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Abstract: Analysis of lightning transients in cable systems necessitates accurate calculation of ground return impedances

(GRIs) in high-frequency regions. EMT-type programs used for transient analyses incorporate various methods for

calculation of GRI. Most of these methods include assumptions and approximations, the validity of which needs to be

questioned at high frequencies. In particular, the common approximation of the neglecting effect of displacement currents

should be reviewed. The purpose of this paper is to evaluate commonly used GRI calculation methods in terms of their

accuracy and validity in high-frequency regions. In this study, GRI calculation methods are analyzed and compared, the

effect of displacement currents is evaluated, and validity ranges of the basic calculation formula (Pollaczek formula) are

discussed. It is shown that for high-resistivity and high-permittivity soil cases, the effect of displacement currents must

be taken into account in high-frequency regions. Most default calculation routines in EMT-type programs neglect this

effect. Therefore, it is very important to review and understand the calculation methods used in EMT-type programs

before employing them in high-frequency transient analyses. Moreover, it is shown that in most of the practical cases

the basic calculation formula (Pollaczek formula) is valid for the frequency range of interest for lightning studies.
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1. Introduction

Underground cables are widely used in transmission and distribution networks to transmit power between

different parts of a system. The metallic sheaths (or armors) of these cables are generally connected to grounding

systems on both sides of the cable. Such a connection between independent grounding systems may contribute

positively to the overall grounding performance of connected systems by creating a path for sharing grounding

current.

The effect of cable sheaths on a grounding system’s performance has been evaluated mainly for power fre-

quencies [1,2]. However, these analyses have hardly been extended to high-frequency regions for lightning studies

[3]. This is partly due to difficulties encountered in the modeling of cables in high-frequency regions. Among

many other difficulties, the calculation of ground return impedance (GRI) can be considered an important one.

Transient analyses of cable systems are generally conducted using so called EMT-type programs. These

programs utilize different methods for the calculation of GRI, which are based on certain assumptions and

approximations. Before selecting a program and a GRI calculation method for the analysis of lightning

transients, it is important to assess their performance in high-frequency regions.

The purpose of this paper is to evaluate commonly used GRI calculation methods in terms of their
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accuracy and validity in high-frequency regions and to point out possible sources of errors by using available

method selections in EMT-type programs.

In this paper, firstly, the basic theory behind the calculation of GRI will be presented and its importance

for cable transients in a high-frequency region will be described. Secondly, GRI calculation methods will be

reviewed and their accuracies in a high-frequency region will be assessed. Finally, basic assumptions used in

GRI calculations will be reviewed and their validity limits in a high-frequency region will be evaluated.

Although only EMTP-ATP and PSCAD/EMTDC programs are reviewed within the scope of this study,

other programs can be evaluated using the discussions provided. Additionally, the analysis is limited to single-

core underground medium voltage cables, which are mainly used in distribution systems, but the results are

pertinent to similar cable systems.

2. Cable modeling: basic theory

A single core cable can be represented with a distributed parameter circuit as given in Figure 1.

i(x,t)

v(x,t)

+

-

Rdx Ldx

Gdx Cdx

dx

i(x+dx,t)

v(x+dx,t)

+

-

Figure 1. Equivalent distributed parameter circuit of a single core cable.

By applying Kirchhoff’s current and voltage laws, converting into frequency domain, and arranging for

a multiconductor system of N conductors (core, sheath, armor, etc.), the following equations can be obtained

(telegrapher’s equations):

−d(V )

dx
= [Z] (I) , (1)

−d(I)

dx
= [Y ] (V ) , (2)

where (V ) and (I) are the voltage and current vectors, respectively. [Z] and [Y ] are the series impedance

and shunt admittance matrixes, respectively.

Focusing on impedance calculations, the series impedance matrix in Eq. (1) can be decomposed into

internal and external impedance (i.e. ground return impedance) matrixes as follows:

[Z] = [Zinternal] + [Zexternal] . (3)

Internal impedance is related to electromagnetic fields inside the cable, whereas external impedance is related

to fields in the ground surrounding the cable. Details on forming these impedance matrixes are not presented

here; instead, related textbooks are referenced [4,5]. For high frequencies, elements of the external impedance

matrix become dominant and internal impedance elements become negligible [6,7]. Therefore, only the external

impedance matrix will be analyzed in this study.
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The external impedance matrix consists of ground return self-impedance and mutual impedance elements.

