
Turk J Elec Eng & Comp Sci

(2018) 26: 605 – 617

c⃝ TÜBİTAK
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Abstract: This paper presents an improved version of the animal migration optimization (AMO) algorithm for solving

the traveling salesman problem (TSP), which is classified as a combinatorial NP-hard problem. AMO is one of the recent

metaheuristic algorithms inspired by the migration behavior of animals and has been efficiently applied to a variety of

optimization problems. The algorithm is improved by reconstructing the neighborhood topology of each animal during

the migration. This modified algorithm is called the elitist animal migration optimization (ELAMO) algorithm, since

elitism is introduced as a way in which the positions of the leaders are considered for the neighborhood scheme. To

observe the performance of ELAMO, it is compared with AMO and some efficient algorithms. The experimental results

showed that the ELAMO algorithm has improved the solution quality of AMO and has produced effective or even

competitive values for the selected TSP data sets.
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1. Introduction

Solving complex optimization problems is a challenging task for many researchers. The various complex

optimization problems are classified as multimodal and multiobjective, and finding their optimal solutions

requires a considerable amount of time. The traveling salesman problem (TSP) is categorized as a complex

NP-hard problem due to the increasing complexity of the number of cities visited in the field of optimization [1].

The problem consists of a number of cities and a salesman who wishes to visit these cities only once and at the

end of the journey should return to the city from which he began. In addition, the problem aims to minimize

the total cost of this travel. Although this problem is regarded as quite complex, it has been an intriguing area

of study for researchers. Since the problem’s first introduction in 1949 by Robinson [1], new techniques have

been proposed to tackle the TSP.

The TSP has been handled by various metaheuristic algorithms because of their efficiency and easy

adaptation to such a complex problem. These algorithms include simulated annealing, greedy search and genetic

algorithms [2–4], ant colony optimization and swarm intelligence [5–7], discrete cuckoo search [8], and artificial

bee colony optimization [9]. However, as accepted in the “no free lunch theorem”, there is no metaheuristic

algorithm that gives the best performance for all kinds of optimization problems [10]. Therefore, improvements

on metaheuristics continue to have great importance and researchers work especially to solve complex problems.

This paper concentrates on a recently developed metaheuristic, called the animal migration optimization (AMO)
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algorithm, by Li et al. in 2014 [11]. Since the AMO algorithm is efficient and one of the most recently

introduced techniques to solve optimization problems, researchers have presented improved versions to achieve

better solution quality. One of these techniques is known as the improved AMO (IAMO) algorithm, which is

specifically proposed for clustering analysis [12]. It has been constructed by restricting the boundary of the

living area of animals and has been compared with several well-known algorithms including PSO, CPSO, ABC,

CABC, and the original algorithm, AMO. It is observed that IAMO outperforms all the analyzed algorithms

for certain clustering problems. Another study researched constrained engineering optimization problems [13].

This improved algorithm is called the fast convergence AMO algorithm and it is based on reducing the search

space of animals dynamically. It has been verified in solving complex constrained engineering problems and it is

seen that it has better performance than the algorithms ABC, CS, and BA, and the original algorithm, AMO.

Due to the promising solution quality of AMO-based algorithms, the introduction of an improved version

of the AMO algorithm is the main aim of this study. The improved algorithm is called elitist animal migration

optimization (ELAMO), taking its name from the tendency of animals to follow their leaders in a herd. Although

ELAMO can be applicable to all optimization problems, in this paper it is specifically adapted to the TSP. The

standard version of AMO is based on the migration behavior of an animal in the herd and it is assumed that

each animal follows its neighbors during migration. On the other hand, in ELAMO, each animal only follows

those leaders that have the best positions during migration. This approach results in high solution quality

with respect to the performance of AMO. Furthermore, ELAMO has the advantage of elitism, according to the

comparison results for certain other metaheuristics that were especially adapted to solve the TSP.

The rest of the paper is organized as follows. Section 2 briefly describes standard AMO and the main

improvements on animals during migration in biological and computational aspects. Section 3 gives information

about the symmetric TSP and Section 4 introduces the adaptation of ELAMO for solving the TSP. Section 5

presents the comparative experimental results of ELAMO and other algorithms for various TSP data sets and

discusses the results. Finally, Section 6 gives the concluding remarks for the paper.

