
Turk J Elec Eng & Comp Sci

(2018) 26: 378 – 392

c⃝ TÜBİTAK
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Abstract: In this paper, an adaptive tracking controller based on a three-layer neural network (NN) with an online

weight tuning algorithm is proposed for a nonholonomic wheeled mobile robot in the presence of unknown wheel slips,

model uncertainties, and unknown bounded disturbances. The online weight tuning algorithm is modified from the

backpropagation with an e -modification term required to assure that the NN weights are bounded. Preliminary neural

network offline training is not essential for the weights. Thanks to this proposed controller, the desired tracking

performance is achieved where position tracking errors converge to an arbitrarily small neighborhood of the origin

regardless of their initial values. According to Lyapunov theory and LaSalle extension, the stability of the whole closed-

loop system is ensured to obtain the desired tracking performance. Computer simulations are implemented to certify

the validity of the proposed controller.

Key words: Desired tracking performance, online weight tuning algorithm, position tracking errors, uniformly ultimately

bounded, unknown wheel slip

1. Introduction

In recent years, due to the fact that wheeled mobile robots (WMRs) are widely applied and increasingly popular,

a lot of the effort of researchers in the world has been spent to solve the tracking control problems of WMRs by

using various control techniques such as sliding mode control [1], adaptive control [2], and backstepping control

[3,4]. All these works have been performed with an assumption that WMRs move on the floor without wheel

slips.

However, unfortunately, in many practical applications, the assumption of “pure rolling without slip”

is often violated. In other words, wheel slips exist. Wheel slip depends on many various factors, such as an

unknown centrifugal force possibly acting on the WMR when it moves in a circular path, an external force

acting on the WMR, or a weak frictional force between the slippery floor and the wheels. Wheel slips have

made the tracking performance of WMRs considerably worse. Consequently, if one wishes a tracking control

problem to be solved effectively in such a context, then a tracking controller, which is able to achieve a desired

tracking performance in the presence of wheel slips, has to be considered.

Particularly, with the purpose of compensating the undesired effect of wheel slips, an adaptive tracking
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controller was derived through a radial basis function neural network [5]. However, this work only dealt

with longitudinal slips of each driving wheel; lateral slip was not considered. Methods based on gyros and

accelerometers to deal with wheel slips in real time were also described in [6,7]. The authors of [8] proposed

a feedback linearization controller for tracking a desired trajectory of a WMR in the presence of longitudinal

and lateral slip at each driving wheel under ideal conditions where model uncertainties did not exist, such as

unstructured unmodeled dynamic components and unknown bounded disturbances such as unknown bounded

external forces, and the values of the accelerations and velocities of the wheel slip could be measured exactly.

Nonetheless, it is impractical to achieve a good performance by using this feedback linearization controller in

real applications as the ideal condition is unrealistic.

To summarize, most of these works were based on an assumption that the measurements of the accelera-

tions and velocities of the wheel slips were available for analyzing and designing slip-compensation controllers.

The disadvantage of this assumption is the requirement of extra sensors to measure the wheel slips, such as a

global position system (GPS), a gyroscope, and an accelerometer, which are expensive and complex.

These results have motivated us to design a novel neural network-based adaptive tracking controller for

a WMR with unknown wheel slips such that the WMR tracks a desired trajectory with the desired tracking

performance. Furthermore, measurements of the wheel slips are no longer essential.

2. Materials and methods

2.1. The kinematics of a nonholonomic WMR in the presence of wheel slips

Let us consider a nonholonomic WMR, which comprises two driving wheels and a caster wheel, as in Figure 1.

Namely, G with coordinates (xG, yG) is the center of mass of the platform of the WMR. M with coordinates

(xM , yM ) is the midpoint of the wheel shaft. F1 and F2 are the total longitudinal friction forces at the right

and left wheel, respectively. F3 is the total lateral friction force along the wheel shaft. F4 and ϖ are external

force and moment acting on G, respectively. r is the radius of each driving wheel. b is the haft of the wheel

shaft. θ is the orientation of the WMR.