Self-impedance accounts for the voltage developed on the cable’s outermost conducting layer due to cable internal

currents, whereas mutual impedance accounts for voltage developed on the same layer due to mutual induction

from adjacent cables.

General formulae for ground return impedances of underground cables for the configuration given in

Figure 2 have been derived by Pollaczek, as follows [8]:

air

ground

cable j

cable i

R

hi

h j

x

h j

d

D

H

Figure 2. Geometric configuration of two cables.
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K0(md)−K0(mD) +

+∞∫
−∞

e−H
√
α2 + m2

|α|+
√
α2 + m2

ejxαdα

 , (4)

Zg−self =
jωµ0

2π

K0(mR)−K0(m
√

R2 + 4H2) +

+∞∫
−∞

e−2h
√
α2 + m2

|α|+
√
α2 + m2

ejRαdα

 , (5)

m =
√
jωµ /ρ, (6)

where Zg−mutual is the ground return mutual impedance (Ω/m), Zg−self is the ground return self-impedance

(Ω/m), m is the propagation constant (1/m), ρ is the resistivity of the ground soil (Ωm), µ is the permeability

of the soil (equal to permeability in free space µ0) (H/m), α is the integration variable, K0(x) is the modified

Bessel function of the second kind and zero order, R is the outer radius of the cable, h is the burial depth of

the cable, and x is the horizontal distance between cables.

The Pollaczek formula is based on the assumptions that the displacement currents are negligible and the

quasistatic TEM mode of propagation is effective. The validity of these assumptions will be analyzed in the

next section. In this section, we follow these assumptions, and all following arguments will be made on this

basis.
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The GRI formula, provided by Pollaczek, includes an integral part (the so-called Pollaczek integral),

which is very difficult to solve numerically. Therefore, several approximation methods have been proposed by

several researchers to calculate GRI with acceptable precision.

3. Ground return impedance calculation methods

The following subsections describe a number of GRI calculation methods, proposed as an approximate solution

for Eqs. (4) and (5). Please note that the notation given in the original papers has been changed in order to

develop a consistent representation.

3.1. Carson’s approximation

For low frequencies, where |m| << |α| , the exponential term
√
α2 +m2 in the Pollaczek integral reduces to

|α| . With this reduction, the Pollaczek integral becomes equal to Carson’s earth return impedance formula,

which is commonly used for overhead lines [9,10].

Zg−mutual =
jωµ0

2π

K0(md)−K0(mD) +

+∞∫
−∞

e−H|α|

|α|+
√
α2 +m2

ejxαdα

 (7)

Zg−self =
jωµ0

2π

K0(mR)−K0(m
√
R2 + 4H2) +

+∞∫
−∞

e−2h|α|

|α|+
√
α2 +m2

ejRαdα

 (8)

Using this approximation, Carson’s infinite series or asymptotic expansion can be used, which make the

calculation of GRI much easier.

This approximation gives accurate results (error < 5%) up to 10 kHz. However, after this frequency, the

error produced by the approximation increases significantly and reaches up to 20% at 1 MHz [10].

This approximation is the default method implemented in EMTP-ATP, and no alternative method is

provided within the program. Considering the frequency range of lightning surges, which can go up to several

MHz [11], it can be concluded that the usage of EMTP-ATP for lightning transient analyses of underground

cables is not appropriate.

1. Wedepohl and Wilcox approximation

Wedepohl and Wilcox approximated ground return impedance formulas as follows [12]:

Zg−mutual =
jωµ0

2π

{
− ln

(
γmd

2

)
+

1

2
− 2mH

3

}
, (9)

Zg−self =
jωµ0

2π

{
− ln

(
γmR

2

)
+

1

2
− 4mh

3

}
, (10)

where γ is Euler’s constant (= 0.5772. . . ).

