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Abstract: Detecting intrusions in a network traffic has remained an issue for researchers over the years. Advances in

the area of machine learning provide opportunities to researchers to detect network intrusion without using a signature

database. We studied and analyzed the performance of a stacking technique, which is an ensemble method that is used

to combine different classification models to create a better classifier, on the KDD’99 dataset. In this study, the stacking

method is improved by modifying the model generation and selection techniques and by using different classifications

algorithms as a combiner method. Model generation is performed using subsets of the dataset with randomly selected

features and not all of these models are used as input for the combiner. Various metrics are used in model selection and

only selected models are used as input for the combiner method. In our experiments, the stacking technique provided

higher accuracy results all the time compared to pure machine learning techniques. The second important result in our

experiments was obtaining the highest detection rate for user-to-root attacks compared to other studies.
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1. Introduction

Arthur Samuel described machine learning as “the field of study that gives computers the ability to learn without

being explicitly programmed” in 1959 [1]. This field typically deals with data that have already been collected

to teach a computer to act on a task.

Ensemble learning is a machine learning approach where more than one learner (classification models or

regression models) is used to solve the same classification or regression problem. In contrast to the conventional

machine learning approaches that try to construct a model from training data, ensemble methods construct a

set of models (learners) and combine them. Ensemble methods have been a major research area since the 1990s

after two pioneering studies. Hansen et al. [2] found that if the combination of a set of classifiers is used for

prediction, they often provide more accurate results compared to a single classifier’s results. In a different study

[3], the author proved that weak learners could be boosted to strong learners.

There are three common and widely known types of ensemble techniques: bootstrap aggregating, boost-

ing, and stacking. Bootstrap aggregating, known as bagging, trains each model by drawing random subsets

of the training set. The random forest algorithm uses bagging and combines random decision trees. Boosting

incrementally builds an ensemble model by training each new model using the misclassified training instances

that previous models misclassified. As an example for boosting, the adaboost algorithm uses a boosting tech-

nique. Stacking, also known as stacked generalization, is a method where an algorithm is used to combine the
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outputs of other models’ predictions. Stacking is the generalization of other ensemble methods [4] and that is

the main reason it was chosen in this study.

Network intrusion detection is defined as the process of detecting attacks and misuse of computer networks

[5]. This study uses modified stacking, which is an ensemble approach, to build a network intrusion detection

system by using the KDD’99 dataset. Although it has been 16 years since the release of the KDD’99 dataset,

it is still in use as the primary source for network intrusion detection studies. For example, [6–10] are some of

the papers that were released in 2014 and 2015 in which the KDD dataset was used.

1.1. Motivation

Our motivation for this study is driven by the following:

• Although there are various studies applying ensemble machine learning techniques, to our best knowledge,

there is no study that compares linear regression, decision tree, and näıve Bayes when they are used for

a combiner method.

• To our best knowledge, there is no study applying stacking ensemble on KDD’99 dataset, which uses

various selection methods to be given as input to the combiner algorithm.

1.2. Threat model & detectors

Our threat model assumes that there is a monitoring system that collects information on the packet level. It

also assumes that the attacker can do four types of attack:

• The attacker is able to gain a user right on the target host by exploiting various vulnerabilities of the

applications running on the target host,

• The attacker already has a user account in the target host and can gain root access by exploiting various

vulnerabilities of the applications running on the target host,

• The attacker is able to launch a denial of service (DoS) attack by exploiting the vulnerabilities of the

applications running on the target host,

• The attacker probes the target host with various techniques to gain information.

This study is supposed to develop a detector that can be used to detect the attacks explained above.

2. Related works

The conventional way of detecting intrusion is to use signatures, but that can identify only previously seen

attacks. To overcome this problem, in the past decades different studies have been published that used machine

learning techniques to classify network traffic and detect intrusions. In this section, we investigate the studies

that used ensemble machine learning techniques.