In the absence of wheel slip, the linear and angular velocities of the WMR, computed at M, are represented

Figure 1. a) The nonholonomic WMR subject to wheel slip. b) The coordinates of the target are represented in the

body coordinate system M-XY.
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respectively as follows:

Θ = r
(
ϕ̇R + ϕ̇L

)
2, µ = r(ϕ̇R − ϕ̇L)/(2b) (1)

where ϕ̇R and ϕ̇L are the angular velocities of the right and left wheel about the wheel shaft, respectively.

Hence, the kinematics of the WMR is written as follows:


ẋM = Θcos θ

ẏM = Θsin θ

θ̇ = µ

(2)

Alternatively, when the WMR moves in the presence of slips between the wheels and the floor, Eqs. (1) and

(2) are no longer true. Now let γR and γL denote the coordinates of the longitudinal slip of the right and left

wheels, respectively, and η denote the coordinate of the lateral slip along the wheel shaft (see Figure 1a). In

this case, the actual linear velocity of the WMR along the longitudinal direction is as follows:

Ω =
r(ϕ̇R + ϕ̇L)

2
+

γ̇R + γ̇L
2

= Θ+ χ̇, with χ = (γR + γL)/2 (3)

The actual angular velocity of the WMR is computed as follows:

ω =
r(ϕ̇R − ϕ̇L)

2b
+

γ̇R − γ̇L
2b

= µ+ ϑ, with ϑ =
γ̇R − γ̇L

2b
(4)

Thus, the kinematic model of this WMR can be expressed as follows:


ẋM = Ωcos θ−η̇sinθ

ẏM = Ωsinθ + η̇cosθ

θ̇ = ω

(5)

In this case, the perturbed nonholonomic constrains can be written as follows:


γ̇R = −rϕ̇R + ẋM cos θ + ẏM sin θ + bω

γ̇L = −rϕ̇L + ẋM cos θ + ẏM sin θ − bω

η̇ = −ẋM sin θ + ẏMcosθ

. (6)

2.2. The dynamics of the nonholonomic WMR with wheel slips

Let q= [xG, yG, θ, η, γR, γL, ϕR, ϕL]
T

be a generalized Lagrange coordinate vector. The perturbed non-

holonomic constraints of Eq. (6) can be rewritten as follows:

A (q) q̇= 0 where A (q)=


cosθ sinθ b

cosθ sinθ −b
− sinθ cosθ −a

0 −1 0

0 0 −1

−1 0 0

−r 0

0 −r

0 0

 , (7)

where a is the distance between M and G.
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The dynamic equation of the whole system can be represented by

Mq̈+ τ̄d = Nτ +AT(q)λ, (8)

where λ = [λ1, λ2, λ3]
T

is the vector of Lagrange multipliers to be considered as unknown nonholonomic

constraint forces. τ = [τR, τL]
T

is the input vector with τR and τL being the torques at the right and left wheel

about the wheel shaft, respectively. τ̄d is a vector illustrating model uncertainties such as the unstructured

unmodeled dynamic components and unknown bounded disturbances such as the unknown external forces as

F1 , F2 , F3 , F4 , ϖ (see Figure 1a). N =

[
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

]T
is the input transformation matrix.

Figure 2. Structure of a three-layer neural network.

In contrast, it is easy to achieve the following equation:

q̇=S1 (q)v+S2 (q) γ̇+S3(q)η̇ (9)

where v=
[
ϕ̇R,ϕ̇L

]T
, γ = [γR,γL]

T
,

S1 (q) =

 ( r2 cos θ − ar
2b sin θ

)
r
2b 0 0 0 1 0(

r
2 sin θ + ar

2b cos θ
)

− r
2b 0 0 0 0 1

T

,

S2 (q) =

 ( 12 cos θ − a
2b sin θ

)
1
2b 0 1 0 0 0(

1
2 sin θ + a

2b cos θ
)