This approximation method provides a very simple closed form solution to the Pollaczek formula and

renders the GRI calculation process uncomplicated.
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This method gives accurate results (error < 0.1%) for -md - < 0.25 or -mR-< 0.25. The accuracy of this

method is satisfactory up to 100 kHz (error < 1%). However, as the frequency increases, the error increases

and reaches up to 25% at 4 MHz [10]. Therefore, this method is considered to be unacceptable for lightning

transient analyses.

A modified version of this method is implemented in PSCAD/EMTDC as an option, but details of this

version are not provided [13]. Therefore, special care must be taken when using this method in PSCAD/EMTDC.

3.2. Saad–Gaba–Giroux approximation

Saad, Gaba, and Giroux defined an approximated solution to the Pollaczek integral by introducing a new

dimensionless integration variable and utilizing Cauchy integral theory. Then, incorporating this approximation

into general Pollaczek formulas, the following closed form approximation formulas are achieved [14]:

Zg−mutual =
jωµ0

2π

{
K0(md) +

2

4 +m2x2
e−Hm

}
, (11)

Zg−self =
jωµ0

2π

{
K0(md) +

2

4 +m2R2
e−2hm

}
. (12)

This approximation shows good agreement with the exact solution, as its relative error is less than 1% for

frequencies up to 100 kHz. The error increases for higher frequencies, yet stays below 3% at 1 MHz [14].

This method is provided as a solution option in PSCAD/EMTDC [13] and can be considered to be

suitable for lightning transient analyses due to its precise solution, even at high frequencies. However, as will

be discussed in the next section, this method neglects the effect of displacement currents, which may lead to

high error rates in some circumstances.

3.3. Vance approximation

Vance developed an approximate formula for GRI as follows [15]:

Zg−mutual =
ωµ0

2πγgd

H1
0 (jγgd)

H1
1 (jγgd)

, (13)

Zg−self =
ωµ0

2πγgR

H1
0 (jγgR)

H1
1 (jγgR)

, (14)

λg =
√

jωµ (σ + jωε), (15)

where γg is the full propagation constant (1/m), σ is the conductivity of the ground soil (S/m), ε is the

permittivity of the ground soil (F/m), and H1
0 and H1

1 are Hankel functions.

This method considers earth as a lossy medium of infinite thickness around the cable; hence, it omits the

air-to-earth interface and neglects the burial depth of the cable. Wait [16] showed that this approach is valid

for
∣∣∣2jh√εµ0ω2 − jωµ0σ

∣∣∣ >> 1. Therefore, it can be expected that these methods provide more accurate

results in a high-frequency region.
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An important point to be addressed is that, in contrast to previously mentioned methods, a full prop-

agation constant is used in this method, which means that the effects of displacement currents are taken into

account.

This method is not available in either EMTP-ATP or PSCAD/EMTDC. However, due to its simplicity,

it can be utilized as an external solution, and results can be incorporated into EMT-type programs by manual

processing.

3.4. Petrache approximation

Petrache et al. approximated ground return impedance formulas as follows [17]:

Zg−mutual =
jωµ0

2π
ln

(
1 + γgd

γgd

)
, (16)

Zg−self =
jωµ0

2π
ln

(
1 + γgR

γgR

)
. (17)

Similar to Vance’s model, this model neglects the burial depth of the cable and utilizes full propagation constant.

This simple approximation has been proven to be very accurate up to 10 MHz [17].

This method is not available in either EMTP-ATP or PSCAD/EMTDC, but it can be used as an external

solution function for these programs.

3.5. Theodoulidis approximation

Theodoulidis proposed three separate and independent exact solution alternatives for the ground return

impedance formulas in the form of converging series [18]. Among these solutions, the third one provides a

rapid and efficient solution to Pollaczek’s formula, as given below:

Zg−mutual =
jωµ0

2π
[K0(γgd)−K0(γgD) + 2JP ] , (18)

JP =
H2K0(γgD)

D2
+

2H2 −D2

γgD3
K1(γgD)− IP

γ2
gD

, (19)

IP =
H2 −X2

D4
e−γgH (1 + γgH) +

γ2
gxH

D2

1∫
H/D

(
2
√
1− t2 − 1√

1− t2

)
e−tγgDdt. (20)

Please note that only the mutual impedance formula is given above. For ground return self-impedance,

parameters x , d , and H should be replaced with R , R , and
√
R2 + 4h2 , respectively.