Gyanchandani et al. [11] used the C4.5 algorithm in stacking, boosting, and bagging ensemble techniques.

Syarif et al. [12] used four different classification algorithms – näıve Bayes, J48 (decision tree), JRip (rule

induction), and iBK (instance-based learning with parameter k) – as base classifiers for 3 types of ensemble

techniques: bagging, boosting, and stacking. However, these two studies did not provide results for each label

in the KDD’99 dataset.
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Toosi et al. [13] constructed a custom ensemble method that uses a genetic algorithm and fuzzy algorithm

and produces promising results. Although they outperformed most of the previous studies, their user-to-root

(U2R) accuracy rate was one of the lowest. Hu et al. [14] used a modified adaboost algorithm that is an

ensemble algorithm and used detection rate as the evaluation metric, but they did not provide the accuracy of

each labeled attack. Patel et al. [15] used both boosting and bagging methods with a decision tree and support

vector machines, but only provided the overall accuracy ratio. Zebarjad et al. [16] used a custom ensemble

approach where the dataset is divided into 10 subsets and trained the dataset with three different algorithms,

but used only 10 features and did not take the other features into account.

In a study from 2014, Shrivas et al. [17] built an ensemble method by using artificial neural networks and

a Bayesian network as base classification algorithms and used the gain ratio for feature selection. In another

recent study from 2015, Gaikwad et al. [18] used a bagging ensemble method with a partial decision tree-based

classifier and used a genetic algorithm for feature selection. The common disadvantage of these two studies is

not considering all the features.

As we see in the previous studies, most of them did not provide accuracy for each label, which makes

comparison hard. The KDD’99 dataset contains more DoS attacks than U2R attacks; for example, if you label

all DoS and U2R attacks as DoS, you will have more than 90% accuracy. Therefore, the accuracy of each labeled

attack, such as U2R, should be given in the results. One of our goals in this study is to provide these results.

In this study, we modified the stacking technique. First, we generated 100 models by using random

feature selection and used three different metrics to select the best of them. Then we used three combination
methods to reach the best results. The details of these steps are explained in Section 3.

3. Stacking

Stacking is a type of ensemble method. Ensemble learning is a machine learning approach where more than one

learner (classification models or regression models) is used to solve the same problem. Ensemble methods try

to construct a set of models and combine them, which is different from ordinary machine learning approaches

that try to construct a model from training data [19].

Before proceeding, we will describe some key words and how they are used in this study. A classification

algorithm or base classification algorithm is an ordinary algorithm used in machine learning for the classification

task such as logistic regression, näıve Bayes, etc. The model is the output when the classification algorithm is

trained with the training data. This model, after training, is used for prediction.

In the training phase, generally the base classification algorithm(s) and training data are accepted as

inputs. Model generation is used to train the algorithm with data and generate models. If the stacking

implementation accepts only one algorithm, usually the “model generation” phase generates n models by using

the algorithm with randomly drawn subdatasets. If the implementation accepts multiple algorithms, usually

the training set is trained with each algorithm. When the models are generated, these models generate the

predicted labels. This is the first layer of the two-layered training phase. The predicted labels of each model

are given as input to the second layer. In the second layer, a classification algorithm (also called the combiner

method) is used to generate a final model while the original labels are still used for labeling the new training

data. Figure 1 shows the training phase of the stacking approach.

The prediction phase of the stacking also contains two layers. The first layer uses the input data and

previously generated models and makes a prediction, and the second layer uses the model previously generated

in the second layer of the training phase. Figure 2 shows the prediction phase of stacking approach.
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Figure 1. Training phase of stacking approach.

Figure 2. Prediction phase of stacking approach.
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3.1. Our approach

In this study, we slightly modified the first layer of training with the stacking approach and used different

combiner methods in the second layer. One of our contributions to the first layer is to generate models by using

all training data with random features. The second one is selecting the best models according to the three

metrics of accuracy, information gain, and recall. The details of our contribution are explained in Section 3.2.