2. Animal migration optimization algorithm

2.1. Standard AMO algorithm

The AMO algorithm was introduced by Li et al. [11] and is derived from the migration behavior of animals

to discover better life areas. Animals that belong to a herd can migrate long distances due to climate changes

or lack of food in their current habitat. All the animals, including the leader of the herd, should follow three

generalized rules during the process of migration: i) an animal should move according to its neighbors’ positions;

ii) an animal’s position should be close to its neighbors’ positions; and iii) an animal should retain a distance

from its neighbors to avoid collisions.

The AMO algorithm is implemented in two fundamental steps:

• Animal migration step: the animals change their directions according to the positions of their close

neighbors, using the following formula:

Xi,G+1 = Xi,G + δ(Xneighbor,G −Xi,G), (1)

where δ is a random number produced by Gaussian distribution, G is the generation counter, and

Xneighbor,G is the current neighbor of the animal X i,G .

A neighborhood structure is necessary for each animal in a herd. The ring topology is used to construct
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the possible neighbors of an animal i. The number of possible neighbors is fixed to 5, as recommended in

the studies of AMO [11,14]. Figure 1 illustrates the neighborhood scheme of an animal i.

Figure 1. Neighborhood topology of AMO.

• Population updating step: animals come together by joining herds or they naturally join them at birth.

The same number of animals join the herd as the number of animals that leave, according to probability

Pa, using the following formula:

Xi,G+1 = Xr1,G + rand (Xbest,G −Xi,G) + rand (Xr2,G −Xi,G) (2)

where r1 , r2, i ∈ [ 1 ... NP ] , r1 ̸= r2 ̸= i , rand is a random number between 0 and 1, and Xbest is the

best position of an animal obtained so far.

In the AMO algorithm, each animal can trigger the migration process by constructing its neighborhood

scheme and can update its position by considering the positions of its nearby neighbors. The main steps of

AMO are given in the form of a flowchart in Figure 2.

2.2. Elitist AMO algorithm

In the animal migration algorithm, animals take their close neighbors’ positions as a reference to explore

better life conditions. A significant improvement in AMO is achieved by changing the existing neighborhood

topology. In ELAMO, animals follow their leaders instead of their close neighbors. Each animal constructs

its neighborhood scheme by considering the positions of alpha and beta animals in the herd. Three types of

casts appear in the hierarchical structure of a herd. The first is the leader of the herd, known as alpha, and it

is responsible for the existence of the current population. The alpha animal decides the migration process for

finding a new life area or protecting the herd from other threats. The second type of animal is called beta, and it

is the second animal in charge after the alpha animal. When the alpha leaves the herd for hunting, beta animals

are responsible for the others. There can be more than one beta animal, and when the alpha dies or becomes

old, beta animals compete against each other to become the new alpha of the herd. The remaining animals that

obey the rules determined by the alpha and beta animals are called omega. The ELAMO algorithm mainly
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Figure 2. Main steps of standard AMO in form of a flowchart.

relies on this hierarchical structure of animals and their basic instincts for migration. Considering the three

main rules proposed by AMO, the ELAMO implements the following steps: i) an animal should move according

to the positions of the alpha and beta animals; ii) an animal’s position should be close to the alpha and beta

positions; and iii) an animal should retain a distance between its alpha and betas to avoid collisions.

The neighborhood topology of ELAMO is constructed only among the alpha and beta animals. These

animals have better positions than the other animals in the population. It is assumed that the alpha has the

best position and the number of alphas is fixed to 1, whereas the positions of beta animals are ranked after the

alpha according to their fitness values and their number is set to 5. The neighborhood selection is illustrated

in Figure 3 for an animal i . The processes of migration and population update are adopted from AMO and

implemented in ELAMO after significant improvements.

• Animal migration process: animals move from one region to another by following their leaders. The

position of an animal i is updated by the positions of the alpha and betas using the following formula:

Xi,G+1 = Xi,G + δ(XneighborLeader,G −Xi,G), (3)

where δ is a random number produced by Gaussian distribution, G is the generation counter, and

XneighborLeader,G is the leader’s position at the current generation, which is randomly selected from the

neighborhood structure of animal Xi .

