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Abstract: In this paper, a novel multistage scheme for pectoral muscle removal from mammography images is proposed,

and the performance of this system is verified using the publicly available Mammographic Image Analysis Society

digital mammogram database. This database is composed of mediolateral oblique mammography images including three

different tissue types (fatty, fatty-glandular, and dense-glandular) with three health status types (normal, benign cancer,

and malignant cancer). In the implementation of the proposed system, a mammography image is first preprocessed

by performing noise reduction background removal followed by artifact suppression processes. Then a presegmentation

procedure is applied using region growing and line fitting is executed. Finally, pixels including pectoral muscle regions

are removed from mammography images with an accuracy of 94.40%, sensitivity of 89.62%, and specificity of 99.99%

after some postprocessing operations. Although the mean false positive rate obtained by the proposed approach is higher

than that of other studies in the literature, not only the lower mean false negative rate but also the enhancement in the

quality of pectoral muscle segmentation for all 322 images in the database evidently show the success of the proposed

approach.
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1. Introduction

Computer-aided diagnosis (CAD) systems for mammography technology act as a second set of eyes to radiol-

ogists for breast cancer detection. The sensitivity of a CAD system is directly affected by suspicious region

detection (SRD). In mediolateral oblique (MLO) view mammography images, the presence of pectoral muscles

generates an obstacle for SRD since abnormal tissues have intensity characteristics similar to those of pectoral

muscles. Hence, a pectoral muscle removal process is surely essential for any CAD systems prior to SRD.

In this paper, a novel multistage scheme for pectoral muscle removal from mammography images is

proposed. The publicly available Mammographic Image Analysis Society (MIAS) digital mammogram database

is used to verify the performance of the proposed method. Noise reduction, background removal, and artifact

suppression are implemented, consecutively, in preprocessing. This stage is followed by the presegmentation

stage, where an algorithm for the region growing method (RGM) is proposed and line fitting is executed. Some

postprocessing operations are introduced and applied as a subsequent stage to reduce the false positives of
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IŞIKLI ESENER et al./Turk J Elec Eng & Comp Sci

the results. Finally, the segmented pectoral muscles are removed and mammography images without pectoral

muscles are obtained in the last stage.

This paper is organized as follows: a literature overview on pectoral muscle detection is given in the

following section. In Section 3, the proposed system for pectoral muscle detection and removal is explicated.

The details of the database used in this study and the performance metric employed for the performance

evaluation is explained in Section 4. In Section 5, the obtained results, some elaborative comparisons with

similar studies in the literature, and detailed discussions are given. The main conclusions are presented in the

last section.

2. Related work

Studies on pectoral muscle removal process in the literature generally focus on two different aspects: intensity-

based and wavelet-based approaches. These approaches are categorized under three main titles: line detection

methods, statistical methods, and other methods [1]. Intensity-based approaches are based on the fact that

the intensity range of a pectoral muscle region should be higher than the range of breast parenchyma. These

approaches directly utilize the pixel intensities [2–7], image histograms [8–10], and image gradients [11], or they

are applied to image gradients [12]. Additionally, there are also some studies that segment pectoral muscles in

wavelet domain instead of spatial domain [13–15]. Line-detection methods are also frequently used for pectoral

muscle removal in the literature. These methods are based on the fact that a pectoral muscle lies on an upper

right/left corner of a mammography image and it has a triangular geometry in general. Line-detection methods

aim to determine the hypotenuse of this triangle. For this reason, straight line estimation [4,11,16–21], Hough

transform [14,22], and curve fitting [23] are used. The hypotenuse of the triangle pectoral muscle shows a curved

structure rather than an exact line. Studies that reveal exact lines using dynamic programming also exist in

the literature [16–18,22]. A survey of studies utilizing statistical methods exhibits that graph-based approaches

have recently been used for pectoral muscle removal [24–26]. Li et al. and Liu et al. modeled a pectoral muscle

region as a variable with normal distribution on the basis that a pectoral muscle is more uniform than a breast

parenchyma [27,28]. Liu et al. performed pectoral muscle removal by computing the probability of each pixel to

be in the high-frequency region [27]. Additionally, Liu et al. stated that the variance of pectoral muscle contours

should be high and pectoral muscles were segmented by the variance calculation. In another study, Moayedi

et al. used the logarithm of the pixel energies for pectoral muscle removal [28]. Mean shift segmentation [29],

connected component labeling [30], RGM [31–34], RGM combined with geometric rules [35], and fuzzy c-means

clustering [36] are some examples of other methods used for pectoral muscle removal in the literature.

