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Abstract: In this paper, a transformer incipient fault diagnosis model has been developed with the help of an artificial

neural network (ANN), taking into account the difference in the energy required to produce the different fault gases.

The key fault gases are indicative of the fault type prevailing in the transformer. However, in conventional studies, the

energy difference in fault gas formation is not considered while adopting the key gas method for fault diagnosis. In this

work, a weighting factor has been used to take into account this relative difference in energy requirement for various fault

gas formations. The fault gas concentrations have been suitably weighted by their respective weighting factors before

being used in the incipient fault diagnosis process. A backpropagation ANN has been appropriately trained using the

weighted fault gas concentration for transformer incipient fault identification. The model has been trained to identify

fault types as enlisted in the transformer fault-interpreting standard IEC-599. The developed ANN model has been

tested for its diagnostic capability using a reported fault database. The comparative diagnosis results presented here

show clear improvement in the diagnosis of transformer internal faults using the energy-weighted ANN model over the

unweighted ANN model.

Key words: Power transformer, fault diagnosis, dissolved gas analysis, artificial neural networks

1. Introduction

Electrical utilities have to ensure satisfactory operation of various critical pieces of equipment, such as a power

transformer, so as to maintain continuity of supply. These pieces of equipment need continuous monitoring

to determine any possible incipient fault that may develop well before any severe damage takes place. This

requires a clear understanding of all possible incipient faults that can develop in a transformer [1].

Internal faults in transformers are of essentially two types: thermal and electrical. The incipient thermal

and electrical faults developing in an oil-immersed transformer may cause its oil to decompose, resulting in the

release of some gases that get dissolved in the oil [2,3].

The concentrations of the various gases released depend on the fault types and temperature [1–3].

Dissolved gas analysis (DGA) is a proven tool for the identification of an incipient fault on the basis of dissolved

gases in the insulating oil of the transformer. A number of international standards such as IEEE C57.104 [4] and

those of the IEC [5,6] define the methods for transformer incipient fault diagnosis based on DGA results. These

standards, even though they are being used very commonly, may provide misleading diagnosis or no diagnosis for

some cases. A wrong diagnosis or unresolved diagnosis can have a severe impact on the life of the transformer.
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Various elaborate algorithms have been suggested to improve the diagnosis of the available ratio-based methods

for a more reliable diagnosis, as in [2–3,7–10]. Furthermore, several soft computing techniques have also been

used in various studies to overcome the shortcomings of the different standard methods. Some of the popular

soft computing methods that have been adopted to improve the reliability of DGA-based transformer incipient

fault identification are fuzzy logic [11–14], ANNs [15–17], wavelet networks [18,19] and the adaptive neuro-fuzzy

inference system (ANFIS) [20–23]. However, these intelligent techniques have their own limitations and hence

the degree of the reliability of the method would depend on how these methods are adopted to circumvent their

limitations.

As stated earlier, the occurrence of a fault in an oil-immersed transformer results in the decomposition of

the oil, which in turn causes gases to be released. The concentration of the various gases formed depends on the

energy content of the fault or severity of fault [24–26]. However, most fault diagnosis studies do not take into

account the fault energy criteria for fault identification. Methane (CH4) and acetylene (C2H2) are weighted

equally even though there is a prominent difference in the energy required for their formation.

In this paper, an ANN model for transformer incipient fault identification has been developed. Another

ANN model has been used to study the impact of considering the energy level of various gas formations on the

fault diagnosis by suitable weighting of fault gas concentrations. The training data for the ANN model have

been prepared for the fault cases listed in IEC-599, taking gas concentrations as inputs rather than ratios. The

diagnostic capability of both the methods are comparatively studied using a known fault database comprising

100 fault cases obtained from published literature [27].

2. DGA and the concept of weighted DGA

Transformers are normally considered as stable components of power system, but faults in them can result in

significant financial loss and can severely deter the power system’s functioning. Development of faults during

transformer operation are mainly attributed to localized stress concentrations, formed due to poor design

and manufacturing flaws, inadequate stress protection features, insufficient cooling, large leakage flux, etc.

Persistent faults in transformers may lead to eventual catastrophic failure of the transformer [1]. Hence, faults

in transformers need to be identified and tended to as early as possible.