• Population updating process: animals can be expelled as a result of going against the rules of the herd or

due to death. A new alpha is selected among the beta animals when the alpha of the population dies or

becomes old. The beta animals compete against each other with respect to their positions. The winner is

accepted as the new alpha and the loser or losers may be expelled. When a beta animal is selected as the

new alpha, the previous position of the beta is occupied by an omega animal according to its position.
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Figure 3. Neighborhood topology of ELAMO.

The positions of the alpha and beta animals are updated in each generation according to their fitness

ranking. These updated positions are used for the other animals to update their positions, as shown in

the following equation, by using probability Pa:

Xi,G+1 = XbetaRanda,G + rand (Xalpha,G −Xi,G) + rand(XbetaRandb,G −Xi,G), (4)

where XbetaRand is an animal selected randomly among beta animals, Xalpha is the position of the alpha,

rand is a random number in between 0 and 1, and a ̸= b .

Detailed steps of ELAMO are given in Figure 4 in the form of a flowchart, emphasizing the improvements

in bold. One of the main benefits of using the ELAMO algorithm is its high performance in tracing the positions

of group leaders rather than following close neighbors. However, it is worth mentioning that, in ELAMO, the

desired characteristics of an individual may be lost by eliminating it in the early stages of optimization and this

may affect the diversification and intensification balance of the algorithm.

3. Traveling salesman problem

The TSP consists of N number of cities, C = c1 , c2 , c3 . . . cN , and a distance matrix that defines the distances

between each pair of cities, D = d(ci , cj)N×N . The aim is to find the minimum tour length under the condition

that a salesman visits each city exactly once and returns to the city from where he started to travel [15]. The

tour length is defined as a cyclic permutation (π) of the cities visited:

f(π,C) =
N−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1)), (5)

where i = 1. . . N and cπ(i) is the city visited in step i .
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Figure 4. Main steps of ELAMO in form of a flowchart.

This paper considers the symmetric TSP, which satisfies the rule of distance d(ci , cj) = d(cj , ci), where

1 ≤ i , j ≤ N . A weighted graph can be a representation of a TSP with vertices for the cities, edges for the

connections between the cities, and the weight of an edge for the connections distance. A TSP tour can be

expressed as a Hamiltonian cycle and it is aimed to find the shortest length of the cycle.

4. ELAMO for solving the TSP

It is known that the TSP is a combinatorial NP-hard problem and ELAMO is developed to solve continuous

problems. The adaptation of the main parameters used in ELAMO for the TSP is necessary to transform from

a continuous space to a combinatorial space. Therefore, adaptations of animals, herd, objective function, and

migration process to positions, displacements, and distances are given as follows.

4.1. Animals

In ELAMO, three types of animals are classified in a hierarchical structure. Alpha: there is only one and it is

assumed that it has the best position so far. Beta: there are a few, their number is set to 5, and it is assumed

that they have the second best position after the alpha. Omega: there are many and it is assumed that all the

animals follow the rules of alpha and beta animals. It can be said that all the animals are potential solutions

to solving the TSP by representing the coordinate values of the cities as weighted graphs.

4.2. Herd

In ELAMO, the following assumptions are practiced: i) the number of animals is fixed; ii) when an alpha’s

solution quality is not good enough to solve a problem, a new alpha is selected among beta animals. The

position of the selected beta is filled by an omega animal whose fitness value is relatively better than the other

omega animals. In adaptation to the TSP, a herd with animals represents a TSP tour with a weighted graph

of Hamiltonian cycle.
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4.3. Objective function

An alpha leads to better solutions, and it is supposed that the other animals following the alpha is directly

related to the solution quality. In the TSP, the objective function is the sum of the Hamiltonian cycle lengths,

and an optimal solution refers to the shortest Hamiltonian cycle.

4.4. Migration process

During the migration process, which is triggered by the alpha, the animals update their positions by changing

their coordinates. Since the coordinate values of animals are representations of the coordinate values of cities

in the TSP, the solution strategy can be figured out by moving animals from one location to another. In the

adaptation of the TSP, the migration process of ELAMO is managed by changing the visiting order of cities.

It is worth noting that the coordinates of the cities are fixed, whereas the visiting order of the cities is not.