− 1
2b 0 0 1 0 0

T

,

S3(q) = [− sin θ cos θ 0 1 0 0 0 0]
T

Next, taking the time derivative of Eq. (9), we obtain:

q̈= Ṡ1 (q)v+S1 (q) v̇+ Ṡ2 (q) γ̇+S2 (q) γ̈+ Ṡ3(q)η̇+S3(q)η̈ (10)
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It is useful to show that ST
1 (q)AT (q) =02×3 , S

T
1 (q)N= I2×2 , where I2×2 is a unit 2 × 2 matrix and 02×3

is an i × j zero matrix. Substituting Eq. (10) into Eq. (8), and then premultiplying both sides of the new

equation by ST
1 (q), we get:

Mv̇+Bv + Qγ̈+Cη̇+Gη̈+ τd = τ , (11)

where

τd =ST
1 (q) τd, M = ST

1 (q)MS1 (q) =

[
m11 m12

m12 m11

]

Q =ST
1 (q)MS2 (q) =

[
Q1 Q2

Q2 Q1

]
, C =ST

1 (q)MṠ3 (q) =mG
r

2
ω

[
1
1

]
,

G = ST
1 (q)MS3 (q) =mG

ar

2b

[
1
−1

]
, B = ST

1 (q)MṠ1 (q) =mG
ar2

2b
ω

[
0 1
−1 0

]
,

with

m11 = mG

(
r2

4
+

a2r2

4b2

)
+

r2

4b2
(IG + 2ID) + 2mwr

2 + IW ,

m12 = mG

(
r2

4
− a2r2

4b2

)
− r2

4b2
(IG + 2ID) , Q1,2 = mG

r

4

(
1 ± a2

b2

)
± r

4b
(IG + 2ID) .

The parameters of the WMR in the matrices revealed above are described in the Table.

Table. The parameters of the WMR.

Symbol Quantity Value
mG The mass of the platform of the WMR 10 (kg)

IG
The inertial moment of the platform about the vertical

4 (kgm2)
axis through point G (Figure 1a)

a The distance between G and M (Figure 1a) 0.2 (m)
C The distance between P and M (Figure 1b) 0.5 (m)
mW The mass of each driving wheel 2 (kg)
IW The inertial moment of each wheel about its rotational axis 0.1 (kgm2)
ID The inertial moment of each wheel about its diameter axis 0.05 (kgm2)
b The half-distance between the two driving wheels 0.3 (m)
r The radius of each wheel 0.15 (m)

2.3. Problem statement

Let D with coordinates (xD, yD) be a target that is moving in a known desired trajectory (see Figure 1b). The

requirement of the tracking control problem is to control the WMR so that P with coordinates (xP , yP ) has to

track D with position tracking errors being uniformly ultimately bounded.

Remark 1 Let (xP , yP , θ) be the actual posture of the WMR and (xPd, yPd, θd) be the desired one of the WMR.

The presence of both the longitudinal and lateral slip makes it impossible to control the WMR so that the actual

posture tracks the desired one with an arbitrarily good tracking performance. By contrast, it is fully possible in

order to control the WMR with the aim of making the actual position (xP , yP ) track the desired one (xPd, yPd)

with an arbitrarily good tracking performance (see Definition 1 and Definition 2 in [9]).

382



NGUYEN and LE/Turk J Elec Eng & Comp Sci

2.4. Representing the vector of filtered tracking errors

Let O-XY be the global coordinate system and let M-XY be the body coordinate system that is attached to the

platform of the WMR (see Figure 1b). The coordinate vector of target D is represented in M-XY as follows:

ζ=

[
ζ1

ζ2

]
=

[
cosθ sinθ

−sinθ cosθ

][
xD − xM

yD − yM

]
. (12)

