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Abstract: Extracting 3D information from 2D images is an inverse estimation problem and a challenging task in

itself. The aim of 2D to 3D reconstruction is to generate either a volume or a surface representing the object from

multiple views. This paper presents a simple and accurate multiple-view volumetric 3D reconstruction method using

an integrated approach based on homography estimation and voxel mapping. The homography-based approaches give

accurate estimates but do not provide system dynamics. The voxel-based volumetric reconstruction methods provide

system dynamics that are essential for system modeling. However, they face challenges while modeling the concavities.

This paper presents a proposed 3D reconstruction method that combines homography estimation and the voxel mapping

approach for improving the accuracy of 3D reconstruction. Experimental results show that the method efficiently

reconstructs objects of known and unknown shape, fragile objects, and complex scenes with multiple objects. The use

of homography along with voxel mapping in a multiple-camera environment brings out more details of the object for

improving the quality of reconstruction.
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1. Introduction

Three-dimensional reconstruction is an integral part of various applications in almost all disciplines. Some

important applications of this field include virtual reality, robot navigation, augmented reality tasks, games,

animation, motion pictures, industrial measurements, surface analysis, volumetric analysis, and forensic ap-

plications [1]. Three-dimensional reconstruction is an inverse estimation problem and 3D information can be

recovered from 2D images if the camera projection matrices are known. Several attempts have been made by

researchers to reconstruct the 3D shape of an object from multiple images. There is always a tradeoff between

computation speed, computation complexity, accuracy, and feasibility in the implementation of these methods.

Consequently, bringing more accuracy and quality to 3D reconstruction is still a challenging and open research

problem. The homography-based approaches give accurate estimates but do not provide system dynamics.

Hence, these approaches are used in applications such as tennis referral systems, where system dynamics are

not important [2–4]. On the other hand, the voxel-based volumetric reconstruction methods provide system

dynamics that are essential for system modeling. These methods provide the true essence of the volume of

an object. However, these approaches face challenges while modeling the concavities. This paper presents the
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proposed multiple-view volumetric 3D reconstruction method, which combines homography estimation and the

voxel mapping approach for improving the accuracy of 3D reconstruction.

The rest of the paper is organized as follows. Section 2 presents the related works in the field of 3D

reconstruction. Section 3 throws light on the methodology and details of the proposed 3D reconstruction

method. Experimental results of the proposed method are discussed in Section 4. Section 5 presents the

conclusion.

2. Related works

The literature reveals that many researchers have contributed to the development of 3D reconstruction over

the last two decades. Researchers have used voxels, polygon mesh, or level sets for representing objects [5].

Algorithms based on the multi-view stereo (MVS) match feature points in multiple images of the object and

compute depth maps. Later the depth maps are fused into a single depth map to extract the object surface

[6]. These approaches are less efficient computationally and are complex for implementation. The surface

reconstruction method designed for multiscale scenes uses very dense matching of feature points in multiple

images to reconstruct the object surface [7]. The approach developed by Jang et al. [8] uses multiple color

images along with the depth image to extract the 3D surface and generate the 3D model. Although the method

handles the self-occlusion problem, further improvement is needed to make the method robust. The 3D surface

reconstruction method proposed by Shen [9] makes use of a patch-based stereo matching approach. The method

is able to handle large-scale scenes and produce dense point clouds. However, it is less efficient computationally.

The approaches using voxel-based volumetric representation obtain the visual hull of an object from

its silhouettes [10]. Although the method addresses the issue of illumination constraints, the algorithm is

computationally complex. The method developed by Srinivasan et al. [11] uses geometric intersection to obtain

the visual hull of an object and extract the surface by employing a contour model. However, the algorithm faces

challenges of constrained resolution while constructing these contours. A survey of volumetric 3D reconstruction

methods was presented in [6]. The approach presented in [12] uses multiresolution mapping for volumetric

reconstruction. The method using the silhouette probability maps deals with the errors in camera calibration

or the errors in the silhouette generation step robustly [13]. Although the algorithm handles objects with less

texture, further improvement in the accuracy of reconstruction is needed. The approach developed by Chen et

al. [14] uses the depth map fusion approach to obtain a single volumetric representation for an object and extract

the surface. The algorithm addresses the issue of computation time/memory tradeoff. Development of the MVS

methods of 3D reconstruction has witnessed tremendous growth in recent years [15]. The approach using the

deep learning algorithm uses 3D CAD models and reconstructs objects from a single depth map [16]. Another

learning-based approach for 3D reconstruction uses the relation between 2D observation and object shape [17].

