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Abstract: Despite the emergence of digitalization, people still interact with institutions via traditional means such as

submitting free formatted petitions, orders, or applications. These noisy documents generally consist of complex relations

that are nested, higher-order, and intersentential. Most of the current approaches address extraction of only sentence-

level and binary relations from grammatically correct text and generally require high-level linguistic features coming from

preprocessors such as a parts-of-speech tagger, chunker, or syntactic parser. In this article, we focus on extracting complex

relations in order to automate the task of understanding user intentions. We propose a novel language-agnostic and noise-

immune approach that does not require preprocessing of input text. Unlike previous literature that uses dependency

parsing outputs as input features, we formulate the relation extraction task directly as a one-shot dependency parsing

problem. The presented method was evaluated using a representative dataset from the banking domain and obtained

91.84% labeled attachment score (LAS), which provides an improvement of 42.85 percentage points over a rule-based

baseline.
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1. Introduction

Relation extraction (RE) is a crucial step to many natural language understanding tasks, such as question

answering [1] and information extraction, e.g., from business reports [2], health records [3], or medical documents

[4]. Despite recent advances in technology, people still continue to interact with institutions like banks,

government offices, and law firms via traditional means such as submitting free formatted petitions, orders, or

applications. Considering the volume of data, understanding user intentions from these documents is a tedious,

time-consuming task that is mostly performed by humans. Automatic understanding of user intentions can be

considered a type of RE problem, which usually consists of extracting related parameters of intention as named

entities (e.g., Person, Location) and finding relations between these (e.g., APPLYJOB (Person, Organization)).

Previous literature in RE usually focuses on binary relations r = {ei , ej } , where ei is the ith entity in a

document D . However, the structure of user intentions is generally of higher order, such as r = {e1 , e2 , ..., en }
(e.g., REMIND (Person, Date, Location, Topic)). Although D is mostly considered a single well-formed sentence

by previous work, documents like petitions, applications, and orders generally contain multiple sentences along

with supporting unstructured text, e.g., tables, address information, and signatures where entities of relations
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ŞAHİN et al./Turk J Elec Eng & Comp Sci

may occur in different parts of the document. Furthermore, entities may have useful additional “properties,”

as in the popular knowledge graph Freebase [5]. For example, an application form or a case file may contain

“name,” “gender,” and “age” properties related to a Person entity, which is actually another kind of relation

that should be detected.

The problem of extracting predefined relations between entities is generally considered as a machine

learning (ML) task. In addition to supervised feature-based and kernel-based methods, distantly supervised

and neural models have been employed to address RE. Most of the previous methods heavily rely on outputs

produced by syntactic parsers and perform RE at the sentence level. However, document D may contain noisy,

ungrammatical text due to the input channels (such as fax, e-mail, or scanner) in addition to its unstructured

format. This complicates using linguistic preprocessors (e.g., parts-of-speech tagging, chunking, and syntactic

parsing) that are tailored for well-formatted text. Furthermore propagation of preprocessor errors hinders the

performance of RE systems.

In this work, we focus on extracting higher-order, nested, intersentential relations between entities along

with their additional properties from free-format documents in order to automate the task of understanding user

intentions. We propose a novel language-independent approach that does not require high-level preprocessing

of input text. Unlike previous relation extraction literature that uses dependency parsing outputs as input

features, we formulate the relation extraction task directly as a one-shot dependency-parsing task by considering

syntactic units as named entities occurring within an entire document instead of tokens of a single sentence. This

method is evaluated using a representative dataset from the banking domain, where “transaction” intentions

were extracted, and a labeled attachment score (LAS) of 91.84% was obtained.

2. Related work

In this section, we discuss previous literature on supervised and semisupervised machine learning methods

used for RE among with commonly used data sets. Later we give a brief description of dependency parsing

methods. Kambhatla [6] and GuoDong et al. [7] train separate binary classifiers such as one-versus-many SVM

for each relation that employ features, such as dependency-tree paths, bag of chunk heads, chunk paths, bag of

words, named entity types, and number of words between entities, that need careful feature design. To address

this problem, kernel-based methods that explore a higher dimensional input space have been proposed [8–10].

However, most features used by these supervised methods require preprocessing of input via syntactic parsers.

More recently, end-to-end neural-network–based methods have been employed for RE [11,12]. Although these

methods do not require syntactic parsing, they rely on a large number of parameters and generally execute at

the sentence level.