Taking the second-order derivative with respect to time of Eq. (12) yields

ζ̈= hv̇+Ψ1 +Ψ2, (13)

where

Ψ1 =

[
ζ̇2µ+ ẍDcosθ + ÿDsinθ − ẋDµ sinθ + ẏDµ cosθ

−ζ̇1µ− ẍDsinθ + ÿDcosθ − ẋDµ cosθ − ẏDµ sinθ

]
,

Ψ2=

[
−χ̈ − ζ2ϑ̇ − ζ̇2ϑ− ẋDϑ sinθ + ẏDϑ cosθ

−η̈ − ζ1ϑ̇ − ζ̇1ϑ− ẋDϑ cosθ − ẏDϑ sinθ

]
,

and

h=

[ (
ζ2
b − 1

)
r
2 −

(
ζ2
b + 1

)
r
2

− ζ1
b

r
2

ζ1
b

r
2

]
, with µ =

r
(
ϕ̇R − ϕ̇L

)
2b

, ϑ =
γ̇R − γ̇L

2b
, χ =

γR + γL
2

.

Remark 2 Owing to det (h) = −ζ1r
2/(2b) , if ζ1 ̸= 0, then h is an invertible matrix. Let us define the

position tracking error vector as e = [e1, e2]
T
= ζ−ζd where ζd is the desired coordinate vector of the target

in M-XY. From the requirement of the position tracking control problem mentioned above and Figure 1b, one

can easily show ζd = [C, 0]
T
, with C showing the distance between P and M.

The filtered tracking error vector is defined as follows:

φ = ė+Λe (14)

where Λ is a 2 × 2 diagonal, constant, positive definite matrix and is chosen arbitrarily.

2.5. Three-layer neural network (NN)

One cannot deny that artificial neural networks have the ability of approximating nonlinear and sufficiently

smooth functions with arbitrary accuracy. In this subsection, a three-layer NN is introduced briefly [3]. As

illustrated in Figure 2, the output of the NN can be computed as y (x,W,V) = [y1, . . . ,yN3 ]
T

=WTσ
(
VTx

)
where x = [1,x1, . . . ,xN1 ]

T
is the input vector, and W = [wij] and V = [vij] are the NN weight matrices.

σ (z) = [1,σ (z1) ,σ (z2) , . . .]
T

with z = [z1,z2, . . .]
T
. Next, σ (•) is the activation function of the NN. In this

paper, the activation function is chosen to be the sigmoid kind as σ (z) = 1/(1+ exp(−z)).

To be specific, one can write the following:

yi =

N2∑
j=1

[
wijσ

(
θvj +

N1∑
k=1

vjkxk

)]
+ θwi, i = 1, 2, 3, . . . , N3, (15)
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where N1, N2 , and N3 are the number of neurons of the input layer, hidden layer, and output layer, respectively.

Next, vij and wij are flexible weights that interconnect the input with the hidden layer and the hidden with the

output layer, respectively. θwi and θvj are the threshold offsets of the output and hidden layer, respectively.

It is interesting that inserting 1 as the first component of x allows one to include the threshold vector

[θv1,θv2, . . . ,θvN1 ]
T

as the first row of V. Likewise, σ (z) containing 1 as the first term permits the threshold

vector [θw1,θw2, . . . ,θwN3 ]
T

to be the first row of W. For this reason, any tuning of W and V is composed of

tuning of the weights wij , vij as well as the thresholds θwi , θvj .

Let f (x) :RN1 → R
N3 be a continuous function. There exist ideal weight matrices W and V such that:

f (x) =WTσ
(
VTx

)
+ ε, (16)

where ε is the vector of reconstruction errors.

Assumption 1 ε is bounded. Namely, ∥ε∥ ≤ bε with bε being an upper bound of ε . Let f̂
(
x,Ŵ, V̂

)
= ŷ

(
x,Ŵ, V̂

)
= Ŵσ

(
V̂Tx

)
denote an estimation of f(x), where Ŵ and V̂ are estimation matrices of

W and V , respectively, and they are provided by an online weight tuning algorithm to be revealed subsequently.