Our contribution to the second layer is using different algorithms as combiner methods, which is explained in

Section 3.3.

3.2. Model generation

In our approach, we used logistic regression and the training dataset as inputs to the first layer. The modified

“model generation” consists of two steps:

• Random feature selection and training,

• Selecting the best 10 models.

In the first step, random subdatasets were not drawn by rows but by features. In the original paper on

random forests [20], which is an ensemble algorithm, the author emphasized that a random forest creates the

best results when it is used with random feature selection. There are also various papers that investigated the

power of random feature selection in ensemble methods. Bryll et al. [21] showed that using random feature

selection for ensemble classifiers overperforms and mentioned that using random feature selection helps to create

noncorrelated models, and those noncorrelated models help to improve the performance of the ensemble method.

Skurichina et al. [22] mentioned that while combining multiple feature subsets, random feature selection may

be preferred as it may provide more successful results in obtaining independent feature subsets. In our study,

we selected n/2 features, where n equals the number of features, in each draw and generated 100 subdatasets,

which led to 100 models.

The second step reduces 100 models to 10 models. The best 10 models are selected according to the

three evaluation methods of accuracy, information gain, and recall; the higher the value, the better the model

is. The formula of each metric is given in this section and the details of the formulas are explained by using a

confusion matrix template.

Using 100 and 10 as the parameters is a common practice in ensemble implementations. For example,

the random forest’s default ‘number of estimators’ parameter is 10 and xgboost’s default ‘number of estimators’

is 100 in a widely used Python library called scikit-learn [23].

A confusion matrix is used to show the performance of the model by providing how it performs per label.

Table 1 shows the structure of a confusion matrix, which is used to show the performance of our approach.

The sum of each row contains the actual corresponding labeled data. As an example, the sum of X00 , X01 ,

X02 , X03 , and X04 equals the total number of actual normal labeled data, and X00 shows the number of data

labeled correctly by the model.

Evaluation metrics to select models are as follows:

Accuracy: While using accuracy as an evaluation method for selecting the 10 best models, each model’s

accuracy is calculated and then the 10 highest scores are selected for the next step. The accuracy is calculated

using Eq. (1) [4] by dividing the total number of correctly classified samples by the total number of samples.

Although accuracy is a widely used metric, it can misguide the researcher when the data are unbalanced.

As an example, let us assume there are two classes (class a and class b) and 90 of them belong to class a and 10
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Table 1. An example of a confusion matrix.

Predicted

Normal Probe DoS U2R R2L

Actual

Normal X00 X01 X02 X03 X04

Probe X10 X11 X12 X13 X14

DoS X20 X21 X22 X23 X24

U2R X30 X31 X32 X33 X34

R2L X40 X41 X42 X43 X44

of them belong to class b. If the model predicts all of them as class a, the accuracy score will be 90% although

it detects none of the data labeled as class b.

accuracy =
x00 + x11 + x22 + x33 + x44∑

(X)
(1)

Information gain: As in accuracy calculation, information gain of each model is calculated and the 10 best

scores are chosen. Information gain is calculated using Eq. (4) [4] by the difference between two entropies. In

our case the first entropy is always 1, because 1 is the default value in the initial state. Eq. (2) shows how

entropy is calculated for a binary class, and in a binary class problem a class has value 0 or 1; as an example,

in this formula, p (y = 0) denotes the probability of the classes where the value is equal to 0. Eq. (2) can

be generalized as seen in Eq. (3), and p (yi) denotes the probability of each class. Eq. (4) shows the final

calculation of information gain for our study and the main idea of this formula is to find the information gain

after predictions. In this formula ypredictions denotes all unique labels in the predicted data, yp denotes each

unique value in ypredictions , y denotes all original labels, and y∨ yp denotes the value of y where the predicted

label is equal to yp . Information gain is a well-known technique used in algorithms such as decision trees and

the goal of using information gain in this algorithm is to find out which feature contains more information about

the result. In our study, we use information gain to select the best models, which affects the results.