However, the learning step makes these approaches more complex computationally. The surface representations

obtained by these methods are often incomplete and sensitive to numerical instabilities. Moreover, they face

challenges while reconstructing complex objects. On the other hand, the volumetric methods are able to

reconstruct 3D models of objects with a complex shape [18]. Zhao and Xiao [19] implemented the voxel coloring

algorithm in the HLS color space instead of the RGB color space in order to overcome the limitation of the

ordinary voxel coloring algorithm. However, the conversion of multiple images into HLS color space increases the

computation time. An automatic reconstruction of the volume is possible with the parameterization of a voxel

space and calculation of the 3D polyhedron [20]. However, this makes the algorithm complex. Homography-

based methods are widely used in tracking applications. Though accurate, these methods do not give the
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system dynamics needed for modeling [3]. The proposed method integrates homography estimation and the

voxel mapping approach for improving the accuracy of 3D reconstruction.

3. Methodology

The proposed 3D reconstruction method uses multiple cameras to acquire multiple images of an object. Figure

1 presents the schematic diagram of the reconstruction pipeline of the proposed method. After acquiring

multiple images of the objects, images of the calibration grid are obtained for camera calibration. The camera

parameters are used to compute camera matrices and to determine the initial limits of the volume of the object.

Subsequently, the reconstruction algorithm performs voxel mapping based on the silhouette and homography

estimates. The last step in the proposed method is to extract the surface of the object. Details of the

reconstruction pipeline are presented in the following subsections.
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Figure 1. Schematic diagram of the reconstruction pipeline of the proposed method.

3.1. Image acquisition and camera calibration

The proposed 3D reconstruction method uses 4 Nikon-S3600 digital cameras. The cameras are placed at different

elevations around the turntable for acquiring multiple images of the calibration pattern and of the objects to

be reconstructed. All the images are identical in size (1600 × 1200) and resolution (300 dpi). The accuracy

of camera calibration governs the accuracy of the reconstruction method. It is the process of computing the

internal parameters, such as focal length, principal point, skew and external parameters, translation vector, and

rotation matrix of the camera. These parameters are used further to compute the camera matrices and pose of

the cameras. While imaging, the camera maps the object point, P (X,Y, Z), to the corresponding 2D image

point, Pc(uv) [21]. Mathematically, this transformation is expressed as follows:
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P 7→ Pc. (1)

Mapping Eq. (1) can be expressed in homogeneous coordinates as:

 u
v
1

 = [K3×3].

[
R −Rt
0 1

]
X
Y
Z
1

 , (2)

where K3×3 is the intrinsic parameter matrix of the camera:

K3×3 =

 muf s mutu
0 mvf mvtv
0 0 1

 , (3)

where f represents the focal length, mutu and mvtv represent the principal point coordinates, s represents

the skew parameter, and mu and mv represent the pixel resolution along the axes of the image plane of the

camera. Translation vector t3×1 and rotation matrix R3×3 are the extrinsic parameters of the camera. Thus,

the final mapping equation is:

Pc = C3×4P, (4)

where the camera matrix is:
C3×4 = [K3×3] [R3×3] [I3×3,−t3×1] . (5)

The camera matrix consists of twelve elements, of which eleven elements are unknown variables and the last

element is unity. The problem of finding the eleven unknown variables of the camera matrix requires the set

of linear equations giving correspondences between the 3D points and respective image points. The camera

calibration toolbox developed by Bouguet is used for this purpose [22,23]. A calibration grid sized 270 mm ×
210 mm with each square sized 25 mm × 25 mm is used as the calibration object. Figure 2 shows sample

images of the calibration grid acquired using one of the cameras in a multiple-camera setup. The images are

acquired by rotating a calibration grid using the turntable while maintaining the same pose of the camera. After

selecting the tie points, the calibration toolbox detects the corner points of the calibration grid and estimates

the camera parameters and the camera matrix. All the cameras are calibrated using same procedure. Distortion

parameters of the cameras are neglected due to their small value.

Figure 2. Images of calibration grid acquired using a camera in a multiple-camera setup.