For convenience, let us denote σ= σ
(
VTx

)
, σ̂ = σ̂

(
V̂Tx

)
. The function approximation error vector

is defined as follows:
f̃ = f (x) − f̂

(
x,Ŵ, V̂

)
=WT σ+ε− ŴT σ̂, (17)

2.6. The structure of the controller

To begin with, let us propose the scheme of the whole closed-loop system as shown in Figure 3.

Figure 3. Scheme of control system.

Next, in Eq. (13), because of directly depending on the accelerations and velocities of the wheel slip,

which are not measured in this work, Ψ2 is unknown. Therefore, let us define an auxiliary variable that can be

measured easily as follows:
κ = h−1(−ζ̈d +Λė+Ψ1) (18)

Alternatively, one can rewrite Eq. (11) as follows:

Mv̇ = τ −Bv − d− τd (19)

where d = Qγ̈ +Cη̇ +Gη̈ .
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Adding Mκ to both sides of Eq. (19) and then combining the result with Eqs. (13), (14), and (18) leads

to

Mh−1φ̇ = τ +Mκ−Bv − d− τd +Mh−1Ψ2 (20)

Conversely, it is difficult to specifically know parameters of the dynamics of this WMR such as mass or moments

of inertia. Consequently, it is impossible to precisely illustrate all expressions including these quantities.

Therefore, one can rewrite Eq. (20) as follows:

M̂h−1φ̇ = τ − M̃h−1φ̇+Mκ−Bv − d+Mh−1Ψ2 − τd (21)

where M̃ = M− M̂ with M̂ denoting an approximation of M .

Remark 3 It should be noted that both M and M̂ are always symmetric, invertible, positive definite matrices.

Remark 4 In practice, the unknown wheel slips depend on the linear and angular velocities of the WMR [10].

Multiplying both sides of Eq. (21) by hM̂−1 yields

φ̇ = hM̂−1τ + f(x) +Ξ (22)

where f(x) = hM̂−1[−M̃h−1φ̇+Mκ−Bv − d+Mh−1Ψ2] . The vector x required so as to calculate f (x)

can be determined by x = [1 vT κT ]T . Clearly, x can be measured easily. In addition, Ξ= −hM̂−1τd

expresses the model uncertainties as well as the unknown bounded disturbances.

Next, one can choose a torque-computing control law as follows:

τ = M̂h−1[−Kφ − f̂ (x, Ŵ, V̂)] (23)

where K is a 2 × 2 diagonal, constant, positive definite matrix and is chosen arbitrarily. f̂
(
x,Ŵ,V̂

)
is the

output of the NN in order to approximate f (x) as shown in Eq. (17).

Substituting Eq. (23) into Eq. (22) and then combining the result with Eq. (17) yields:

φ̇ = −Kφ + WTσ + ε − ŴTσ̂ + Ξ (24)

On the other hand, one can write the Taylor series expansion around V̂ for a known x as σ = σ̂ + σ́ṼTx

+O(ṼTx) where σ́ = ∂σ(z)/∂Z|z=z(V̂x) , and O
(
ṼTx

)
illustrates the second-order term and higher-order

terms of the Taylor series, with Ṽ=V− V̂ .

Let σ̃ be the error of the hidden layer as σ̃ = σ − σ̂ = σ́ṼTx + O(ṼTx) .

Adding and subtracting WTσ̂ and ŴTσ̃ results in:

φ̇ = −Kφ + W̃Tσ̃ + W̃Tσ̂ + ŴTσ̃ + ε + Ξ (25)

where W̃=W−Ŵ . Now the Taylor series is used for approximating σ̃ in Eq. (25), by which the dynamics

of the filtered tracking error vector becomes:

φ̇ = −Kφ + W̃T(σ̂ − σ́V̂Tx) + ŴTσ́ṼTx + ε + Ξ + δ (26)

where δ = W̃Tσ́ṼTx + WTO(ṼTx) is the disturbance due to the high-order terms in the Taylor series.
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In this work, let us propose the online weight tuning algorithm for the NN weights as follows:

˙̂
W = H1(σ̂φ

T − σ́V̂TxφT−α||φ||Ŵ) (27)

˙̂
V = H2(xφ

TŴTσ́−α||φ||V̂) (28)

where H1 is an (N2 +1) ×N3 positive definition constant matrix. H2 is an (N1 +1) ×N2 positive definition

constant matrix. α is positive constants. All of H1 H2 , and α can be chosen arbitrarily. The first terms

in the parentheses in Eqs. (27) and (28) show the standard backpropagation algorithm. The last terms in

the parentheses express the e−modification [3] required for ensuring that the estimations of the weights are

bounded.