This approximation provides an almost exact solution to the Pollaczek formulas, as accuracy can be

guaranteed on the order of 10−7 for any parameter range [18]. Therefore, in the following sections, this method

will be used as the reference solution for the evaluation of the accuracy of other approximation methods.

Similar to the previously mentioned Vance and Petrache methods, the Theodoulidis method is not

available in EMT-type programs.
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3.6. Other methods

Additional approximation methods have been proposed by other researchers [19,20], but their performances are

not notably different from those of the aforementioned methods.

Several researchers proposed solution methods for the direct numerical evaluation of the Pollaczek integral

[21–25]. These methods require a considerably higher amount of computations in comparison to the other

approximation methods mentioned earlier. However, considering the computational power available today, the

usage of numerical solutions is not a problem anymore.

A numerical solution method is implemented in PSCAD/EMTDC as an option, which is claimed to

provide an exact solution to the Pollaczek integral. Nevertheless, details or references for this method are not

provided [13]; therefore, its performance has not been investigated in the scope of this study.

1. Comparison of ground return impedance approximation methods

In Figure 3, ground return self-impedance of a cable with a radius of 2.3 cm, buried at a depth of 1 m, is

calculated in a high-frequency region (0.1–10 MHz) using various approximation formulas. Carson’s formula is

not taken into account, as it is clearly known to be inappropriate for frequencies higher than several kHz [10].
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Figure 3. Comparison of ground return self-impedance: a) comparison for σ = 10 mS/m, b) comparison for σ = 1

mS/m.

Figure 3 shows that the Wedepohl approximation deviates considerably from other approximation meth-

ods after around 1 MHz. Therefore, as noted earlier, this method cannot be used for high-frequency analyses.

Other methods provide similar results, which need to be analyzed further.

As mentioned earlier, the Theodoulidis method can be considered as a reference method to evaluate

the performance of other approximation methods. In Figure 4, the percentage error levels of the Saad–Gaba–

Giroux, Vance, and Petrache methods are evaluated with respect to the Theodoulidis method. Error percentage

is defined as follows:

Error % = (|Zreference − Zapproximation| / |Zreference|)× 100. (21)
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Figure 4. Errors of approximate methods with regards to the Theodoulidis method.

Figure 4 shows that Saad–Gaba–Giroux approximation shows good agreement with the reference method, even

at 10 MHz and with very low conductivity soil. Other methods show higher errors, but the error levels are

still less than 8%, even at very high frequencies. Therefore, it can be concluded that these three approximation

methods provide accurate results in a high-frequency region.

Here, it is important to note that all the calculations and comparisons given above were conducted

by neglecting the effect of displacement currents. This assumption affects the accuracy of the approximation

methods, especially in a high-frequency region, as will be discussed in the next section.

4. Evaluation of the basic assumptions of the Pollaczek formula

As noted earlier, the Pollaczek formula assumes that the displacement currents are negligible and the quasistatic

TEM mode of propagation is effective. In this section, the validity limits of these assumptions will be analyzed.

4.1. Effect of displacement currents

An extended version of Pollaczek’s formula was proposed by Sunde [26], where displacement currents are not

neglected. Inclusion or exclusion of displacement currents are employed in the definition of the propagation

constant. Pollaczek used a propagation constant with low frequency approximation (m), as given in Eq. (6),

whereas Sunde proposed the usage of a full propagation constant, as given below [26]:

γg =
√

jωµ (σ + jwε) =
√

jωµσ − ω2µε. (22)

Full propagation constant γg reduces to m when ω2µε << jωµσ , that is, when f << σ/2πε . For a low-

conductivity soil with a conductance of 1 mS/m and a relative permittivity of 1, it can be found that the

frequency must be much smaller than 18 MHz in order to apply low-frequency approximation. This frequency

limit reduces even further to 1.8 MHz for a relative earth permittivity value of 10. Considering the frequency

range of interest for lightning studies, which can be as high as several MHz, it can be said that low-frequency

approximation may not be appropriate in all circumstances.
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In order to evaluate the effect of low-frequency approximation, the error introduced in the reference

method (i.e. the Theodoulidis method) by neglecting displacement currents is given in Figure 5. The cable data

used for this analysis are the same as those given previously, and the error percentage is defined as follows:
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Figure 5. Error introduced by low-frequency approximation.