3.2. The 3D reconstruction

The proposed method combines homography estimation and the voxel mapping approach. The method uses

object silhouettes along with homography estimates to decide the occupancy of the voxel. In the beginning, the

method estimates the limits of the initial volume derived from the poses of multiple cameras. The proposed

method uses voxel representation for modeling the object. Hence, an initial volume is discretized to form
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the 3D voxel grid. The images acquired in the image acquisition step are segmented using the background

subtraction method to obtain object silhouettes. The background subtraction approach used in this method

is also suitable for complex backgrounds. However, a uniform and plain background is maintained during the

experimentation in order to make the segmentation process simpler. The object silhouettes are used to estimate

the silhouette probabilities in the multiple-camera environment. The succeeding step computes the interimage

homographies. The interimage homographies are estimated using direct linear transformation and singular

value decomposition to obtain relevant silhouettes for each view position. Each voxel is projected using the

camera matrices on corresponding images. The homographies are used to warp these images on the reference

image and the error between the 2D projections of warped points and the 2D projection in reference view is

computed. Lower error signifies better correlation between the views. The error estimate is further used along

with the silhouette probabilities to decide the occupancy of the voxel. In the voxel mapping step, the voxels are

mapped either to the object or to the background based on their occupancy weights. The occupancy weights

of the voxels are used further as isovalues in the surface extraction process. The model is refined later by

applying the color consistency constraint. This process is carried out for all voxels in the 3D voxel grid. The

last step in the reconstruction pipeline is to extract the object surface from the voxel volume. The proposed

method uses a surface triangulation approach to reconstruct the surface from the volume data efficiently. The

reason for the use of the surface triangulation approach is to overcome the limitations of the voxel and particle

representations of the surface. The voxel representations face problems of the visibility of voxel cubes after

zooming, whereas the particle representations face problems of the holes in the reconstructed surface [24]. Here,

each grid cell is represented in terms of its vertices and corresponding scalar values. Based on the isovalue, the

surface extraction process creates further planar facets representing the isosurfaces passing through the grid cell.

Subsequently, triangular facets corresponding to the isosurface with unique codes are generated. Each grid cell

with eight vertices can have a maximum of 256 configurations of triangular facets. The grouping of symmetric

configurations reduces the number of configurations to 15. The vertices having scalar values below or above

the isovalue are identified to assign an 8-bit index to the voxel. This index is mapped to a unique 12-bit code

using the edge look-up table, which gives the information about the edges that the corresponding isosurface

intersects. The vertices of the isosurface that lie on the edges are obtained using the linear interpolation. Let

us consider one of the edges of the voxel cube that joins vertex A and vertex B with corresponding scalar values

‘V1 ’ and ‘V2 ’. The isosurface with the isovalue ‘V’ intersects the edge at point ‘T’, which is determined as

follows:

T =

{
A (V−V2)

V2−V1
+
B (V−V1)

V2−V1

}
(6)

This leads to the computation of triangle vertices and their normals to further extract the object surface. The

surface mesh model of a toy object, a duck, showing a magnified view of the mesh corresponding to the concavity

is presented in Section 4.

4. Experimental results and discussion

The experimentation is performed on an Intel Core i5-2450M CPU @ 2.50 GHz using the Windows 7 operating

system. The proposed method is tested using objects of known and unknown shapes. Objects with conventional

shapes, such as spheres, prisms, and cubes, are used as objects with known shape and geometrical parameters,

while toy objects such as an orange fish, duck, rooster, rabbit, and wooden pot are used as objects having

shapes different than the conventional geometrical shapes. The shape of the wooden pot is less complex than

the shape of the other objects. The performance of the method is evaluated by comparing the volume obtained
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through 3D reconstruction for sphere-, prism-, and cube-shaped objects with their actual volume obtained using

geometrical measurements and volume measured using the water displacement method. Figure 3 shows 9 sample

views out of 72 views of sphere-, prism-, and cube-shaped objects [25] acquired using the multiple-camera setup.

Figure 4 shows 9 sample views of the orange fish, duck, rooster, rabbit, and wooden pot acquired using the

multiple-camera setup.

Figure 3. Nine sample views out of 72 views of the objects with known shapes, sphere, prism, and cube [25], acquired

using a multiple-camera setup.

Figure 4. Nine sample views out of 72 views of the objects, orange fish, duck, rooster, rabbit, and a wooden pot,

acquired using a multiple camera setup.