Entropy = −p (c = 0) ∗ log2 (p (c = 0))− p (c = 1) ∗ log2 (p (c = 1)) (2)

E (Y ) = −
∑n

i=1
p (yi) log2p (yi) (3)

InformationGain = 1−
∑

yp∈vals(ypredictions)
p (yp)Entropy (y ∨ yp) (4)

Recall (true positive rate) mean: Recall mean, also known as true positive rate mean, is calculated as

the mean of the recall value for each label (Probe, DoS, U2R, R2L). In the second step, as in the previous

evaluation methods, the 10 best scores are chosen. Recall mean formula is calculated using Eq. (5) and the

formula for each label is calculated using Eqs. (6)–(10) [4]. Recall is calculated by dividing the number of

correctly classified samples by the number of true labeled samples in the original dataset. The main reason for

using recall as a model selection criterion is that it allows us to understand how a model performs in terms of

detecting a certain type of attack. We have five different labels (four types of attack traffic and one label as the

normal traffic) and we use averaging to get an insight of how a model does well to detect these labels. Another
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option could be precision, but recall helps us to understand if the model generalization is working or not, while

precision allows us to understand if an attack is a real attack. For example, if a model detects only one attack

and it is a real attack, the precision will be 100% but the generalization will be very poor.

recallmean =
(recallnormal + recallprobe + recalldos + recallu2r + recallr2l)

5
(5)

recallnormal =
X00∑
x0i

(6)

recallprobe =
X11∑
x1i

(7)

recalldos =
X22∑
x2i

(8)

recallu2r =
X33∑
x3i

(9)

recallr2l =
X44∑
x4i

(10)

3.3. Combiner method

In our study, we used three different classification algorithms as combiner methods. These are logistic regression,

decision tree, and näıve Bayes algorithms.

Logistic regression: Logistic regression (also known as logit regression) is a regression model where the

outcome is a categorical variable. Logistic regression is used to estimate the probability of the outcome based

on the features given. Although there is a history of logistic regression with one feature, David Cox, with his

studies [24], is known as the founder of logistic regression.

Logistic regression measures the relationship between the input variables and the outcome by estimating

probabilities. We can define logistic regression as shown in Eq. (11), which finds the probability of Y by given

X.
P (Y = 1 |X = x) (11)

The main idea behind logistic regression is to use the linear regression, where the equation P of linear regression

is shown in Eq. (12).

w1x1 + w2x2 + ... =
∑

wixi (12)

Logit transformation is used to convert linear regression to logistic regression using Eq. (13) and solving for P

gives Eq. (14) [4].

log
P (x)

1− P (x)
(13)

P =
e
∑

wixi

1 + e
∑

wixi
=

1

1 + e−
∑

wixi
(14)
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Decision tree: Decision tree learning is a method where a learned tree can be represented as if-then

rules, which allows it to be interpreted easily, and that is the main reason for decision trees to be used widely.

A decision tree is composed of a set of nodes, where each node contains a rule for an attribute. To classify an

instance, starting from the root node, the instance is tested against the rule of that node by moving down the

tree branch according to the rule. This is repeated for each subtree until the leaf nodes. Each leaf is labeled as

the class that represents the best or it may contain the probability of the target class.

Decision trees have several advantages. Decision trees are nonparametric, which means that no assump-

tion is needed for the distribution of the data. They can find nonlinear relations between features and labels

(classes) and also work fine when there are missing values. Finally, they can handle both numeric and categor-

ical inputs [25]. Decision trees are easily interpreted, but complexity plays an important role according to [26]

for the accuracy of decision trees. Tree complexity is determined by the stopping criteria. The complexity of a

tree is expressed in terms of total number of leaves, the total number of nodes, and tree depth.

