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Abstract: This paper deals with the global asymptotic stability (GAS) of certain nonlinear RLC circuit systems using

the direct Lyapunov method. For each system a suitable Lyapunov function or energy-like function is constructed and

the direct Lyapunov method is applied to the related system. Then the invariant equilibrium point of each system that

makes the system solution to the global asymptotic stable is determined. Some new explicit GAS conditions of certain

nonlinear RLC circuit systems are derived by Lyapunov’s direct method. The presented simulations are compatible with

the new results. The results are given with proofs.
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1. Introduction

Lyapunov’s direct method is still one of the most efficient ways to study asymptotic behavior of dynamical

systems [1]. For a concise survey of Lyapunov stability, the reader is referred to various books [2–5], papers [1,6],

and the references therein. In this paper, the method has been applied to certain nonlinear RLC circuit systems

that are closely related to nonlinear oscillation [7], electronic theory (the differential equation of self-excited

oscillation of an electronic triode [8]), and Lienard and Van der Pol equations. One can find some beautiful works

in the literature discussing the stability (instability) behavior of circuit systems, such as Lyapunov stability for

nonlinear descriptor systems [9], the global qualitative behavior of the double scroll system [10], chaos in the

Colpitts oscillator due to positive Lyapunov exponents [11], unstable behavior of Hartley’s oscillator because of

the positive real parts of the eigenvalues of the Jacobian matrix of the system [12], and the global asymptotic

stability (GAS) of the synchronization of Vilnius chaotic systems (using active and passive controls) determined

by Lyapunov’s direct method [13]. Moreover, some recent works have been done on the various behaviors

of nonlinear RLC circuit systems: the existence of solutions [14], implicit solutions [15], power shaping [16],

passivity and power-balance inequalities [17], and so on.

The main tool for tackling these systems will be the well-known direct method of Lyapunov. This method

yields stability information directly, i.e., without solving differential equations [18]. In this regard, the most

complete contribution to the stability analysis of dynamical systems was introduced by Lyapunov. Further

authors [5,19,20] then emphasized the basic ideas of Lyapunov’s functions as “energy-like functions”, which

empowered the method and made Lyapunov’s functions more understandable for real applications. Furthermore,

the Barbashin–Krasovskii–LaSalle invariance principle [20] states that the function’s derivative along the related
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system vanishes. This implies that the system’s invariant equilibrium points are globally asymptotically stable.

This study also includes the application of the principle.

In view of the above explanation, we first obtain the systems from the related circuits and then investigate

the GAS properties of the solutions.

2. Preliminaries

Before introducing our main results, we give some basic statements whose usage will guide us in the remainder

of the paper.

Consider the nonlinear dynamical system

x′ (t) = f (x (t)) , (1)

where x (t) ∈ D ⊆ Rn , D is an open set with ∈ D , f : D → Rn continuous on D , and t ∈ [0,∞). Let

f (0) = 0 and f (x) ̸= 0 for x ̸= 0.

Definition Consider the system of Eq. (1) with a point xe ∈ D that is said to be an equilibrium point of Eq.

(1) at time te ∈ [0,∞) if f (xe) = 0.

Theorem 1 Consider the nonlinear dynamical system of Eq. (1) and assume that there exists a continuously

differentiable function V : Rn → R such that:

(i) V (0) = 0,

(ii) V (x) > 0, x ∈ Rn, x ̸= 0,

(iii) V ′ (x) f (x) ≤ 0, x ∈ Rn

(iv) V (x) → ∞ as ∥x∥ → ∞ .

Furthermore, assume that the set S = {x ∈ Rn : V ′ (x) f (x) = 0} contains no invariant set other than

the set {0} . Then the zero solutionx (t) ≡ 0 to Eq. (1) is globally asymptotically stable.

Proof See [20].

Investigating the GAS properties of the zero solutions of the systems to the following RLC circuit systems

is the main purpose of this paper. 2

3. Main results

We shall be concerned here with the following circuits:

The circuit given in Figure 1 is supplied by is (t) and constructed with a linear resistor R , a linear

capacitor C , and a nonlinear inductor L . The inductor current is given by iL = I0sin(kΦL (t)), where ΦL is

the magnetic flux, and I0 and k are constant numbers.

Theorem 2 Assume that ΦL and vC are the state variables of the circuit given in Figure 1, such that

(ΦL, vC) = (ΦL, 0) are the equilibrium points of the system, when is (t) = I0sin(kΦL (t)), for t ≥ 0, and

ΦL (t) ̸=
(
1 + 2n

2k

)
π, n = 0,±1,±2, . . . .