The binary silhouettes of the objects with known shapes and the objects with unknown shapes are shown

in Figure 5 and Figure 6, respectively. The silhouettes are further used along with the homography estimates

in the voxel mapping process and to find the voxel occupancies. Results show that the quality of the silhouettes

is good. Hence, a voting approach is not needed while obtaining the silhouettes. Figure 7 shows the surface

mesh model of the 3D reconstruction of duck. Results show that the method models the concavities efficiently.

Figures 8 and 9 show the results of the 3D reconstruction of objects with known shapes and objects with

unknown shapes using the proposed method respectively. Results show that the proposed method reconstructs

the objects with known and unknown shapes efficiently. The method is also tested for reconstruction of a fragile

object and of a scene with two objects. The sample images, silhouettes, and reconstruction results in both

the cases are shown in Figure 10. From Figures 8–10, it is evident that the method reconstructs the objects

with complicated shapes with concavities efficiently. Thus, the use of homography estimates and silhouettes

for computation of the voxel occupancies in a multiple-camera environment helps the method to improve the

reconstruction quality. Details such as the beak and wings of the duck, wings and tail of the orange fish, wattles

and comb points of the rooster, and overall shape of the rabbit are reconstructed with good quality. The method

reconstructs the objects having few feature details, such as the wooden pot, efficiently. Figure 11 shows several

views of the 3D reconstructed objects after texture mapping.

Table 1 presents the comparison between the volume of the objects with known shapes obtained using the

geometrical parameters, their volume measured using the water displacement method, and the volume estimated

using the proposed method. Table 2 presents the comparison between the real-world volume and the estimated

volume of objects with unknown shapes. The estimated volume is obtained by converting the voxel volume into

a real-world unit (cm3). The voxel resolution and the camera parameters are used for converting the volume
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Figure 5. Sample silhouettes of the objects with known shapes: sphere, prism, and cube.

Figure 6. Sample silhouettes of the objects with unknown shapes: orange fish, duck, rooster, rabbit, and a wooden pot.

Figure 7. Surface reconstruction – surface mesh model of the 3D reconstruction of a duck.

Figure 8. Sample views of the 3D reconstructed objects, sphere, prism, and cube [25], consisting of views obtained from

the new viewpoints.
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Figure 9. Sample views of the 3D reconstructed objects, orange fish, duck, rooster, rabbit, and a wooden pot, consisting

of views obtained from the new viewpoints.

Figure 10. Left: 3D reconstruction of a fragile object – lotus, right: a scene with two objects.

Figure 11. Several views of the 3D reconstructed objects after texture mapping: orange fish, duck, rooster, rabbit, and

wooden pot.

into the real-world units. It is observed that the average accuracy in the volume estimation is more than 98%.

Thus, the proposed volumetric reconstruction method accurately reconstructs the objects of known as well as

unknown geometrical shapes. Methods using structure from motion (SfM) face challenges while reconstructing

the point cloud for the objects with fewer details. Figure 12 shows the point cloud generated for a lotus object

using VisualSFM [26]. It is observed that the point cloud is sparse even after dense matching. This affects

the extraction of the object surface. The dense matching approach is computationally more complex since it

needs a large number of views. On the other hand, the proposed method reconstructs the object from a smaller

number of views. However, the method faces challenges in reconstructing deep concavities between the petals

of the lotus object.

Figure 12. Left: Point cloud obtained for the lotus object using VisualSFM [26], right: a 3D model of the lotus obtained

using the proposed method.

762



JADHAV et al./Turk J Elec Eng & Comp Sci

Table 1. Comparison between the actual volume and the estimated volume of the objects with known shapes.

Actual volume Volume measured Volume

Object with known obtained from the using the water estimated using

geometry under the 3D geometrical displacement the proposed

reconstruction measurements (cm
3
) method (cm3) method (cm3)

Sphere with diameter of 6.5 cm 143.79 144.21 144.02

Prism with height of 7.5 cm and

side of triangular faces of 2.5 cm
20.29 20.34 20.88

Cube with side of 6 cm 216 216.15 216.36

Table 2. Comparison between the real-world volume and the estimated volume of the objects with unknown shapes.

Object with unknown Actual (real-world) volume Volume estimated using the

geometry under the measured using the water proposed 3D reconstruction

3D reconstruction displacement method (cm3) method (cm3)

Orange fish 54.78 55.39

Duck 58.43 59.33

Rooster 47.67 48.26

Rabbit 49.65 50.16

Wooden pot 51.12 52.15

Performance of the proposed method is compared with the performance of the method using a single

camera and the turntable method on the basis of computation time and reconstruction completeness [27]. The

completeness percentage is the percentage of the object shape reconstructed with respect to the ground truth.