Transformer internal faults are of primarily three types: partial discharge or corona, thermal heating,

and electrical arcing. Corona mainly occurs due to discharges taking place in gas-filled bubbles in oil or voids

in paper insulations. A breakdown of transformer insulation takes places upon the occurrence of any of these

faults, which results in the release of gases in the transformer. These gases are dissolved in the transformer oil

and their concentration depends on the fault type. The constituent gases produced as a result of transformer

oil decomposition are categorized into three groups: 1) hydrogen and hydrocarbons - hydrogen (H2), methane

(CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2); 2) carbon oxides - CO and CO2 ; and (iii)

nonfault gases - O2 and N2 [4,21]. The formation of these fault gases is a function of temperature and hence

the fault type, i.e. the type and concentration of gas produced as a result of decomposition of the insulating

oil is suggestive of the possible transformer incipient fault type. Table 1 gives a list of the gases evolved due to

insulation breakdown and the possible transformer incipient fault [8].

The gases produced in a transformer in the event of an internal fault occurring in a transformer dissolve

in the insulating oil as well as occupying the empty space of the unit. Apart from the concentration of

individual gases, even the solubility of the fault gases differs at different temperatures. The key to an effective

transformer incipient fault diagnosis is the accurate identification of the gases dissolved in the transformer oil
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Table 1. Interpretation of gases dissolved in oil.

Dissolved gas Possible fault type

Hydrogen (H2) Corona, partial discharge

Methane (CH4) Arcing

Ethane (C2H6) Thermal fault

Ethylene (C2H4) Thermal fault

Acetylene (C2H2) Electrical fault (arcing)

Carbon monoxides (CO) Cellulose deterioration

Carbon dioxide (CO2) Cellulose deterioration

Oxygen (O2) Seal fault

or the identification of gases in the empty space of the Buchholz relay. A number of methods have been used

over the last few decades for the identification of these gases with DGA being one prominent method among

them, being adopted very commonly. This method identifies both the combustible and noncombustible gases

dissolved in transformer oil. Once the concentration of gases dissolved in transformer oil has been estimated,

their presence can be interpreted to determine the possible incipient fault existing in the transformer.

Due to the difference in the energy requirement for the formation of the primary incipient faults, i.e.

partial discharge, thermal faults, and arcing, there is a noticeable difference in the composition of decomposed

gas dissolved in oil or available in the gas blanket. For each fault type, depending on the fault energy, a

particular gas would form the main constituent of the gas composition. The identity and relative concentration

of this key gas can provide information on the possible fault type [28,29].

IEC-599 is a recognized standard adopted for fault interpretation based on DGA results. It is a ratio

method, having three gas ratios from five fault key gases as its input. This standard helps identify eight faults

of PD, thermal, and arcing type apart from the no-fault condition [5–6,27–29].

One major issue overlooked by the DGA-based transformer incipient fault interpretation methods is the

energy required to produce a particular fault gas. The severity of faults differs for each of the fault types

discussed earlier. Maximum energy dissipation takes place with electrical faults while less dissipation occurs

with thermal faults and corona has the least intensity of energy dissipation [2,3]. The type and concentration

of the fault gases produced depends on the fault type and its severity [4]. There is a pronounced difference

in the energy required for the production of each type of fault gas [24,25]. The partial discharge type of fault

has a significant amount of hydrogen and a smaller concentration of methane. The gases released during a

thermal fault are mainly hydrogen, methane, ethane, and ethylene. The relative concentration of these gases is

temperature-dependent. At lower temperatures of less than 300 ◦C, mainly methane and ethane are produced

with a lesser concentration of ethylene. As the fault temperature increases above 300 ◦C, the concentration

of ethylene dominates over the other gas concentrations. At temperatures of about 1000 ◦C, the presence of

acetylene may also be noticed. Electrical arcing faults are high-energy faults, in which the main gas constituents

are hydrogen and acetylene. The concentration of acetylene is greater for electrical faults than for other fault

types [4–6]. If the transformer internal faults involve paper insulation, carbon monoxide and carbon dioxide are

produced in significantly large quantities. Therefore, if this energy difference in the formation of fault gases is

taken into account, it would certainly aid in the identification of the more severe faults.
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Energy-weighted dissolved gas analysis (EWDGA) is the method of weighting the individual gas concen-

trations by a factor derived from the relative energy required for its formation. The energy-weighted concen-

tration of a fault gas can be depicted by the following equation:

Energy-weighted gas concentration = Gas concentration × Weighting factor (1).