3. Proposed system

In this study, a multistage scheme for pectoral muscle removal from mammography images is proposed. Pectoral

muscles are the triangle-shaped bright regions lying either on the right or the left top corner in the MLO view

mammography images, as shown in the sample image given in Figure 1.

Since pectoral muscles are brighter than breast parenchyma, intensity-based detection methods are

effectively suitable for pectoral muscle detection. In view of intensity values, the similarities between pectoral

muscle regions and the digitization noise and also the artifacts shown in Figure 1 stand out.

Hence, noise reduction, background removal, and artifact suppression processes are performed on the

mammography images, consecutively, as a preprocessing step. Then an algorithm for RGM is applied to the

preprocessed images for presegmentation of pectoral muscles. Afterwards, some postprocessing operations are
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Figure 1. Sample MLO view mammography image.

implemented on the presegmented pectoral muscles in order to reduce the false positives. Finally, the segmented

pectoral muscles are removed and the mammography images without pectoral muscles are obtained. A flowchart

of the proposed system is shown in Figure 2.

Figure 2. Flowchart of the proposed system.

3.1. Noise reduction

A smoothing filter application is essential for noise reduction, since digitization noise appears as a high-frequency

component in images. However, this implementation may result in the loss of significant details. Therefore,

adaptive filters are more applicable in order to reduce the noise components while preserving edge details that

have essential information in mammography images. The adaptive median filter is a two-level filter that works

in an enlargeable rectangular window of size Sxy and is capable of removing impulse noise, smoothing other

types of noise, and reducing distortion while preserving gross details in an image [37], and it is performed for

noise reduction in this study. The pseudocode of the adaptive median filtering is as follows:

Level A : A1 =zmed − zmin

A2 = zmed − zmax

If A1 > 0 AND A2 < 0, Go to level B

Else increase the window size

f window size ≤ Smax repeat level A

Else output zxy
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Level B : B1 =zxy − zmin

B2 = zxy − zmax

If B1 > 0 AND B2 < 0, output zxy

Else output zmed,

where zxy is the gray level at coordinates (x, y), Smax is the maximum allowed size of Sxy , and zmin, zmax,

and zmed are the minimum gray level, maximum gray level, and median gray levels in Sxy , respectively. The

initial size of Sxy is 3 and Smax is 11 in this study.

3.2. Background removal and artifact suppression

The low- and high-level artifacts shown in Figure 1 are suppressed by applying some morphological operations.

In this sense, the mammography images are converted into their binary images by using Otsu’s No thresholding

technique [38] with No = 2 at first. Then the white areas in each binary image are calculated. Based on the

fact that the breast parenchyma should be larger than artifacts, the largest computed area is determined as

breast parenchyma. Thus, background removal is also realized by cropping the largest area as well as artifact

suppression.

Finally, the pectoral muscle position of each mammography is detected using the method introduced by

Nagi et al. [4] so that all images are rearranged. This method initially computes the sum of the first five and

last five columns of the background-removed binary image. If the sum of the first five columns is greater than

the sum of the last five columns, the method states that the breast profile is right-oriented, or vice versa. By

position rearrangement, all pectoral muscles are located in the top left corner of images. The preprocessing

stages of a sample mammography image are given in Figure 3.

Figure 3. The preprocessing stages of a sample mammography image: (a) Original image, (b) Noise-reduced image,

(c) Binary image, (d) Largest area, (e) Breast parenchyma, (f) Background removed image, (g) Preprocessed image.

3.3. RGM

RGM directly segments an image considering a predefined similarity condition [39]. This method is based on

enlarging segments by combining pixels with similar properties. For this purpose, first, a seed point or a set

of seed points is selected and a similarity metric is defined. Then the selected seed point/set is considered

as the startup region and pixels in the 4/8-neighborhood of each pixel in the region are considered in terms

of the defined similarity condition. The algorithm continues by combining the similarity condition satisfied

neighboring pixels and analyzing the neighborhoods of these pixels until all pixels are examined.