Figure 13 shows the comparison between the proposed method and the single-camera method on the basis of

completeness [27]. It is observed that the use of homography estimates along with the object silhouettes for

computation of the voxel occupancy in a multiple-camera environment improves the accuracy of the proposed

method. Table 3 presents a similar comparison on the basis of the computation time. It is observed that the

computation time in the proposed multiple-camera method is longer than in the single-camera method. The

computation time is affected mainly by the time required for obtaining the final voxel volume. Table 4 shows

the comparison of the proposed method with the existing multiple-view reconstruction methods on the basis

of the reconstruction completeness and accuracy. The number in the third column describes the accuracy of

reconstruction. The number #. ## indicates that more than 90% of the surface points of the reconstructed

object are within #.## (in mm) distance from the corresponding points in the ground truth. Results show

that the reconstruction quality of the proposed method is on par with the methods mentioned in Table 4.

The performance of the method is further analyzed by a varying number of views and voxel resolutions.

The effect of the increase in number of views on the reconstruction completeness and computation time is shown

in Figure 14. It is observed that the increase in the number of views increases the quality of the reconstruction

at the cost of the increase in computation time. As the quality of reconstruction is very poor for a number of

views less than 9, the number of views is increased from 9 to 36 in three steps. Figure 15 shows the effect of

the increase in the number of voxels on the reconstruction completeness and computation time. The number of

voxels is increased in powers of 10 from 102 to 106 . The logarithm of the number of voxels and corresponding
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Figure 13. Comparison between the performance of the proposed method and the single-camera method [27] on the

basis of completeness.

Table 3. Comparison between the proposed method and the single-camera method [27] on the basis of the computation

time.

Object
Computation time (s)

Single camera method Proposed method

Orange fish 70.19 117.31

Duck 61.96 99.67

Rooster 63.18 105.30

Rabbit 105.33 149.57

Wooden pot 81.41 137.58

Table 4. Comparison between the performance of the proposed method and other multiple-view methods evaluated on

the basis of the reconstruction completeness.

Reconstruction method Completeness (%) Accuracy (in mm)

Vogiatzis et al. [28] 96.20 0.49

Kolmogorov and Zabih [29] 99.50 2.85

Hernandez and Schmitt [30] 99.50 0.45

Goesele et al. [31] 86.20 0.46

Furukawa and Ponce [32] 99.20 0.37

Vu et al. [33] 99.70 0.53

Proposed approach 99.33 0.43

Note: % completeness is the percentage of the object shape reconstructed with respect to the ground truth. The

number #.## in the third column indicates that more than 90% of the surface points of the reconstructed object are

within #.## (in mm) distance from the corresponding points in the ground truth.

values of completeness and computation time are plotted in respective graphs. The quality of the reconstruction

is very poor for numbers of voxels less than 10,000. A more accurate reconstruction can be achieved with higher

voxel resolution. However, it will increase the computation time in manifold.

5. Conclusion

The paper presents a simple and accurate multiple-view volumetric 3D reconstruction method using the in-

tegrated approach based on homography estimation and voxel mapping. The proposed 3D reconstruction
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Figure 14. Left: Effect of the increase in the number of views on the reconstruction completeness. Right: Effect of the

increase in the number of views on the computation time.

Figure 15. Left: Effect of the increase in the number of voxels on the reconstruction completeness. Right: Effect of the

increase in the number of voxels on the computation time.

method combines homography estimation and the voxel mapping approach for improving the accuracy of the

3D reconstruction. The details of the reconstruction pipeline are described step by step with the results. The

experimental results show that the method reconstructs objects of known and unknown shape, fragile objects,

and complex scenes with multiple objects efficiently. The results prove that the reconstruction quality is good.

The use of homography along with voxel mapping in a multiple-camera environment brings out more details

of the object for improving the quality of reconstruction. The results show that the proposed method offers

better quality of reconstruction with multiple cameras and a turntable. Cameras placed at different elevations

help in bringing out more details of the object. The performance of the proposed method is on par with the

existing multiple-view 3D reconstruction methods. The proposed method has better accuracy in volume esti-

mation. Hence, the method can be effectively used in industries for volumetric measurements and analysis. The

performance of the method in modeling deep concavities can be further improved.
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