4.5. Experimental results

In order to verify the performance of elitist AMO and show its efficiency over standard AMO, 15 TSP benchmark

sets are chosen from the TSPLIB Library according to their complexity [16]. First a detailed comparison between

standard and elitist AMO is performed in Table 1, and then ELAMO is compared with PSO and the GA for

large-scale and synthetic TSP data sets [15,17] in Table 2. Additionally, the performance of ELAMO is analyzed

with methods that are specifically designed to solve the TSP, namely genetic simulated annealing ant colony

system with particle swarm optimization techniques (GSA-ACS-PSOT) [3] and a self-organizing neural network

(SONN) [18], presented in Table 3. In all tables, the better results are indicated in bold. In Figure 5, the

solution quality of ELAMO is illustrated against the solution quality of ant colony optimization (ACO) [6].

The results achieved by the algorithms used in the comparison are achieved as they were in the original works

[3,6,15,17,18]. It is necessary to specify that in similar studies [3,18], the authors accessed the results of the

previously proposed algorithms for solving TSP data sets and compared them with their own algorithms. For

the compared algorithms, GSA-ACS-PSOT and SONN, the maximum number of cycles is set to 1000 and the

obtained results involve 30 runs. In the comparison of ELAMO with PSO and the GA, the maximum number

of iterations is set to 10,000 and the number of populations is selected as 150. The parameter settings used

in all experimental studies for AMO and ELAMO are given in Table 4. The standard and elitist versions of

AMO algorithms are simulated with 4 GB RAM on an Intel Core-i5 processor using C++ language. In order

to carry out a relevant performance analysis among the algorithms, the known optimum (length value for each

instance, which is taken from TSPLIB), the best value (shortest length obtained in 30 independent runs), the

worst value (longest length obtained in 30 independent runs), time (s) (averaged computational time to obtain

the length value for each instance), PDav (%) (percentage deviation of average solution from the best known

solution length of 30 trials), and PDbest (%) (percentage deviation of the best found solution from the best

known solution length of 30 trials) are provided. The formulations of PDav (%) and PDbest (%) are given as

follows:

PDav (%) =
average solution-best known solution

best known solution
× 100 (6)

PDbest (%) =
best found solution-best known solution

best known solution
× 100 (7)
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Table 2. Comparison of the experimental results of ELAMO with PSO and GA for large-scale problems and synthetic

data.

TSP instances PSO [15] GA [15] ELAMO

Data set [15,17] opt avg PDav (%) avg PDav (%) avg PDav (%)

XQF131 564 584 3.59 576 2.13 573.60 1.70

XQG237 1019 1070 5.19 1068 4.84 1057.60 3.78

BCL380 1621 1774 9.44 1748 7.89 1768.70 9.11

PBM436 1443 1634 10.33 1574 9.10 1518.60 5.23

Att532 27686 30363 9.67 29718 7.34 29296.10 5.81

C20 62575 63276 1.12 63188 0.98 62820 0.39

C30 62716 63625 1.45 63356 1.02 63294.10 0.92

C40 62768 64212 2.30 63753 1.57 64348.40 2.51

F32 84180 85535 1.61 85392 1.44 85046.40 1.02

F41 68168 69995 2.68 69702 2.25 69733.50 2.29

S21 60000 60786 1.31 60648 1.08 60386.60 0.64
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Figure 5. Average tour length comparison of ACO, AMO, and ELAMO.

As seen in Table 1, ELAMO performs better than standard AMO for the 15 analyzed test functions. A total of

53.3% of the values of PDbest (%) are 0.0, which shows that the best solution obtained for these data sets as well

as 60% of the values of PDav (%) are less than 0.5%, which implies that almost all values of 30 runs are the same

as the known optimum solution. Regarding the average length and computational time, it can be expressed

that ELAMO gives better results than AMO. However, it should be noted that when larger TSP instances

are analyzed, both algorithms produce competitive results even if they do not obtain the best routes for them.

Additionally, a statistical analysis is performed for AMO and ELAMO using the Wilcoxon ranked sign test. The

z value turned out to be –3.4077, which indicated that AMO and ELAMO caused significantly different results.

When their average time (s) values are compared, it is found that ELAMO has performed approximately 5%–

20% faster than AMO. Furthermore, ELAMO has performed quite faster than AMO (approximately 13 min)

for the largest data set, d1651. The main improvement is achieved in considering only alpha and beta animals.