There are various algorithms to create decision trees such as Iterative Dichotomiser 3 (ID3) [27], C4.5

[27], and classification and regression trees (CART) [26]. ID3 is a simple algorithm and the splitting criterion

for ID3 is information gain. The growth of the tree continues while information gain is greater than zero or

when all of the instances are in the same class. ID3 cannot handle numeric values or missing values. C4.5 is the

successor of ID3 from the same creator of ID3. The growth of the tree stops when the number of instances to

be split is below a predefined threshold. Besides handling categorical values, C4.5 can handle numeric values.

CART is similar to C4.5, but also accepts numerical values as a target, which means that it can also produce

regression trees in addition to classification trees. In this study, we used the CART algorithm for building

decision trees.

Näıve Bayes: Bayes’ theorem is used to find the probability of an event where conditions related to

that event are used as the input. Näıve Bayes is a classification algorithm that is based on Bayes’ theorem with

independence assumptions between features of the instances. It may seem that assuming independence between

features is a bad idea, but näıve Bayes often performs well.

Given a class variable y and an instance X, where X = x1x2 and xi is a feature of the instance, Bayes’

theorem states the relationship shown in Eq. (15).

P (y |X) =
P (X | y)P (y)

P (X)
(15)

The näıve Bayes classifier assumes that features are independent of each other, as shown in Eq. (16).

P (X | y) =
∏

P (X | y, x1, ..., xi−1, xi+1, ...) (16)

We can rewrite the Bayes’ theorem with independence assumption as the equation shown in Eq. (17).

P (y |X) =
P (y)

∏n
i=1 P (xi | y)
P (X)

(17)

Since P (X) is constant, we can simplify the equation as shown in Eq. (18) [4].

P (y |X) ≈ P (y)
∏n

i=1
P (xi | y) (18)

By using Eq. (18), we calculate the probability of each y class and we can say that the class of the instance is

the class of y that has the maximum value.
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4. Experiments

In this study, we used a stacking ensemble approach by using different base classification algorithms as stacking

algorithm. In this section, we will describe the dataset, which is known as the KDD’99 dataset. After describing

the dataset, we will describe the steps of the experiments. Finally, we will describe evaluation metrics.

4.1. The dataset

We used the KDD’99 dataset, which is widely used in network intrusion detection studies. The KDD’99 dataset

was used for the 3rd International Knowledge Discovery and Data Mining Tools Competition. The competitors

were given a task and the task was to build a network intrusion detection system. This dataset was acquired

from the 1998 Defense Advanced Research Projects Agency (DARPA) intrusion detection evaluation program.

DARPA set up an environment to collect raw TCP/IP data for a local area network (LAN) that simulates a

typical US Air Force LAN, and that LAN was operated as if it was a true environment and was blasted with

multiple attacks.

The attacks in this dataset are divided into 4 different categories:

• Probe: The goal of the attacker is to get information about the target host.

• Denial of Service (DoS): The goal of the attacker is to prevent normal users from using a service. This

can be accomplished by two methods:

◦ Keeping the resources of the target host busy by launching excessive numbers of normal communication

transactions, which is a widely used method;

◦ Exploiting the services.

• User to Root (U2R): Attackers can access the target machine with the goal of gaining root privileges.

• Remote to Local (R2L): Attackers cannot access the target host and their goal is to access it.

In 1999, the DARPA dataset was revised to create the KDD’99 dataset that contains 265 units of

summarized information of TCP connections, not TCP dumps. Each connection is summarized with 41 features,

which can be grouped in 4 categories:

• Basic features: Basic features are extracted from headers and it is not necessary to investigate the payload.

• Content features: Content features are extracted from payload and domain knowledge is needed to extract

features.

• Time-based traffic features: These features are computed features over a 2-s temporal window. For

example, error rate is a time-based traffic feature, which describes the percentage of connections having

SYN errors.

• Host-based traffic features: These features are computed features over a 100-connections temporal window.

Some probing attacks scan the hosts where computing these features gives insight.

