑
i=n1

AiBBT
(
AT
)i

and QT =
n2−1∑
i=n1

(
AT
)i
CTCAi are the time-limited controllability

and observability Gramians, respectively.
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Theorem 3 PT,Ω and QT,Ω can be computed from PT and QT , respectively, as

PT,Ω = SPT + PTS
H

QT,Ω = SHQT +QTS

Proof First we will show that SAn = AnS .

SAn = −ω2 − ω1

4π
An +

1

2π

∫
δω

(
I −Ae−j ω

)−1
An dω

Since
(
I −Ae−j ω

)−1
is the discrete fourier transform of An ,

SAn = −ω2 − ω1

4π
An +

1

2π

∫
δω

An
(
I −Ae−j ω

)−1
dω = AnS

By putting Eq. (21) in Eq. (23), we get

PT,Ω =
∞∑
i=0

Ai
(
SAn1BBT

(
AT
)n1 − SAn2BBT

(
AT
)n2

+An1BBT
(
AT
)n1

SH −An2BBT
(
AT
)n2

SH
) (

AT
)i

= S
∞∑
i=0

Ai
(
An1BBT

(
AT
)n1 −An2BBT

(
AT
)n2
) (

AT
)i

+
∞∑
i=0

Ai
(
An1BBT

(
AT
)n1 −An2BBT

(
AT
)n2
) (

AT
)i
SH

= SPT + PTS
H

Similarly, it can be shown that QT ,Ω=SHQT+QTS .

Algorithm 1 If the original system is close to nonminimal, the computation of the transformation matrix

in the balancing methods is often ill-conditioned. Several algorithms have been presented in the literature to

address this issue [18,19]. Among these, the most promising is the balancing free algorithm [18]. Therefore, to

calculate ROM, the balancing free algorithm [18] is adapted.

Given the original system H(z), ROM Hr (z) in the desired time and frequency intervals can be obtained

with the following steps:

1. Calculate the Schur decomposition of PT ,ΩQT ,Ω with the eigenvalues of PT ,ΩQT ,Ω in ascending and

descending order, i.e. V T
a PT ,ΩQT ,ΩVa=Sa and V T

d PT ,ΩQT ,ΩVd=Sd , respectively. Va= [V a1
Va2 ] and

Vd= [Vd1 Vd2 ] are orthogonal matrices, where Va1∈Rn× (n−r) , Va2∈Rn× r Vd1∈Rn×r , and Vd2∈Rn× (n−r) .

Sa and Sd are upper triangular matrices.

2. Calculate the singular value decomposition Va2Vd1=UbfΣVbf , where Σ =diagσ1σ2, · · · , σn .

3. The ROM is then given by ArBrCrD= {Σ− 1
2UT

bfV
T
a2
AVd1VbfΣ

− 1
2 , Σ− 1

2UT
bfV

T
a2
B, CVd1VbfΣ

− 1
2 , D .

Remark 3 Since XT,Ω and YT,Ω may be indefinite, the ROMs obtained using Algorithm 1 may be unstable.
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3.1. Stability preservation and error bound

To ensure stability in the limited scenarios, the symmetric indefinite matrices are replaced with their positive

semidefinite approximations. As pointed out in [20], the nearest positive semidefinite matrix to an indefinite

matrix is obtained by replacing its negative eigenvalues with zeros. Moreover, this is an optimal solution in

the Frobenius norm sense [20]. Therefore, the approximation used by Ghafoor and Sreeram [16] is adapted to

ensure stability and error bound expression.