Then the origin (0, 0) of the system is globally asymptotically stable.
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Figure 1. RLC circuit with nonlinear inductor.

Proof From Figure 1, and LdiL
dt = vC = 1

C q , we get the system

ΦL
′ = vC

kLI0cos(kΦL) ,

vC
′ = 1

C

(
is (t)− I0sin(kΦL)− kLI0cos(kΦL)ΦL

′

R

)
.

(2)

Since dW
dt = P = iv , let the total energy function of Figure 1 or the Lyapunov function be

W (t) = V (t) =
1

2
Li2L +

1

2C
q2 +

1

R

∫ t

0

v2c (s) ds,

V = V (ΦL, vC) =
1

2
LI20sin

2(kΦL) +
1

2
Cv2c (t) +

1

R

∫ t

0

v2c (s) ds.

Taking the time derivative of V along the trajectory of Eq. (2), we obtain

V ′ = kLI20sin (kΦL) cos (kΦL)ΦL
′ + CvCvC

′ +
1

R
v2c .

Then an elementary computation yields

V ′ = isvC .

The equilibrium points(ΦL, vC) = (ΦL, 0) of the system of Eq. (2) yield

V ′ = 0.

Thus,V ′ (ΦL, 0) = 0 at all points (ΦL, 0) ∈ R2 and V (ΦL, vC) → ∞ as Φ2
L+v2C → ∞ . Hence, all the solutions

of Eq. (2) are bounded as t → ∞ . Moreover, S is the set of all points on the ΦL -axis. Clearly, (0, 0) is the

only invariant subset of S . The application of Theorem 2 shows that (0, 0) of Eq. (2) is globally asymptotically

stable. This explanation implies Figure 2. 2

Theorem 3 Assume that the charge on the nonlinear capacitor of the circuit given in Figure 3 is G (q) such

that:

(i) G (0) = 0, G (q) > 0, q ̸= 0,

(ii) F ′ (0) = 0, F ′ (I) > 0, I ̸= 0.
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Figure 2. a) Phase plane plot of the system of Eq. (2); b) solution of the system of Eq. (2) (k = I0 = 1, L = 1H,R =

1Ω, C = 1F, is = 1mA, t ∈ [0, 30]) .
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Figure 3. RLC circuit with nonlinear resistive element.

Then the zero solution of the Lienard equation that will be derived from the circuit of Figure 3 is globally

asymptotically stable.

Proof From the circuit given in Figure 3, we have

LI ′ + F (I) +
1

C
G (q) = 0. (3)

Taking the time derivative of Eq. (3) yields the following:

I ′′ + f (I) I ′ + g (I) = 0,

where

f (I) =
1

L
F ′ (I) ,

and

g (I) =
1

LC
G′ (q) I.

Let

x = I.
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Then we have

x′′ + f (x)x′ + g (x) = 0.

From Figure 3, we obtain the Lienard equation, and it is equivalent to the following system:

x′ = y,
y′ = −f (x) y − g (x) .

(4)

Hence, the origin (x, y) = (0, 0) is the only equilibrium point of Eq. (4).

For Eq. (4), we can construct a Lyapunov function:

V (x, y) =
1

2
y2 +G (x) =

1

2
y2 +

∫ x

0

g (s)ds. (5)

Taking the time derivative of Eq. (5) along the trajectory of Eq. (4), we have

V ′ = −f (x) y2 ≤ 0.

Thus, V ′ (x, y) ≤ 0 at all points (x, y) ∈ R2 and V (x, y) → ∞ as x2 + y2 → ∞ . Hence, all the solutions of

Eq. (4) are bounded as t → ∞ . The set S where V ′ = 0 is either the x-axis or the union of the x-axis and

the y -axis (if f (0) = 0). Clearly, (0, 0) is the only invariant subset of S . Thus, the application of Theorem 3

shows that (0, 0) of Eq. (4) is globally asymptotically stable. This explanation is compatible with Figure 4.
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Figure 4. a) Phase plane plot of the system of Eq. (4); b) solution of the system of (4) (f (x) = 0.5
(
1− x2

)
, g (x) =

x, t ∈ [0, 20]) .

The state variables x and y of the circuit given in Figure 5 are

x =
C1v1 + C2v2
C1 + C2

,

y = v2.

2
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Figure 5. RLC circuit with nonlinear dependent voltage source.

Theorem 4 The zero solution x (t) ≡ 0 to the system with respect to the state variables x and y is globally

asymptotically stable if:

(i) g (0) = 0,

(ii) 3v22 ≤ v2g (v2).