The KDD’99 dataset consists of three components as seen in Table 2 and all these components are

extracted from the same source. In the International Knowledge Discovery and Data Mining Tools Competition

’99, only 10% of the KDD, which contains 22 attack types, was used for training, as in our study. The corrected

KDD dataset contains different statistical distributions for attacks and also contains 14 additional attacks. We
used the corrected KDD dataset for testing purposes.
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Table 2. Components of KDD’99.

Dataset Probe DoS U2R R2L Normal

10% of KDD 4107 391,458 52 1126 97,277

Corrected KDD 4166 229,853 70 16,347 60,593

Whole KDD 41,102 3,883,370 52 1126 972,780

4.2. The steps of the experiment

In this study, we conducted 13 different experiments by using 4 main methods. In the first method, we did not

use any stacking and used logistic regression for classification of data, which is compared against other methods.

The other three methods share three common steps, but in the last step, each method uses a different algorithm

as a combiner method. The following steps are the shared common steps among the three methods:

• using logistic regression to generate models,

• selecting models by using 4 different methods,

• using a combiner method.

The model selection methods used in the second step and the algorithms used by each method have been

discussed in Section 3.2.

In our study, we did not create a new set of models in each experiment and used all 100 models in all

experiments. In other words, we created 100 models once and used them again and again in each experiment.

These 100 models were reduced to 10 models in each experiment by using one selection method at a time. This

gave us the chance to understand how the combiner and selection methods perform.

We conducted 13 experiments. In the first experiment, we used logistic regression without stacking. For

the rest of the experiments, we used three different combination algorithms and four different model selection

methods for each combination algorithm, which results in 12 experiments. The details of each experiment can

be found in Table 3 where the results are reported.

We implemented this experiment with the Python programming language and used the scikit-learn

machine learning library [23] on Ubuntu Linux OS. The scikit-machine learning library is a widely used library for

academic and commercial purposes. It contains implementations for both supervised learning (classification and

regression) and unsupervised learning (clustering) algorithms. It allows developers to use a common interface

for all algorithms, which makes it easier to use and develop prototypes quickly.

4.3. Experimental results

We evaluated each experiment with six metrics, which led to 78 results. The evaluation metrics are listed below:

• tp normal: True positive percentage of normal labeled data,

• tp probe: True positive percentage of probe labeled data,

• tp dos: True positive percentage of DoS labeled data,

• tp u2r: True positive percentage of U2R labeled data,

• tp r2l: True positive percentage of R2L labeled data,

• accuracy: Accuracy of the experiment.

The formula of each metric is the same as described in Section 3.2.
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Table 3. Results of the experiments.

Combiner/stacking Model selection Exp. tp normal tp probe tp dos tp u2r tp r2l Accuracy

algorithm method # % % % % % %

Logistic regression
- 1 98.1 68.7 82.8 8.6 5.6 81.53

(no stacking)

Logistic regression

all 2 98.3 83.5 97.3 12.9 5.2 92.43

accuracy score 3 98.4 72.9 97.3 8.6 5.6 92.33

information gain 4 98.4 73.7 97.3 7.1 5.6 92.36

recall mean 5 98.2 72.3 97.3 8.6 5.6 92.31

Decision tree

all 6 99.4 77.0 97.3 14.3 2.5 92.47

accuracy score 7 99.0 73.7 97.3 7.1 5.6 92.46

information gain 8 99.0 78.3 97.3 8.6 5.7 92.55

recall mean 9 99.0 75.2 97.3 18.6 5.5 92.46

Näıve Bayes

all 10 97.3 78.9 93.2 47.1 6.0 89.19

accuracy score 11 97.9 80.2 97.2 30.0 5.7 92.29

information gain 12 97.9 79.9 97.2 30.0 7.6 92.39

recall mean 13 98.0 79.0 96.7 35.7 5.6 91.90

We also used McNemar’s test to assess the performance of experiments. McNemar’s test [28] is a statistical

test used to compare the two classifiers, where f1 denotes the first classifier and f2 denotes the second classifier.