Let the fictitious input and output matrices be BuB
T
u and CT

u Cu , respectively, where Bu=KuM̄
1
2
u and

Cu=N̄
1
2
u LT

u . Matrices KuLuM̄u and N̄u are obtained from the orthogonal eigenvalue decompositions of XT ,Ω

and YT ,Ω , i.e. XT ,Ω=KuMuK
T
u and YT ,Ω=LuNuL

T
u . Mu , and Nu can be partitioned as

XT ,Ω=KuMuK
T
u =

[
Ku1 Ku2

] [ Mu1 0

0 Mu2

][
KT

u1

KT
u2

]

YT ,Ω=LuNuL
T
u =

[
Lu1 Lu2

] [ Nu1 0

0 Nu2

][
LT
u1

LT
u2

]
,

where Mu1= diagmu1 ,mu2 , · · · ,mul
, Mu2 = diagmul+1

,mul+2
, · · · ,mun , Nu1= diagnu1 , nu2 , · · · , nuq ,

Nu2= diagnuq+1 , nuq+2 , · · · , nun , mu1≥mu2≥ · · · ≥mul
> 0, mul+1

≤ mul+2
≤ · · · ≤ mun ≤ 0,

nu1 ≥ nu2 ≥ · · · ≥ nul
> 0, and nuq+1 ≤ nuq+2 ≤ · · · ≤ nun ≤ 0.

M̄u and N̄u are defined as

M̄u =

[
Mu1 0

0 0

]
and N̄u =

[
Nu1 0

0 0

]

The new time- and frequency-limited controllability Pu and observability Qu Gramians are calculated from the

following Lyapunov equations:

APu A
T − Pu + BuB

T
u = 0

ATQuA − Qu + CT
u Cu = 0

PT,Ω and QT,Ω are then replaced by Pu and Qu in Algorithm 1, respectively.

Proposition 1 The following a priori error bound holds if rank[Bu B] = rank[Bu] and rank

[
Cu

C

]
=

rank[Cu] :

||H (z)−Hr (z)||∞ ≤ 2
∣∣∣∣∣∣L̃∣∣∣∣∣∣

∞

∣∣∣∣∣∣K̃∣∣∣∣∣∣
∞

n∑
k=r+1

σk ,

where

L̃ = CLudiag
{
|nu1 |

− 1
2 , |nu2 |

− 1
2 , · · · ,

∣∣nuj̄

∣∣− 1
2 , 0, · · · , 0

}
K̃ = diag

{
|mu1 |

− 1
2 , |mu2 |

− 1
2 , · · · ,

∣∣muī

∣∣− 1
2 , 0, · · · , 0

}
KT

u B

ī = rank[XT,Ω] and j̄ = rank[YT,Ω] .

Proof The proof is similar to the error bound expressions in [16] and is hence omitted.
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3.2. Time- and frequency-limited Gramians for unstable systems

The Gramian definitions in Eqs. (15) and (16) are only valid if A is Hurwitz. When H(z) is unstable, the

summation in the above equations becomes unbounded. However, if the pair (A,B) is stabilizable and (A,C)

is detectable, the Gramians can be defined for unstable systems using certain mathematical manipulation (see

[21] for details). Consider the following right and left coprime factorization:

(zI−A)
−1

B=N (z)M−1(z)

C (zI−A)
−1

= M̃−1 (z) Ñ (z) ,

where M(z) and M̃(z) are the inner transfer function matrix. These coprime factors can be calculated

accordingly in the following form: [
N(z)

M(z)

]
=

 A+BF BW

I 0

F W

 ,

where

F = −WWTBTXA

WT (I+BTXB)W=I

X is the stabilizing solution of the following discrete time Riccati equation:

ATX
(
I+BBTX

)−1
A−X= 0

Similarly, [
Ñ(z) M̃(z)

]
=

[
A+GC I G

W̃C 0 W̃

]
,

where

G = −AY CT W̃T W̃

W̃ (I+CY CT )W̄λT=IY

is the stabilizing solution of the following discrete time Riccati equation:

AY
(
I+Y CTC

)−1
AT−Y= 0

Definition 2 The time- and frequency-limited controllability and observability Gramians for unstable systems

are defined as

P̄T,Ω =

n2−1∑
i=n1

Ai
F

(
SFBBT +BBTSH

F

) (
AT

F

)i
Q̄T,Ω =

n2−1∑
i=n1

(
AT

G

)i (
SH
GCTC + CTCSG

)
Ai

G,

where

SF = −ω2 − ω1

4π
I +

1

2π

∫
δω

(
I −AF e

−j ω
)−1

dω

SG = −ω2 − ω1

4π
I +

1

2π

∫
δω

(
I −AGe

−j ω
)−1

dω
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AF = A+BF

AG = A+GC

P̄T,Ω and Q̄T,Ω are the solutions of the following Lyapunov equations:

AP̄T,ΩA
T +An1

(
SFBBT +BBTSH

F

) (
AT
)n1 −An2

(
SFBBT +BBTSH

F

) (
AT
)n2

= P̄T,Ω

AT Q̄T,ΩA+
(
AT

G

)n1
(
SH
GCTC + CTCSG

)
An1

G −
(
AT

G

)n2
(
SH
G CTC + CTCSG

)
An2

G = Q̄T,Ω

ROM is then obtained by replacing PT,Ω and QT,Ω with P̄T,Ω and Q̄T,Ω in Algorithm 1, respectively.

Remark 4 When A is Hurwitz, X = Y = 0 , P̄T,Ω = PT,Ω , and Q̄T,Ω = QT,Ω .

3.3. Time- and frequency-limited cross Gramian

Since A is Hurwitz, the Sylvester Eq. (10) can be written in summation form as follows:

Ra =

∞∑
i=0

Ai (SBC +BCS)Ai

Definition 3 The limited time and frequency interval cross Gramians in the specified time and frequency

intervals T = [n1n2] and Ω = [ω1ω2] rad/s, respectively, are defined as

RT,Ω =

n2−1∑
i=n1

Ai (SBC +BCS)Ai (24)

Proposition 2 RT,Ω can be computed from Ra as

RT,Ω = An1Ra A
n1 −An2Ra A

n2

Proof The proof is like Theorem 1 and hence omitted.

Proposition 3 RT,Ω satisfies the following Sylvester equation:

ART,ΩA − RT,Ω + An1SBCAn1 +An1BCSAn1 −An2SBCAn2 −An2BCSAn2 = 0

Proof The proof is like Theorem 2 and hence omitted.

Remark 5 When the specified frequency interval is Ω = [0, π] rad/s, RT,Ω = Rj .

Proposition 4 RT,Ω can be computed from Rj as

RT,Ω = SRj +RjS

Proof The proof is like Theorem 3 and hence omitted.
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Remark 6 Similar to the standard cross Gramian definition, when H(z) is symmetric, i.e. HT (z) = H(z) ,

the following property holds:

R2
T,Ω = PT,ΩQT,Ω (25)

Algorithm 2: The truncating projection matrices that obtain ROM are calculated by adapting the algorithm

given in [22]. We choose this algorithm because it gives a similar ROM (i.e. ROM with the same transfer

function), which is obtained from the balanced transformation due to the property of cross Gramian in [23].

Therefore, for symmetric systems, Hr(z) yielded by Algorithms 1 and 2 is the same. Moreover, Algorithm

2 is less computational, as only one Gramian is to be computed, and less prone to ill-conditioning. It can

even be applied to nonminimal systems, as discussed in [8]. There is some abuse in the usage of mathematical

variables in the following algorithm and the remainder of this subsection; however, the context clearly shows

the difference. ROM can be obtained with the following steps:

1. Calculate real ordered Schur form of RT,Ω , i.e. TTRT,ΩT = RS =

[
RS11 RS12

0 RS22

]
, where RS11 ∈

Rr× r and RS22 ∈ R(n−r)× (n−r) .

2. Compute matrix Q from the Sylvester equation RS11Q − QRS22 + RS12 = 0.

3. Partition T as [T(n× r) T(n×n−r)] . Then V11 = T(n× r) and U11 = TT
(n×n−r) − QTT

(n×n−r) .