It is thought that this may affect the speed of optimization when such a large problem is considered. When the

AMO and ELAMO algorithms are considered according to their algorithmic complexity, it is seen that both

have the same complexity of O (n2), because the number of nested loops appearing in the algorithms is the
same.

According to the results obtained from Table 2, the GA performs better than PSO for all the analyzed

TSP data sets. In general, it can be said that ELAMO produces more successful results than the GA. However,

the performance of the GA is slightly better than that of ELAMO for only three functions. A similar observation

613
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Table 4. Parameter settings used in the experiments.

Parameters AMO ELAMO

Population size 30 30

Max. number of iterations 1000 1000

Number of neighbors 5 6 (1 alpha, 5 beta)

rand Produced randomly between Produced randomly between

0 and 1 0 and 1

δ Produced randomly by using Produced randomly by using

Gaussian distribution Gaussian distribution

Pa Applied according to the Applied according to the

quality of fitness quality of fitness

can be made for the comparison between ACO, AMO, and ELAMO in Figure 5. For the analyzed TSP data

sets, ELAMO gives better tour lengths than AMO and ACO. However, when AMO and ACO are compared, it

is observed that the solution quality of ACO is better than that of AMO. These results can be an indication

that the applied modifications have improved the solution quality of AMO. In order to observe the efficiency

of selecting different neighborhood operators of ELAMO, Figure 6 is plotted. The number of beta animals is

selected as 3, 4, 5, and a random value between 3 and 5. For all the analyzed TSP data sets, the optimum values

or the values that are closest to the optimum tour lengths are obtained with the selection of beta as 5. Other

best values are obtained when the beta value is selected as 4, random [3–5], and 3, respectively. Figures 7 and 8

are plotted to see the convergence rates of ELAMO with respect to the number of iterations and to observe the

best routes found for the eil76 and kroA100 data sets. The efficiency of ELAMO can be seen clearly when the

number of generations increases. In the comparison of ELAMO with GSA-ACS-PSOT and SONN from Table

3, it can be argued that the results obtained with ELAMO are of good quality and generally better or even

more competitive than the results provided by the other algorithms for the selected TSP instances. Moreover,

the obtained results imply that the solution quality of ELAMO is better than that of SONN for all the test

problems except fl1400. However, in the comparison of GSA-ACS-PSOT and ELAMO, the average and PDav

(%) values of ELAMO were not as good as the values of GSA-ACS-PSOT, especially for the larger data sets,

but they were still considerable.
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Figure 6. Effects of different neighborhood selection on average tour length in ELAMO.

5. Conclusion

Considering the satisfactory performance of AMO in solving complex optimization problems, an improved

algorithm is developed by reconstructing the neighborhood. The new algorithm, ELAMO, is specifically adapted
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 (a) Convergence graph of eil79.                     (b) �e best route for eil76.
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Figure 7. Convergence graph of average tour length and the best route found by ELAMO for eil76: a) convergence

graph of eil76, b) best route for eil76.

(a) Convergence graph of kroA100. (b) !e best route for kroA100.
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Figure 8. A convergence graph of average tour length and the best route found by ELAMO for kroA100: a) convergence

graph of kroA100, b) best route for kroA100.

to solve various TSPs. The experimental results show the success of the ELAMO algorithm compared to

standard AMO. In the comparison of ELAMO to several algorithms, namely GA, PSO, GSA-ACS-PSOT,

SONN, and ACO, it is clearly seen that ELAMO has improved the solution quality of AMO and has produced

better or even more competitive values than the compared algorithms. The advanced performance of ELAMO

is due to the selection of group leaders and the tendency of animals in a herd to migrate according to their

leaders’ positions. As a consequence of this movement, better solutions are explored by the animals.

On the other hand, the algorithm’s performance is strongly dependent on the leaders’ positions. The

main improvement of AMO creates relative independency of animals, in such a way that they do not rely on

their close neighbors but rather only on their leaders.

Further studies should investigate the diversification and intensification characteristics of ELAMO to

reduce dependency on leaders’ positions. According to the promising results attained in this study, the ELAMO

algorithm is highly recommended for solving complex problems from different areas.
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[14] Ülker ED, Ülker S. Antenna design using animal migration optimization algorithm. IET J Eng 2016; 1: D23J.
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