McNemar’s test is based on the chi-square (χ2) test. Eq. (19) is used to calculate McNemar’s test, where

n01 denotes the number of examples misclassified by f1 and not by f2 , and n10 denotes number of examples

misclassified by f2 and not by f1 . If χ
2 is more than 3.841459, we can see that the P-value is less than 0.05 in

the chi-square distribution table and conclude that these two classifiers have different performances.

χ2 =
(n01 − n10 ∨ −1)

2

n01 + n10
(19)

We provide the results in Table 3 and compare the results with other studies in Table 4. We also provide four

bar plots (Figures 3–6) to show the results of true positive rates of attacks (probe, dos, U2R, and R2L) in

experiments.

Table 4. Comparison of the results.

Study
Normal Probe DoS U2R R2L Accuracy

Training data Testing data
(%) (%) (%) (%) (%) (%)

[13] 98.2 84.1 99.5 14.1 31.5 N/A 10% of KDD Corrected KDD

[28] 99.5 73.2 96.9 6.6 10.7 92.59 Whole KDD Corrected KDD

[29] 92.4 72.8 96.5 22.9 11.3 N/A 10% of KDD Corrected KDD

[30] 99.5 83.3 97.1 13.2 8.4 93.3 Whole KDD Corrected KDD

[31] 98.55 80.9 99.6 16.2 31.6 95.71 10% of KDD Corrected KDD

Our approach 99.4 83.5 97.3 47.1 7.6 92.55 10% of KDD Corrected KDD
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Figure 3. Bar plot of tp probe values from experimental

results.

Figure 4. Bar plot of tp dos values from experimental

results.
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Figure 5. Bar plot of tp u2r values from experimental

results.

Figure 6. Bar plot of tp r2l values from experimental

results.

5. Discussion

In Table 3, the results of all experiments are given. The table contains the results of 13 experiments and

each experiment is evaluated by six different metrics. As seen in Table 3, the tp normal metric provides the

highest value when the decision tree is used as the combiner algorithm with all models (experiment #6), and

the tp probe metric provides the highest value when logistic regression is used as a combiner algorithm with

all models (experiment #2). Tables 5 and 6 show the confusion matrix of experiment #6 and experiment

#2, respectively. The highest value of tp dos is 97.3% and this is achieved in more than one experiment;

for example, using logistic regression and the decision tree as the combiner algorithm, regardless of the model

selection method, provides the value of 97.3%. The tp u2r metric provides the highest value of 47.1% when

näıve Bayes is used as the combiner algorithm with all models (experiment #10). The confusion matrix of

experiment #10 is shown in Table 7. One conclusion to mention for tp u2r is the high difference between

the first and the second best values compared to other metrics. The tp r2l metric provides the highest value

when näıve Bayes is used as the combiner algorithm with the information gain-based model selection method

(experiment #12). The confusion matrix of experiment #12 is shown in Table 8.

We see the best results of tp r2l and tp u2r when näıve Bayes is used as the combiner method. Näıve

Bayes assumes that each feature in a dataset is independent. When näıve Bayes is used as the combiner method,

the output of each model in the first layer is used and we know that each model is built independently. As seen

in Table 2, the number of R2L and U2R attacks in the dataset is the lowest and an algorithm that less tends

to overfit may provide better results for an unbalanced dataset. Naive Bayes tends to overfit less than other

classification algorithms because it does not converge at all; rather, it learns its parameters by calculating.
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Table 5. Confusion matrix of experiment #6.

Predicted

Normal Probe DoS U2R R2L

Actual

Normal 60,255 244 97 1 16

Probe 779 3208 167 0 12

DoS 5783 227 223,721 0 122

U2R 48 1 2 10 9

R2L 15,909 17 11 8 402

Table 6. Confusion matrix of experiment #2.