The incorporation of the energy content of the fault gases requires the estimation of an appropriate

weighting factor from the thermodynamic decomposition model of the fault gases. The weighting factor is

evaluated from the relative enthalpies of formation of the fault gases. The enthalpy of formation of different

fault gases has a noticeable difference. The energy content in the faults producing acetylene (C2H2) is more

pronounced than that of the faults releasing CH4 . In conventional DGA studies, this significant difference in

the energy content of the fault gases is neglected. Equal weightage is given to the formation of 100 ppm of CH4

in 10 days and to the formation of 100 ppm of C2H2 in an equal number of days, while thermodynamic study

clearly states that the energy required for the formation of 100 ppm of C2H2 is much more than that required

for the production of 100 ppm of CH4 [24]. The transformer oil decomposition leading to the formation of

fault gases is studied through a decomposition model involving an n-octane molecule. The n-octane molecule is

selected because it possesses paraffinic traits and properties similar to those compounds that would decompose

to produce the fault gases [24–26].

The weighting factors are indicative of the fault severity and are obtained by normalizing the respective

enthalpies of formation of the fault gases. The normalized or relative enthalpies are shown in Table 2.

Table 2. Fault gas weighting factors derived from their enthalpies of formations [22].

Fault Enthalpy of Relative enthalpy

gas type formation (∆H◦
f ) (weighting factor)

CH4 77.7 1.00

C2H6 93.5 1.20

C2H4 104.1 1.34

H2 128.5 1.65

C2H2 278.3 3.58

3. The ANN model

The ANN primarily functions to process information aided by an effective nonlinear mapping of the input

space and the output space. It finds its importance in its ability to learn from an elaborate arrangement of

well-interconnected neurons. The artificial neurons form a layered structure consisting of well-defined input and

output layers, which may be separated from one another by one or more hidden layers, as shown in Figure 1. The

hidden layers help in realizing more complex problems. The neurons of the different layers are interconnected

and trained using a learning algorithm, which may be supervised, unsupervised, or hybrid. If the information

is processed only in the forward direction, the ANN structure follows a feedforward topology. If feedback is

provided to any of the neuron units it is said to follow a feedback or recurrent topology. An ANN network aptly

trained can handle problems of any quantum, owing to its superior learning and generalization ability.

The backpropagation (BP) algorithm is considered as the most popular supervised learning algorithm

for the training of feedforward ANN systems. The governing concept of the BP algorithm is to minimize the

sum-squared errors, calculated as a difference between the computed and expected output. This is referred to
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Figure 1. The layered architecture of a feedforward neural network.

as the generalized delta rule. The reduction in error is continued until the completion of the learning process,

where the ANN is said to have been trained over the complete training dataset.

The training is initiated with some random weights which, in the due course of learning, are adjusted so

as to render the error to a minimum value. The BP algorithm is motivated to minimize the sum-squared error

following the gradient descent approach [16,17].

4. ANN-based transformer incipient fault diagnosis

The assessments of the diagnostic capability of the ANN-based fault identification models have been carried out

in MATLAB software. The ANN models have been trained suitably using the key gases to identify the fault

type prevailing in the transformer. In order to achieve an acceptable level of accuracy in the fault diagnosis

model, it is essential that the training data be prepared with utmost care. The accuracy of the ANN model

shows a great dependency on the accuracy of the training data. Care should also be taken to ensure that the

training data cover the entire range of the input space so as to prevent any unresolved or wrong diagnosis. The

training dataset has been developed using the key gas concentrations for extended fault cases covering eight

fault types and a no-fault case as shown in Table 3. The training dataset comprising fault gas concentrations

has been prepared in-line with the IEC-599 standard. The faulty transformer gas concentration data in [27] was

relied upon in the development of training data of suitable ranges. For each fault type in the IEC standard,

care has been taken to include gas concentrations in the upper and lower limits as well as in the median range

for appropriate ANN learning. The concentration of one of the two gases in a ratio is set within the limiting

ranges of that fault type, while the other gas concentration is calculated from the value of the ratio for that

particular fault case. The motivation behind this is to obtain a more reliable fault diagnosis model with little

or no possibility of an unresolved condition. Furthermore, this would also enable us to validate the outcome

of the models with that of a known interpretation standard such as IEC-599. The transformer fault diagnosis

procedure has been depicted through the flow diagram shown in Figure 2. Separate ANN models have been

used for the DGA- and EWDGA-based diagnosis and these are described in the following sections.
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Table 3. Transformer fault cases as stated by IEC-599 [6].