Error % =
(∣∣Zg−w/o LFA − Zg−w/ LFA

∣∣ / ∣∣Zg−w/o LFA

∣∣ )
x100, (23)

where Zg−w/ LFA and Zg−w/o LFA stand for impedances with and without low-frequency approximation,

respectively.

Figure 5 shows that the error level increases with lower ground conductivity and higher ground permit-

tivity. This is an expected result, considering the definition of the full propagation constant. Therefore, it

can be concluded that the inclusion of displacement currents can have an important effect on impedance cal-

culations, depending on the soil parameters. It is important to note that the impedance value calculated with

the full propagation constant turns out to be less than the one calculated with low-frequency approximation.

This means that for extreme cases with low ground conductivity and high ground permittivity, actual ground

impedance would be considerably less than the value calculated by neglecting the displacement current.

In Figure 6, error levels of the Saad–Gaba–Giroux, Vance, and Petrache methods are evaluated with

respect to the Theodoulidis method for various ground conductivity and permittivity values. In low ground

conductivity and high ground permittivity cases, the error level of the Saad–Gaba–Giroux method turns out to

be very high. This is because this method employs low-frequency approximation, whereas the others use the

full propagation constant instead.

The applicability of the Pollaczek formula in a high-frequency region is a matter of separate analysis,

where the TEM mode of propagation must be ensured. Consequently, results in a high-frequency region should

be carefully evaluated, as they may already be irrelevant due to a violation of basic assumptions.

4.2. Mode of propagation

One of the basic assumptions considered in the Pollaczek formula is a quasistatic TEM mode of propagation,

where common mode currents are neglected and only differential mode currents are taken into account [27].
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Figure 6. Errors of approximation methods with respect to the Theodoulidis method: a) comparison for σ = 10 mS/m,

b) comparison for σ = 1 mS/m.

In order to assure the validity of the TEM mode of propagation, both resistive and inductive components of

ground return impedance must be positive [28].

In the following analysis, the frequency range for the TEM mode of propagation is investigated by

evaluating ground return mutual impedance between two identical cables using the Theodoulidis method. Both

cables have an outer radius of 2.3 cm and are buried at a depth of 1 m with 0.5 m of spacing.

Figure 7 shows that the TEM mode of propagation is assured below 10 MHz, which can be considered as

a limit frequency for lightning studies. Critical frequency decreases significantly with extended spacing between
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cables. Considering the fact that the cables are laid closely in common practice (e.g., spacing is equal to cable

diameter), the critical frequency would be much higher than 10 MHz. Therefore, it can be concluded that the

Pollaczek formula is valid for most of the practical cases.

5. Conclusion

Lightning transients are represented with very high frequencies, which may reach up to several MHz. At this

frequency range, the ground return impedance of cables becomes dominant. When using EMT-type programs

for lightning transient analysis of cables, it is vital to ensure that the GRI calculation method employed is

accurate and applicable in a high-frequency region.

In this paper, commonly used GRI calculation methods have been analyzed in terms of their performance

in a high-frequency region. It is shown that several very common calculation methods, such as the one

incorporated into EMTP-ATP, cannot be used in a high-frequency region.

Furthermore, it is shown that for high-resistivity and high-permittivity cases, neglecting displacement

currents yields very high calculation errors. Therefore, calculation methods that exclude the effect of displace-

ment currents by default, such as the ones implemented in PSCAD/EMTDC, may not be appropriate in all

circumstances.

The validity limits of GRI calculation methods were also evaluated in the paper. It was shown that in

most practical cases the basic GRI calculation formula (Pollaczek formula) is valid for the frequency range of

interest for lightning studies.
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