3. The stability

Assumption 2 It is assumed that Ξ and δ in Eq. (26) are bounded. Particularly, ∥Ξ∥ ≤ bΞ , ||δ|| ≤ bδ ,

with bΞ , bδ being the upper bound of Ξ and δ , respectively.

Assumption 3 The linear velocity as well as the linear acceleration of the desired trajectory are bounded. To

be specific, all of ẋD, ẏD, ẍD, and ÿD in Eq. (13) are bounded.

Definition 1 For convenience, let us define matrices as follows: Z = diag {W,V} , Ẑ= diag
{
Ŵ,V̂

}
,

Z̃= diag
{
W̃,Ṽ

}
. Here, diag{ } illustrates a diagonal matrix.

Assumption 4 The ideal parameter Z is bounded by a known upper bound as ∥Z∥F ≤ZM where ∥ • ∥F is the

Frobenius norm.

It is worth noting that ZM is only used with the purpose of analyzing stability.

Theorem 1 For the WMR subject to wheel slip as in Eq. (11) and Figure 1, let the control input be given

by Eq. (23) and the online weight tuning algorithm be provided by Eqs. (27) and (28). Then, according to

Lyapunov theory and LaSalle extension, the stability of the closed-loop system is assured to achieve the desired

tracking performance where the filtered tracking error vector φ as well as the vector of the weight errors Z̃ are

uniformly ultimately bounded [3] and φ can be kept arbitrarily small.

Proof Let us define a Lyapunov candidate function as follows:

L =
1

2
φTφ+

1

2
tr(W̃TH−1

1 W̃)+
1

2
tr(ṼTH−1

2 Ṽ), (29)

where tr(•) denotes the trace of the matrix.

Taking the first derivative with time and noting that
˙̃
W = − ˙̂

W and
˙̃
V = − ˙̂

V yields:

L̇ = φTφ̇ − tr(W̃TH−1
1

˙̂
W) − tr(ṼTH−1

2
˙̂
V) (30)
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Substitution of Eq. (26) into Eq. (30) results in:

L̇ = φT[−Kφ + W̃T(σ̂ − σ́V̂Tx) + ŴTσ́ṼTx + ε + Ξ + δ] − tr(W̃TH−1
1

˙̂
W) − tr(ṼTH2

˙̂
V), (31)

Due to φTW̃Tσ́V̂Tx = tr(W̃Tσ́V̂TxφT), φTŴTσ́ṼTx = tr(ṼTxφTŴTσ́) and φTW̃Tσ̂ = tr(W̃Tσ̂φT) ,

(31) becomes

L̇ = φT[−Kφ + ε + Ξ + δ] + tr[W̃T(H−1
1

˙̂
W − σ̂φT + σ́V̂TxφT)] − tr[ṼT(H−1

2
˙̂
V − xφTŴTσ́)] (32)

Substituting Eqs. (27) and (28) into Eq. (32) leads to

L̇ = φT(−Kφ + ε + Ξ + δ)+α||φ||(Z̃TẐ) (33)

One can easily write Ẑ = Z− Z̃ . It is helpful to point out the following inequality:

ẐT(Z − Z̃) ≤ZM ||Z̃||F − ||Z̃||2F (34)

According to Assumptions 1, 2, 3, and 4 and Eq. (34), one achieves an inequality as follows:

L̇ ≤ ||φ||[−Kmin||φ||+ bε + bΞ + bδ + α(ZM ||Z̃||F − ||Z̃||2F )] (35)

where Kmin is the minimum singular value of K .