The selection of the initial seed point/set is an important factor affecting the success of the RGM. The

initial seed point/set can be selected randomly in the absence of any prior knowledge on the image. In addition,
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the selection can be accomplished in accordance with information about the intensity, color, size, and location

of a region.

Another issue that affects the success of the method is the definition of similarity condition. The pixel

intensities or the spatial features can be used as the similarity condition in gray-level images. The details of the

RGM can be found in [39].

The initial step of the proposed pectoral muscle removal process is the presegmentation on the prepro-

cessed mammography images by suggesting an algorithm for the RGM. This algorithm starts with a single seed

point and continues by examining the 4-pixel neighborhood in terms of the similarity condition. The similarity

condition is defined as the intensity difference between the intensity of pixel that most recently added to the

region and the average intensity of the region. As long as this difference is smaller than a predefined maximum

difference value, the algorithm continues by combining pixels with the nearest intensity value into the average

intensity of the adjoining region PR . A flowchart of this algorithm is given in Figure 4.

Figure 4. The flowchart of the proposed algorithm for RGM.

The initial seed point is selected considering the facts that a pectoral muscle should lie in the upper left

corner in an image and it has a brighter intensity than breast parenchyma. In consequence of these facts, a

square region SR with a column-quarter size on the upper left corner of the preprocessed mammography image

is removed automatically for the calculation of the threshold T in the similarity condition Q (r, c); and the
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brightest pixel in this region is selected as the initial seed point. This square region of a sample mammography

image is shown in Figure 5.

Figure 5. The square region in a sample mammography image.

The threshold (the predefined maximum difference value) in the similarity condition is calculated as the

ratio of the standard deviation σSR
of the region SR to the maximum value in this region, probable pectoral

muscle region, as given in Eq. (1). In this manner, the pixels with intensities much lower than the standard

deviation of the probable pectoral muscle region are deliberately excluded.

T = floor

(
σSR

max(SR)

)
(1)

The similarity condition Q (r, c) examining for a pixel I (r, c), is formulated as given in Eq. (2). The

termsT ,PR mean , r , and c in the equation indicate the threshold given in Eq. (1), the average intensity

of the adjoining region PR , and row and column coordinates of the pixel in an image I , respectively.

Q(r, c) =

{
1, I(r, c)− PR mean < T

0, otherwise
(2)

The goal of applying the RGM using the above mentioned algorithm to mammography images is to segment

only pectoral muscles, but whole-breast segmentation has also been encountered in some images. One such

image is shown in Figure 6.

Figure 6. Sample of a whole-breast–segmented mammography image.

These whole-breast–segmented mammography images mostly do not have any pectoral muscle region.

Therefore, these images are excluded from the proposed pectoral muscle segmentation procedure. These types

of images are determined automatically by checking an area control value of the largest area of the segmented

image. Analyzing the images in the MIAS database, it is observed that the pectoral muscle region covers a
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maximum of approximately 15% of the breast area. Hence, the area control value is specified as 10,000 pixels

for a 256 × 256 image.

In other cases, for partial-breast–segmented images, the vertices of the triangle shape (points A and B in

Figure 7) are determined and a line is fitted to these points. These vertices are determined as the last nonzero

pixel of the first nonzero column (point A), and the last nonzero pixel of the first nonzero row (point B) in the

image. This scheme is summarized on a sample image in Figure 7.

Figure 7. Sample of a pectoral-muscle–segmented mammography image.

In order to reduce the false positive rate in this proposed scheme, two-stage postprocessing operations are

examined on the over- or undersegmented pectoral muscles. Determination of presegmented pectoral muscles

to be oversegmented or undersegmented is manually realized under an expert radiologist’s consideration. For

the first stage, the presegmented pectoral muscles are converted into binary level using a threshold value of T2 .

It is assumed that a presegmented image has no pectoral muscle if the area of the largest area is more than the

area control value. Otherwise, the process shown in Figure 7 is applied to the presegmented images.

The threshold value T2 for the conversion of an image into its binary level image is computed from the

region SR2 , which is the upper left square region of the presegmented image with a column-quarter size. This

threshold is computed as given in Eq. (3), where N and T are the number of pixels in SR2 and the predefined

maximum difference value given in Eq. (1), respectively.