Higher-level tasks such as relation extraction [13], event extraction [14], and nested named entity recog-

nition [15] have previously been modeled within the dependency-parsing framework. In [14], researchers form

a tree of entities and event anchors (phrases that anchor events) similar to our work. They train a dependency

parser from the “event trees” that are composed of extracted entities and event triggers. Although this approach

is close to ours in spirit, they supply features that require a prior syntactic parsing (e.g., syntactic paths in

the original sentence between nodes in an event dependency) and domain-specific information (e.g., ontology)

and extract events at sentence granularity. On the other hand, our approach does not require any high-level

syntactic knowledge and executes at document level.

Automatic content extraction (ACE) [16] is the most common RE evaluation corpus used by the majority

of supervised techniques. These multilingual corpora have different types of relations, e.g., location, family,
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employment, affiliation. However, relations are limited to those that are expressed within a single sentence and

occur between two entities. AIMED [8] is a collection of articles in the medical domain, where interactions

between protein pairs are labeled. Although relations are intersentential (document-level), AIMED contains

only one entity type (protein) and one relation type (interaction). SemEval2010 Task8 [17] introduces another

corpus, which contains sentence-level relations between nominals rather than entities.

Dependency-parsing methods aim to grammatically analyze sentences via extracting this dependency

structure based on dependency grammar theory [18]. In other words, they establish parent–child relationships

between words and form directed, connected, and acyclic dependency trees of sentences. Graph-based and

transition-based parsing are the two most commonly used data-driven dependency-parsing methods. Graph-

based methods predict entire graph given the input using maximum spanning tree algorithms [19] while

transition-based parsers [20,21,22] predict transitions given the input and history. Later transition-based

methods are extended to handle long-range dependencies that cause nonprojective structures in exchange for

increased processing time [23,24].

3. Problem in hand

Customer interactions with banks appear in the form of a free-format order document similar to Figure 11.

Each customer order for divergent process types (e.g., money transfers, tax payments, salary payments etc.)

is received from different communication channels. Then back office operators manually process the order

type, enter details of valid transactions, and send the order to the approval workflow. The automatization of

this process, although still needing human approval, has a crucial impact on total operator workload in such

organizations.

Figure 1. A sample document with one sender and two receivers. (Due to customer privacy, real values are blurred.)

This study focuses on 4 main bank process types: EFT, book-to-book money transfers, foreign currency

1 Glossary for Figure 1 - “Nezdinizdeki”: under your possession; “nolu”: with number; “hesabımız aşağıda belirtilen ödemelerin
yapılmasını rica ederiz”: We kindly request the following payments to be processed.; “Alıcı”: Receiver; “Banka”: Bank; “Tutar”:
Amount; “Açıklama”: Explanation.
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transfers, and import/export payments. For most of the banks, these process types constitute 70% of all back

office processes. These process types cover 4.5 million completed transactions yearly. As customers are not

provided any structured form, all customer orders are unique and free-formatted.

Different from public datasets used in RE, the data in our case are composed of many complex relations

and some domain specific relations. Each document contains at least one transaction (1.2 transactions on

average), which consists of a sender, receiver, and process details. The complexity of the problem arises from

the fact that order documents may include multiple transactions having separate or common senders related to

single or multiple receivers. In addition, different process types may coexist in the same order document and

low resolution of order images may lead to noisy text.

In Table 1, the first column shows the named entity types previously produced by a named entity

recognition (NER) system [25], where the second column represents the transaction entity types, which are

compositions of named entities. For example, ⟨AccountHolder⟩ has the properties 1 to 4, where ⟨Amount⟩ has

a value and currency given with ids 5 to 6. Then we define a transaction relation as

rt = {⟨AccountHolder⟩, ⟨AccountHalder⟩, ⟨Amount⟩, ⟨Explanation⟩} ,

where the two ⟨AccountHolder⟩s represent sender and receiver, respectively.

Table 1. Named entities (properties) versus transaction entities.