S. no. Fault type Fault code

1 No fault F0

2 Partial discharge with low energy density F1

3 Partial discharge with high energy density F2

4 Discharge (arc) with low energy F3

5 Discharge (arc) with high energy F4

6 Thermal faults of temperatures of <150 ◦C F5

7 Thermal faults of temperatures between 150 and 300 ◦C F6

8 Thermal faults of temperatures between 300 and 700 ◦C F7

9 Thermal faults of temperatures of >700 ◦C F8

Figure 2. The transformer fault diagnosis process based on the DGA and EWDGA ANN model.

4.1. DGA using ANN

Many works have been carried out in the implementation of DGA using the ANN. The sole purpose of this

model is to obtain a comparative diagnostic analysis of the two ANN models. The inputs to the ANN are the

five key gases of H2 , CH4 , C2H6 , C2H4 , and C2H2 and the outputs are the eight possible fault types and

a no-fault condition as given in Table 3. A multilayer ANN model trained with a BP algorithm and using
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sigmoid as its activation function has been used as the network architecture. An extensive training dataset

comprising 250 sample data covering all the possible fault types has been developed to train the neural network.

The optimum number of neurons for the neural network was selected as 35, corresponding to minimum error

as shown in Figure 3. The performance of the neural network has been tested using a known fault database

consisting of fault cases derived from [27].

4.2. EWDGA using ANN

The ANN model for EWDGA has also been developed in a manner similar to that for DGA. It also uses a

multilayered architecture comprising input, output, and hidden layers. The input to the ANN is again the key

gases, which have been weighted appropriately by a weighting factor. This weighting factor is a constant value

and is dependent on the amount of energy required to produce a particular fault gas [26]. The outputs are the

different fault conditions that may exist in the transformer (F1–F8) and one no-fault condition (F0). The neuron

levels are decided based upon a trial approach and have been selected as 40, corresponding to the minimum

error as shown in Figure 4. The training dataset comprises 250 samples of weighted key gas concentrations

encompassing all the possible fault types. The diagnostic capability of the developed model was checked by the

same fault database as that used in the DGA-based ANN model.
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Figure 3. Neuron selection for DGA using ANN. Figure 4. Neuron selection for EWDGA using ANN.

5. Results and discussion

The diagnostic performances of the DGA- and EWDGA-based ANN models have been tested for 100 known

fault cases. The output of these models when compared against the known fault type, as derived from the

IEC-599 standard, provides information on the reliability of these models. Table 4 presents the concentrations

of key gases for 12 faulty transformers from the fault database along with the expected (known) fault type.

Table 5 shows the fault diagnosis of the DGA-based ANN model along with the expected output as per

the IEC-599 standard. The output pattern has nine values corresponding to fault types F0–F8. The element

of the vector that has the maximum value corresponds to the possible fault prevalent in the transformer. It

is evident from the table that the ANN model based on DGA incorrectly diagnoses five of the twelve cases

presented here. For transformer fault case no. 1, the model diagnoses it as an arcing discharge of low energy

density type, whereas the standard determines it as a high energy density discharge. Similar wrong diagnoses

can be observed for fault cases 3, 6, 9, and 10.

The ANN modeled for the EWDGA method has also been tested for its diagnostic capability using the 12

sample cases of Table 4. In order to validate the EWDGA-based ANN model a comparison of two of the fault

cases (Case No. 5 and Case No. 11) diagnosed by the EWDGA-based ANN model is done with the outcome

of the ANN method presented in [20] and the comparative results are given in Table 6. It can be seen that the
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Table 4. Gas concentrations of ten faulty transformers [25].