T2 =


1
N

∑
i=1 SR2(i),

1
N

∑
i=1 SR2(i) ̸= 0

T, 1
N

∑
i=1 SR2(i) = 0

(3)

These images are then binarized assuming self-averages as their threshold values, and the breast contours of the

binarized images are detected by using a 7 × 7 Canny edge detector. Finally, the changes between pectoral

muscles and breast parenchyma are identified according to the derivatives of breast contours and the regions

under these contours. The proposed pectoral muscle removal approach is shown in Figure 8.

4. Experiments

4.1. Dataset

The MIAS digital mammogram database is used for the verification of the designed multistage scheme for

pectoral muscle removal from the mammograms in this study [40]. This database contains left and right whole-

breast films of 161 patients in 322 MLO mammography images with three breast tissue types: 106 fatty, 104

fatty-glandular, and 112 dense-glandular tissue types. Some of the images in the database contain more than

one abnormality for a total of 330 diagnoses: 207 normal, 69 benign cancers, and 54 malignant cancers. The

images are at a resolution of 8 bits/pixel and a size of 1024 × 1024 in “pgm” imaging format.
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Figure 8. The proposed pectoral muscle removal approach.

All mammography images are resized to a size of 256 × 256 using bicubic interpolation, for ease of

operation. Sample images of each type and diagnosis are shown in Figure 9. The rows and columns in the figure

show the diagnoses and the breast tissue types, respectively.

4.2. Performance metrics

In this paper, the area normalized error (ANE) [41] metric is employed for the performance evaluation of

the proposed pectoral muscle removal approach, and the achieved results are compared with those of similar

studies in the literature. The ground truth of pectoral-muscle–removed mammograms is composed by an expert

radiologist manually. The performance metrics (ANE, accuracy, sensitivity, and specificity values) are then

calculated by comparing, pixel-wise, the pectoral-muscle–removed image with the ground truth image.

The ANE analyzes the false positive and false negative rates. False positivity in this study is defined as

labeling a pixel as being in a pectoral muscle region when it is actually not, as shown in Figure 10.
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Figure 9. Sample mammography images from the MIAS

database.

Figure 10. The definition of false positivity.

Conversely, false negativity is when a pixel is actually in a pectoral muscle region, but is detected as a

nonpectoral muscle pixel. The definition of false negativity is illustrated in Figure 11.

Figure 11. The definition of false negativity.

The regions GT, AD, FP, and FN in the figures show the ground truth of a pectoral muscle, algorithm-

defined pectoral muscle, false positives, and false negatives, respectively.

The mathematical representations of mean FP and mean FN rates are given in Eqs. (4) and (5),

respectively.

FPm =
1

A

p∑
i=1

max[0, Balg(i)−Bgro(i)] (4)

FNm =
1

A

p∑
i=1

max[0, Bgro(i)−Balg(i)] (5)
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The terms A , p , Ba lg(i), and Bgro(i) in the equations refer to the area of the reference pectoral muscle, total

number of rows in a pectoral muscle region, the boundary pixel in the ith row of the algorithm defined pectoral

muscle, and the boundary pixel in the ith row of the reference pectoral muscle, respectively.

The accuracy, sensitivity, and specificity values are calculated as given in Eqs. (6)–(8), respectively.

Accuracy =
TP

TP + FP + TN + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

The terms TP , TN , FP , and FN in the equations refer to the total number of true positive, true negative,

false positive, and false negative pixels calculated when the pectoral-muscle–removed images are pixel-wise

registered with the ground truth images, respectively.

5. Results

In this section, the results of the proposed system according to performance metrics that are valid in the

literature are given. Firstly, the RGM using the proposed algorithm shown in Figure 4 is directly applied to

the preprocessed mammography images, and the presegmented pectoral muscles are obtained. Although it

is intended to segment only pectoral muscles, whole-breast segmentation has also been encountered in some

images. In other cases, for partial-breast–segmented images, the line-fitting operation shown in Figure 7 is

performed. Then the area above this line is defined as the pectoral muscle with an accuracy of 52.48% approved

by an expert radiologist.

In some cases where the pixel intensities of the pectoral muscle region are quite similar to the pixel

intensities of breast parenchyma, as shown in Figure 12, the proposed system is not capable of segmenting

pectoral muscles. Hence, it concludes with an incorrect breast segmentation. In order to overcome this problem,

the system equalizes the histogram of images before applying the above process. The success rate for the

segmentations of pectoral muscles is then increased to 63.04%.