Because of the fact that ZM

∥∥∥Z̃∥∥∥
F
≤ 1

2Z
2
M + 1

2

∥∥∥Z̃∥∥∥2
F
, one has the following inequality:

L̇ ≤ ||φ||[−Kmin||φ|| −
1

2
α||Z̃||2F + bε + bΞ + bδ +

1

2
αZ2

M ] (36)

Observing Eq. (36) reveals that L̇ is guaranteed to be negative definite as long as the term in the

parentheses is negative. Particularly, L̇ < 0 is assured if the following inequality is correct:

Kmin||φ||+
1

2
α||Z̃||2F > bε + bΞ + bδ +

1

2
αZ2

M (37)

As a result, according to Lyapunov theory and LaSalle extension, φ as well as Z̃ are uniformly ultimately

bounded in a compact set as follows:

UB =

{
φ, Z̃

∣∣∣∣Kmin||φ||+
1

2
α||Z̃||2F ≤ bε + bΞ + bδ +

1

2
αZ2

M

}
(38)

Furthermore, it is worth noting that φ can be made arbitrarily small by choosing the gains K suitably.

To be specific, the bigger K is, the smaller φ and is.
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4. Simulation results

To show the validity of the proposed control law, we implemented computer simulations for trajectory tracking

of the WMR with the parameters shown in the Table. We compared the tracking performance of the proposed

control method with that of the feedback linearization control method [8] with the purpose of validating the

advantages of the proposed control method.

For comparison, both of two these methods mentioned above were performed under a condition in which

there existed model uncertainties and unknown bounded disturbances (in other words, τd ̸= 0), and moreover

the velocities and accelerations of the wheel slips were not measured. Without loss of generality, it was assumed

that τd = [3 + sin (0.5t) , 2.5 + cos 0.4t]
T
, M̂ = 0.7M , and the velocities of the unknown wheel slips were given

by [γ̇R, γ̇L, η̇]
T
= [2 sin t, 1.5 cos 0.5t, 0.5]

T
(m/s) for all t > 2 (s). The initial posture in the world coordinate

system O-XY is xP = C= 0.5 (m), yP = 0 (m), and θ = 0.1 (rad).

The control parameters were chosen as K = diag([6, 6]), Λ = diag ([2, 2]). The hidden layer had

10 neurons. The weight tuning gains were set as H1=diag(10)11×2 , H2=diag(10)5×10 , and α = 0.5 The

initial conditions of the weight matrices were chosen as random numbers in [0, 1] as Ŵ0= [rand(0,1)]11×2 ,

V̂0= [rand(0,1)]5×10 .

For illustration, the two following examples were implemented in MATLAB/Simulink software.

Example 1 Target D moved on a straight line with the motion equation described as follows:{
xD = 3 + 0.75t

yD = −2 + 0.5t
(39)

Obviously, in Figures 4 and 5, we can easily see that when the accelerations and velocities of the unknown

wheel slips were not measured and model uncertainties and unknown bounded disturbances existed, the control

approach in [8] could not compensate the undesired effects while the proposed control method effectively dealt

with the undesired effects.
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Figure 4. Comparison of the trajectories in Example 1.

In addition, as can be seen in Figure 6, the control inputs and some of the weights have been bounded.

Example 2 Target D moved on a circular path with the motion equation described as follows:

{
xD = 5 − 3 cos 0.25t

yD = 2 + 3 sin 0.25t
(40)

388



NGUYEN and LE/Turk J Elec Eng & Comp Sci

0 2 4 6 8 10
-2

-1

0

1

2

3
proposed control method

Time (s)

)
m( sr

orre 
g

ni
kcart 

n
oitis

o
p

 

 

0 2 4 6 8 10
-2

-1

0

1

2

3

Time (s)

p
o

si
ti

o
n

 t
ra

ck
in

g 
er

ro
rs

 (
m

)

feedback linearization control method

 

 

e
1

e
2

e
1

e
2

Figure 5. Comparison of tracking errors in Example 1.
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It is interesting when looking at Figures 7 and 8. Regardless of the unknown wheel slips, model uncertainties,

and unknown bounded disturbances, the proposed control method managed to compensate the harmful effects

very effectively, while the control approach in [8] could not.
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Figure 7. Comparison of tracking results in Example 2.