Transformer
Gas concentration (in ppm)

Known

fault fault

case no. H2 CH4 C2H2 C2H4 C2H6 CO CO2 type

1 6454 2313 6432 2159 121 3628 225 F4

2 305 100 541 161 33 440 3700 F3

3 1230 163 692 233 27 130 115 F4

4 33,046 619 – 2 58 51 1 F1

5 796 999 31 1599 234 389 1334 F8

6 34 21 56 49 4 95 315 F4

7 960 4000 6 1560 1290 15,800 50,300 F7

8 6 2990 67 26,076 29,990 6 26 F6

9 2500 10,500 6 13,500 4790 530 2310 F7

10 300 700 36 1700 280 760 9250 F8

11 37,800 1740 8 8 249 56 197 F2

12 1450 940 61 322 211 2420 3560 F5

Table 5. ANN-based DGA results.

Transformer Known

Output valuesfault fault Fault

case no. type type

1 F4 [–0.0404 0.08271 –0.0526 0.9734 –0.1149 –0.1658 –0.0359 –0.0925 0.38773] F3

2 F3 [–0.0762 0.0226 –0.0713 0.6737 0.5940 –0.0615 0.1426 –0.1509 –0.0498] F3

3 F4 [0.0427 0.0171 0.0048 0.6568 0.7702 –0.0932 0.0198 –0.1627 –0.0694] F4

4 F1 [0.0164 0.7246 0.6362 –0.0024 –0.0124 –0.0761 0.0005 0.0058 –0.0034] F1

5 F8 [0.0803 0.0787 –0.0626 0.0492 0.0854 0.1232 –0.1995 0.4234 0.4102] F7

6 F4 [0.1009 –0.02108 0.0199 0.3654 0.2181 0.0895 0.00563 0.1124 0.1052] F3

7 F7 [–0.0424 –0.0193 0.03401 –0.1647 –0.1372 0.06917 0.4217 0.5885 0.2435] F7

8 F6 [–0.3156 1.2610 0.4428 –0.1179 –0.1162 0.7736 1.3143 –0.1134 –0.2148] F6

9 F7 [–0.4483 –0.2852 0.6743 0.1692 –0.2551 –0.0914 0.74133 0.4687 –0.0938] F6

10 F8 [0.0799 0.0633 –0.0806 0.0552 0.1024 0.1618 –0.2088 0.4136 0.4039] F7

11 F2 [0.0057 0.7975 0.6003 –0.0314 0.0057 –0.0131 –0.0009 0.0286 –0.0019] F1

12 F5 [0.0767 0.0613 0.0257 0.2357 0.1357 0.4673 0.0489 0.1964 0.1412] F5

diagnosis of the EWDGA-based ANN model conforms to the diagnosis of the IEC-599 standard as well as the

ANN model from [20] for both fault cases.

The results of transformer fault diagnosis using the EWDGA-based ANN method for the 12 sample fault

cases are presented in Table 7. The EWDGA model is able to identify the transformer incipient fault types to

a fair degree of accuracy. It can be seen from the output pattern that most of the fault diagnoses conform with

that of the IEC standard fault interpretation, except for fault cases 6 and 9. For fault case 6, the EWDGA-based

ANN model interprets the fault to be a low-energy discharge fault (F3) while the IEC-599 standard diagnoses
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Table 6. Comparison of outputs of EWDGA model with the ANN model of reference [20].

Transformer Fault as per ANN model in [20] EWDGA-based ANN model

fault IEC-599
Input type

Diagnosed
Input type

Diagnosed

case no. standard fault type fault type

5 F8
Gas ratio

F8
Gas Concentration

F8

11 F2 F2 F2

it as a high-energy arcing discharge (F4). Similarly, the expected fault type for transformer fault case 9 is a

thermal fault with temperature ranging between 300 and 700 ◦C (F7), while the model wrongly diagnoses it as

a thermal fault with temperature greater than 700 ◦C (F8). Both the DGA- and EWDGA-based ANN models

were extensively used to diagnose 100 fault cases and the results of this diagnostic test are summarily presented

in Table 8.

Table 7. ANN-based EWDGA results.