Figure 12. Sample of an incorrect breast-segmented mammography image.

In order to reduce the false positive rate in this proposed system, the two-stage post processing operations

mentioned before are performed. The success rate is increased to 74.84% by the first stage of postprocessing,

and the pectoral muscles of 304 images of the MIAS database over 322 images are removed so that an accuracy

rate of 94.40% is accomplished by the second stage postprocessing. Furthermore, sensitivity and specificity

rates are obtained as 89.62% and 99.99% for the proposed system, respectively.
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The attained results calculated by the ANE metric and the comparison of the proposed study with other

studies in the literature are given in the Table. The mean FP rate obtained by the proposed approach is

higher than that of other studies. This outcome indicates that our algorithm defines more pixels as being in

a pectoral muscle region while they are actually not. In contrast, the lowest FNm rate is achieved using our

proposed approach. In addition, the approach gains higher-quality results, including smaller errors, in all 322

mammography images, since both the FPm and FNm terms are less than 0.05. The highest rate for this

criterion is obtained using the method of Eigenvectors segmentation, which is about 64% among other studies

in the Table. The increment in higher quality results and the decrement in the FNm rate clearly verify the

success of the proposed approach.

6. Conclusion

This study focuses on pectoral muscle removal from MLO-view mammography images. A multistage system

for this goal is proposed and it is elaborately verified using the MIAS digital mammogram database. The

proposed approach is designed pursuant to the positional and geometrical information of pectoral muscles.

Initially, mammography images are preprocessed performing noise reduction followed by background removal

and artifact suppression processes. Then an algorithm for the RGM is proposed and applied to preprocessed

mammography images. This method is based on positional information of muscles, and then it is followed by a

line fitting in compliance with some geometrical characteristics of muscles. The results show that this process

is incapable when pixel intensities of a pectoral muscle and a breast parenchyma are quite similar. In order

to overcome this problem, the system firstly equalizes histograms of preprocessed images, and then the region

growing process is performed. Finally, some postprocessing operations are employed for reducing the number

of false positives, and consequently a segmentation accuracy of 94.40%, sensitivity of 89.62%, and specificity of

99.99% are obtained.

The ANE is used as a metric in order to evaluate the performance of the proposed system. When one

compares the proposed system with the other approaches in the literature, the average rate obtained for false

positives is higher than those in the other studies. The reason for this result is that more than enough pixels are

determined as a pectoral muscle region. In addition, the lower-most average rate is attained for false negatives

using our proposed system among all studies. Since not only the false positive but also the false negative metrics

give less than 0.05, our multistage system generates higher-quality results, including smaller errors, compared

to the other approaches for all 322 mammography images. In the comparative studies, the maximum rate for

this criterion is about 64% and it is obtained by utilizing Eigenvectors segmentation [26]. Therefore, one can

easily infer that the reduction in the average rate for false negatives and the enhancement in the quality of

pectoral muscle segmentation obviously prove the success of the proposed approach.

In this study, a novel system with noise reduction based on adaptive median filter, background removal,

and artifact suppression depending on Otsu’s thresholding method and Nagi’s breast orientation method and

segmentation based on a modified RGM algorithm is proposed for pectoral muscle removal. The results of

performance metrics prove that the proposed system is superior to other approaches. From the theoretical

point of view, the authors think that the proposed system has a quite simpler structure than the methods in

the Table according to computational complexity. In addition to the success of the proposed approach, the

computational time of this approach is under 1 s, which is also suitable to be implemented in a real-time CAD

system. It is clear that wavelet- and transformation-based methods reveal computational burdens that may

cause delayed CAD results.

While RGM is a common approach for image segmentation, using this method directly for mammography

45
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images with whole breasts without pectoral muscles causes false results, and a simple algorithm is proposed in

the study to exclude these images from evaluation. This approach clearly shows that segmentation approaches

should be modified to overcome this problem.

The study also proposes practical and reliable solutions to increase the performance of the proposed

system. Therefore, the study highlights the problems of pectoral muscle removal and it provides a basis for

pectoral removal studies.

It is planned to integrate this system into a CAD system that includes classification of tissue and health

types of mammogram images for future studies. It is clear that the performance of the proposed system will

affect the performance of the CAD system.
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