It should be noted that the position tracking errors of the proposed control method almost converged to

zero, as shown in Figures 5 and 8, whereas that of the feedback linearization control method [8] did not. As a

consequence, the tracking performance of the former is better than that of the latter.
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Figure 8. Comparison of tracking errors in Example 2.

It is apparent that due to the convergence of φ to an adjustable small neighborhood of the origin, the

position tracking error vector, e, in Eq. (14) converged to a small neighborhood of the origin. Hence, ζ1

converged to a small neighborhood of C . Therefore, according to Remark 2, one can easily conclude that h in

Eq. (13) is invertible.

In addition, the control inputs and some the weights in this example were bounded, as shown in Figure 9.
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Figure 9. Torques and some weights of the proposed control method in Example 2.

From these simulation results, one can easily conclude that the proposed control method is correct and

effective.

Remark 5 For comparison purposes, the feedback linearization control method proposed in [8] was simulated

with a more realistic condition: besides ignoring the measurements for the accelerations and velocities of the

wheel slips, there also existed both external disturbances and model uncertainties (in [8] performed under an

ideal and unrealistic condition where in addition to measuring the accelerations and velocities of the wheel slips

exactly, there existed no external disturbances or model uncertainties). Similar conditions were used for our

proposed method for the convenience of comparison.

390



NGUYEN and LE/Turk J Elec Eng & Comp Sci

5. Discussion

In comparison with the work given in [5], we illustrate the differences as follows:

• In this work, we have proposed one adaptive tracking controller based on the sliding mode control technique

with only one control closed loop, whereas the work in [5] utilized backstepping techniques (backstepping

from kinematics into dynamics) with two control closed loops where the outer one is the kinematic control

closed loop and the inner one is the dynamic control closed loop.

• Furthermore, the work in [5] only dealt with longitudinal slips of each driving wheel, but the lateral

slip was not considered, while our proposed controller has managed to compensate both longitudinal and

lateral slips.

• In addition, the work in [5] employed slip ratios that heavily depended on a gyro-sensor and odometry for

designing the kinematic control law, whereas our work did not.

In comparison with the work given in [10], the work in [10] proposed a model-based control method using an

accurate traction model, where the adhesion coefficient between the wheels and the hard flat surface is a function

of the wheel slips for improving tracking performance of a WMR, whereas our proposed control method has

not.

In comparison with the work in [11], we show the differences as follows:

• While the work in [11] built the online adaptive weight updating laws by making an objective function

minimal by using the gradients of this objective function, we, in this proposed control method, have built

an online adaptive tuning algorithm for the neural network weights from the Lyapunov stabilityanalysis.

• Besides, the work of [11] addressed the position tracking control problem in the world (global) Cartesian

coordinate system (O-XY), but our work has addressed this problem in the body Cartesian coordinate

system, M-XY, attached to the platform of the mobile robot.

Additionally, another difference between our proposed control method and other methods, except for the one

in [8], is that our proposed control method must check the invertible property of matrix h in Eq. (13) as in

Remark 2 before designing the control law, and then the control law must always check and guarantee that

matrix h is invertible in the implementation of the closed-loop control system.

In conclusion, in this work, an adaptive tracking controller based on a three-layer NN with the online

weight tuning algorithm was developed to allow the WMR to track a desired trajectory with the desired tracking

performance. It has been shown that the convergence of the position tracking errors to an arbitrarily small

neighborhood of the origin was guaranteed by the standard Lyapunov theory and LaSalle extension. The results

of the computer simulations confirmed the validity and advantages of the proposed control method.
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