4. Then ArBrCrDr = {U11AV11, U11B, CV11, D} .

Remark 7 The cross Gramian definition in Eq. (24) can be extended to a wider class of orthogonally symmetric

systems, i.e. if AP = PAT and = PCUT ; if p ≤ m or C = PBUT ; and if m ≤ p , where P and U are

symmetric and orthogonal matrices, respectively [24]. The definition in Eq. (24) for such systems becomes

RT,Ω =

n2−1∑
i=n1

Ai (SBUC +BUCS)Ai

such that the property in Eq. (25) holds [24], and Algorithm 2 yields the same Hr(z) as Algorithm 1.

Remark 8 For general nonsymmetric systems, only an averaged cross Gramian can be calculated. Using the

concept in [25], the definition in Eq. (24) can be extended to nonsymmetric systems as follows. The matrices

B and C can be decomposed column-wise and row-wise, respectively, as

B =
[
b1 · · · bm

]
, bk ∈ Rn× 1 , C =

 c1
...
cp

 , cl ∈ R1×n

where k ∈ {1, 2, · · · ,m and l ∈ {1, 2, · · · , p .
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Let B̃ =
m∑
i=1

bk and C̃ =
p∑

i=1

cl be matrices of order n× 1 and 1×n , respectively. Then the limited time

and frequency intervals cross Gramian is defined as

R̃T,Ω =

n2−1∑
i=n1

Ai
(
SB̃C̃ + B̃C̃S

)
Ai

Neither the property in Eq. (25) holds for R̃T,Ω , nor does Algorithm 2 yield the same Hr(z) as Algorithm 1.

4. Numerical example

Example 1 Consider the 200th-order discrete heat equation model in [26] (MATLAB files of the model can be

downloaded from [http://slicot.org/20-site/126-benchmark-examples-for-model-reduction]). A 13th-order ROM

is obtained using balanced truncation, Algorithm 1 (proposed I), stability preserving modification of Algorithm

1 (proposed II), and Algorithm 2 (proposed III). The specified time and frequency intervals chosen for the

experiment are [1, 3] s and [0.30π, 0.50π] rad/s. Figure 1 shows the singular value plot of the error function

(H(z) −Hr(z)) in the specified frequency interval. Figure 2 shows the impulse response of the error function

(H(z) − Hr(z)) . It can be observed from Figures 1 and 2 that ROMs yielded by the proposed algorithms are

more accurate within the desired time and frequency intervals than the balanced truncation [5].

Example 2 Consider the 256th-order advection equation model (MATLAB files of the model can be downloaded

from [http://gramian.de]). A 17th-order ROM is obtained at the specified time and frequency intervals chosen

[2, 4] s and [0.70π, 0.80π] rad/s, respectively. Figures 3 and 4 show the singular value plot and impulse response

of the error function (H(z)−Hr(z)) in the specified frequency and time intervals.

5. Discussion and conclusion

It can be observed from the figures that the error yielded by the proposed algorithms is least within the specified

time and frequency intervals. The ROM yielded by the proposed Algorithm II is slightly inferior in accuracy.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Normalized Frequency

-140

-120

-100

-80

-60

-40

-20

M
ag

n
it

u
d

e 
(d

b
)

Balanced truncation
Proposed I
Proposed II
Proposed III

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Balanced truncation
Proposed I
Proposed II
Proposed III

Impulse Response

Time (seconds)

A
m

p
li

tu
d

e

Figure 1. Error plot in the frequency interval [0.30π ,

0.50π ] rad/s.

Figure 2. Error plot in the time interval [0, 5] s.
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Figure 3. Error plot in the frequency interval [0.70π ,

0.80π ] rad/s.

Figure 4. Error plot in the time interval [1, 4] s.

However, the stability preservation and the availability of the easily computable error-bound expression are the

main advantages of this algorithm. ROM yielded by the proposed Algorithm III has the same accuracy as in

Algorithm I. However, it is less computational and less prone to ill-conditioning. In conclusion, all the proposed

algorithms performed well and ensured accuracy within the desired intervals.
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