Transformer Known

Output valuesfault fault Fault

case no. type type

1 F4 [0.1269 –0.8596 0.8805 0.2297 1.0370 –0.0888 0.0399 0.0783 –0.4534] F4

2 F3 [–0.1120 –0.0186 –0.0221 0.7825 0.1238 0.2457 –0.1617 0.0110 0.1467] F3

3 F4 [–0.0040 –0.1416 0.1335 0.5823 0.6867 0.1613 –0.0365 –0.0796 0.0952] F4

4 F1 [0.0963 0.7147 0.5022 0.0939 –0.1277 0.0323 –0.0803 0.0892 –0.0224] F1

5 F8 [–0.0139 –0.4319 0.4054 –0.2383 0.3353 –0.0469 –0.0558 0.4479 0.5991] F8

6 F4 [0.0747 –0.0447 0.0490 0.4777 0.2550 –0.0197 0.0177 0.0936 0.0956] F3

7 F7 [0.1130 –0.0774 0.0484 –0.1531 0.1961 0.0158 0.0968 0.9010 –0.1388] F7

8 F6 [0.2972 0.1660 –1.2663 0.4912 –1.1672 –0.1778 1.6503 –1.1333 1.3404] F6

9 F7 [0.9883 0.0187 –0.0882 –0.8844 –2.1782 1.3297 –0.4382 0.3872 1.8337] F8

10 F8 [–0.0253 –0.4486 0.3776 –0.1577 0.3745 –0.1340 0.0475 0.3970 0.5701] F8

11 F2 [–0.1077 0.6849 0.8751 0.0688 –0.0767 0.0217 0.1064 0.0602 –0.1254] F2

12 F5 [0.1403 –0.0355 0.0964 –0.0233 0.3321 0.5118 –0.1032 0.2271 0.1383] F5

Table 8. Summary of transformer fault diagnosis.

DGA-based ANN model EWDGA-based ANN model

No. of faulty cases tested 100 100

No. of correct diagnosis 53 86

No. of wrong diagnosis 47 14

Accuracy 53% 86%

In this paper, an attempt has been made to incorporate the essential information of the significant

difference in the energy content of the fault gases in the fault diagnosis process, which was ignored in earlier

studies. In view of this, the accuracy of the given EWDGA model is found to be comparable to the accuracies
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of the models presented in various other studies. Table 9 gives a comparison of the accuracies of the transformer

incipient fault diagnostic models presented in various studies.

Table 9. Comparison of accuracies with other fault diagnosis models.

Method Input type % Accuracy

IEC method [30]
Gas ratios

50.26

Refined IEC method [30] 66.06

IEC-based ANN [31] Gas ratios 80

ANN [32] Gas concentrations 89

IEC-599 [10] Gas ratios 77.78

Dual of Duval triangle [10] Relative gas concentrations 90.6

EWDGA-based ANN model Gas concentrations 86%

6. Conclusion

In this work, a modified form of DGA, based on the energy content of the fault gases along with their

concentrations, is used to investigate the prevailing incipient fault in the transformer. The EWDGA model does

not present a new diagnosis model but attempts to use the model in conjunction with the existing interpretation

standard, incorporating the essential information on the energy content of the fault gases. It has been observed

for the entire fault database comprising 100 fault cases that the EWDGA-based ANN model gave an accuracy

of 86% in comparison to the DGA-based ANN model, which gave an accuracy of only 53% for the same fault

database. It has also been seen that the ANN model for the EWDGA system gives encouraging results in terms

of fault diagnosis and its accuracy is comparable and in some cases even better than the conventional fault

diagnosis techniques.

Therefore, it is evident from this study that making use of the energy content of the fault gases certainly

aids in the fault diagnosis process and makes the diagnosis of transformer incipient faults, particularly the higher

energy content (thermal) faults, easier.

Nomenclature
ANN Artificial neural network

DGA Dissolved gas analysis

EWDGA Energy-weighted dissolved gas analysis

BP Backpropagation

H2 Hydrogen

CH4 Methane

C2H6 Ethane

C2H4 Ethylene

C2H2 Acetylene

F0 No fault

F1 Partial discharge with low energy density

F2 Partial discharge with high energy density

F3 Discharge (arc) with low energy

F4 Discharge (arc) with high energy
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F5 Thermal faults of temperatures of <150 ◦C

F6 Thermal faults of temperatures between 150 ◦C and 300 ◦C

F7 Thermal faults of temperatures between 300 ◦C and 700 ◦C

F8 Thermal faults of temperatures of >700 ◦C

∆H◦
f Enthalpy of formation
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