Predicted

Normal Probe DoS U2R R2L

Actual

Normal 59,572 233 778 4 6

Probe 431 3477 257 0 1

DoS 6182 83 223,584 0 4

U2R 48 1 5 9 7

R2L 15,487 6 3 3 848

Table 7. Confusion matrix of experiment #10.

Predicted

Normal Probe DoS U2R R2L

Actual

Normal 58,940 201 692 719 41

Probe 188 3287 107 584 0

DoS 6925 41 214,157 8730 0

U2R 29 0 0 33 8

R2L 14,920 1 1 443 982

Table 8. Confusion matrix of experiment #12.

Predicted

Normal Probe DoS U2R R2L

Actual

Normal 59,305 208 59 973 48

Probe 449 3330 155 232 0

DoS 6099 25 223,474 255 0

U2R 36 0 4 21 9

R2L 14,840 0 1 265 1241

Experiment #6 provides an outlier for tp r2l, which is 2.5%. The decision tree algorithm tends to overfit

data when the depth of the tree increases. We are using all 100 models for experiment #6 and that is causing

the tree to create more subtrees and increase the depth compared to experiments #7–9. Since the number of

tp r2l is smaller than other labeled data and the decision tree tends to overfit, tp r2l is disadvantaged in this

situation.

430
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In Table 4, the results of our approach are compared to other studies and this table also shows which

study uses which component of the KDD dataset for training and testing purposes. In this table, we used

the studies that provided detection rates for each label for comparison. Toosi and Kahani [13] constructed a

custom ensemble that uses a genetic algorithm and fuzzy algorithm. Compared to Toosi and Kahani’s study,

our ensemble technique that combines all generated models with näıve Bayes provides a better detection rate

for U2R, but not for others. Agarwal and Joshi [29] introduced a rule-based framework, Kayacik et al. [30]

introduced a self-organizing map (SOM)-based technique, and Pfahringer [31] explained the technique, which

was the winner of KDD’99, that used a bagged boosting ensemble technique. Our study provides better accuracy

results for all types of attacks compared to [27–29]. Al-Yaseen et al. [32] used a modified k-means technique

and our study provides better detection rates for U2R and probes compared to [32].

6. Conclusion

In this study, we provided the results for 12 different stacking implementations. Each stacking implementation

provided a different strength in different attack types. In real-world applications, this study should be used as

the second layer of a network intrusion detection system. The first layer detects the type of the attack and then

triggers our best approach for the detected attack type. For example, if a network intrusion detection system

detects that there is a probe attack, it can trigger our best approach to find which connections are the malicious

traffic and then can block those connections. If the first layer of this approach misses the attack, the first layer

should be investigated further. If the first layer of this approach misclassifies the attack, the first layer will

use one of the best results mentioned in this paper, which are from experiments #2, #10, and #12; this will

lead to the average success rates of 79.4%, 95.2%, 21.45%, and 5.6% for probe, DoS, U2R, and R2L attacks,

respectively.

We also applied McNemar’s test [28] to assess the performance of experiments compared to experiment

#1. We assessed experiment #2 for tp probe and tp dos, experiment #10 for tp u2r, and experiment #12 for

tp r2l. We found P < 0.05 for all these experiments, which indicates that those experiments yield statistically

significant results when compared to experiment #1.

In this study, we modified the stacking technique to select the best models that were combined by using

a combiner method. We used 3 different combiner methods and 13 different experiments. As seen in Table 3,

using the stacking technique is always better than using pure logistic regression according to tp probe, tp dos,

tp u2r, tp r2l, and accuracy metrics. Selecting only the best models instead of using all models as input

for combiner methods mostly performs better when using the decision tree and näıve Bayes for the combiner

method if we evaluate accuracy as the performance metric. Detection of U2R and R2L attacks is achieved well

when using näıve Bayes as the combiner method. In future work, more techniques will be tested and the best

models will be selected automatically. As another future work, this study can be improved by using statistical

justification of selecting the number of models instead of fixing it as 10.
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