Proof From Figure 5 and the state variablesx and y , we have the following system:

x′ = 1
R2(C1+C2)

y

y′ = − C1+C2

R1C1C2
x+

(
1

R1C1
+ 1

R1C2
+ 1

R2C2

)
y − 1

R1C2
g (y)

.

Let C1 = C2 = C and R1 = R2 = R ; then we have

x′ = 1
2RC y,

y′ = 1
RC [−2x+ 3y − g (y)] .

(6)

Hence, the origin (x, y) = (0, 0) is the only equilibrium point of Eq. (6). 2

Now consider the function V = V (x, y) defined by:

V (x, y) = 2x2 +
1

2
y2. (7)

It is clear that
V (0, 0) = 0, (8)

and V (x, y) ≥ 0, for all

(x, y) ∈ R2. (9)

Eqs. (8) and (9) imply that V is a positive definite function.

Taking the time derivative of Eq. (7) along the trajectory of Eq. (6) and using (ii), we obtain

V ′ = 3y2 − yg (y) ≤ 0.

Thus,V ′ (x, y) ≤ 0 at all points (x, y) ∈ R2 and V (x, y) → ∞ as x2 + y2 → ∞ . Hence, all the solutions of Eq.

(6) are bounded as t → ∞ . Moreover, S is the set of all points on the x-axis because V ′ (x, 0) = 0. Clearly,

(0, 0) is the only invariant subset of S . Thus, the application of Theorem 4 shows that (0, 0) of Eq. (6) is

globally asymptotically stable. This explanation implies Figure 6.
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Figure 6. a) Phase plane plot of the system of Eq. (6); b) solution of the system of Eq. (6) (R = 50Ω, C = 5F,

g (y)= 10y, t ∈ [0, 20]) .

4. Conclusion

As we have seen in the works mentioned earlier, the problem of stability analysis of systems is still one of the

most burning problems of control theory, because of the absence of its complete solution.

This work is an elementary and excellent account of Lyapunov’s direct method on the GAS properties of

certain nonlinear RLC circuit systems. The reader can learn some essentials of Lyapunov’s direct method as well

as how efficient it can be. Readers will find in the paper some interesting comments, instructive interpretations,

and the application of Lyapunov’s direct method to the Lienard equation. The previous studies and this work

imply that study of the stability behavior of solutions of nonlinear oscillation is especially fruitful. In this

direction some good works can be done on the stability properties of nonlinear circuit systems by Lyapunov’s

direct method in the future.
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[13] Kocamaz UE, Uyaroğlu Y. Synchronization of Vilnius chaotic oscillators with active and passive control. J Circuit

Syst Comp 2014; 23: 1-17.

[14] Battelli F, Feckan M. On the existence of solutions connecting singularities in nonlinear RLC circuits. Nonlinear

Anal-Theor 2015; 116: 26-36.

[15] Battelli F, Feckan M. Nonlinear RLC circuits and implicit ODEs. Differ Integral Equ 2014; 27: 671-690.

[16] Ortega R, Jeltsema D, Scherpen JMA. Power shaping: a new paradigm for stabilization of nonlinear RLC circuits.

New directions on nonlinear control. IEEE T Automat Contr 2003; 48: 1762-1767.

[17] Jeltsema D, Ortega R, Scherpen JMA. On passivity and power-balance inequalities of nonlinear RLC circuits. IEEE

T Circuits S-I 2003; 50: 1174-1179.

[18] Rao MRM. Ordinary Differential Equations Theory and Applications. London, UK: Edward Arnold Ltd., 1981.

[19] Khalil HK. Nonlinear Control. Harlow, UK: Pearson Education Ltd., 2015.

[20] Haddad WM, Chellaboina V. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton,

NJ, USA: Princeton University Press, 2008.

441

http://dx.doi.org/10.1109/TCSI.2012.2215396
http://dx.doi.org/10.1109/TCSI.2012.2215396
http://dx.doi.org/10.1109/81.331536
http://dx.doi.org/10.1016/j.chaos.2011.12.017
http://dx.doi.org/10.1016/j.chaos.2011.12.017
http://dx.doi.org/10.1016/j.na.2014.12.015
http://dx.doi.org/10.1016/j.na.2014.12.015
http://dx.doi.org/10.1109/TAC.2003.817918
http://dx.doi.org/10.1109/TAC.2003.817918
http://dx.doi.org/10.1109/TCSI.2003.816332
http://dx.doi.org/10.1109/TCSI.2003.816332

	Introduction
	Preliminaries
	Main results
	Conclusion