ID Named entity Transaction entity
1 Account Number

⟨AccountHolder⟩
2 IBAN
3 Client Name
4 Organization Name
5 Amount Value ⟨Amount⟩
6 Currency
7 Explanation ⟨Explanation⟩

Figure 1 provides a typical banking document that contains two transactions. In total, the document

contains 7 transaction entities, namely 3 account holders, 2 amounts, and 2 explanations. In this sample order,

the sender ⟨AccountHolder1⟩ sends two different amounts (⟨Amount1⟩ , ⟨Amount2⟩) to the other two account

holders (receivers ⟨AccountHolder2⟩ and ⟨AccountHolder3⟩) with different explanations (⟨Explanation1⟩ and

⟨Explanation2⟩). The document contains an introductory natural language sentence and a table-like structure

to denote the receivers and process details information. For clarification, the related properties for each

transaction entity are represented with a unique identifier within the figure. For example, Account Number 1

and Organization Name 1 are properties of ⟨AccountHolder1⟩ in the figure. This sample D may be represented

as ∪2
i=1ri where the relations are as follows:

r1 = {⟨AccountHolder1⟩, ⟨AccountHalder2⟩, ⟨Amount1⟩, ⟨Explanation1⟩}

r2 = {⟨AccountHolder1⟩, ⟨AccountHalder3⟩, ⟨Amount2⟩, ⟨Explanation2⟩}

In our sample domain, the RE task may be seen as jointly extracting both the (1) intratransaction (a.k.a.,

“PropertyOf” relations) and (2) intertransaction relations that exist between the two transaction entities.
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4. Modeling and representation

The overall architecture (Figure 2) receives images of customer orders as input and aims to output all valid

transactions within these so that they can be integrated into a banking system for approval process. ABBY

FineReader Engine 11’s optical character recognition (OCR) tool is used for digitizing images into text format.

However, like any other OCR system, this one is also prone to recognition errors and therefore the texts are often

noisy. After image-to-text conversion, the resulting noisy text is provided to a NER system [25]. As the output

of the NER system, noisy text is tagged with named entities described in Table 1 and sent to the data modeling

and representation module, which transforms text into a processable format for dependency parsers. After that,

the formatted text is fed to the dependency-parsing module, which extracts relations between entities. Finally,

these binary relations are combined into transaction relations (rt).

OCR
Noisy Text Tagged 

with Named Entities
NER

Data Modeling & 
Representation

Parsing
Converting into 

Transactions
Noisy
Text

Formatted
Text

Relations

Figure 2. System architecture.

5. Modeling

Traditional dependency-parsing methods aim to extract the syntactic structure of a sentence in terms of binary

relations between tokens, such that collection of these relations yields to a rooted, acyclic, connected tree. In

contrast to previous methods [7,10] that employ dependency trees as linguistic features or input to tree kernels,

here the RE is formulated directly as a dependency-parsing problem by treating named entities as syntactic

units. In Section 3, the RE task is introduced as jointly extracting intratransaction and intertransaction

relations. In order to formulate the problem as a valid dependency-parsing task, a dependency grammar needs

to be designed such that 1) higher-order relations can be represented with a collection of binary relations;

2) intersentential relations can be processed as a single input sequence, and 3) nested relations (intra- and

intertransaction relations) can be deduced by following dependency links between entities.

For a classical syntactic dependency parser, the input is a natural language sentence composed of

sequentially ordered words/tokens. For this purpose, all the detected named entities over an entire document

are ordered according to their position in the document and used as tokens of the input sequence. A special

punctuation node is placed to finalize the sequence. Therefore, binary dependency relations that traditionally

occur between tokens become relations between named entities (Table 1, first column) in this case.

Table 2 provides the dependency relation labels used in our grammar. The first four rows represent

intertransaction entity relations and the next three give the intratransaction (“PropertyOf”) relations. In our

modeling, all kinds of relations are treated at the same level and extracted in a single stage. In other words,

the transaction entities are abstract data types and are later formed from binary relations extracted by the

dependency parser. In this respect, named entities may be seen as words in a phrase of a natural language

sentence and transaction entities may be seen as subtrees with their own heads and internal dependency

structures. In our proposed dependency grammar, the head node of an ⟨AccountHolder⟩ is linked to the

sentence dependency tree head (PUNCT) by either the Sender or Receiver relations. Figure 3 illustrates

a simple dependency graph with one receiver and one sender providing most of the possible dependency links

between named entities. The head node within an ⟨AccountHolder⟩ (subtree) may be either an IBAN or an

Account Number. Name Of defines the internal dependency structure of an ⟨AccountHolder⟩ composed of an
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Organization Name and IBAN. For ease of understanding, the abstract transaction entity types are shown within

dotted rectangles. One should note that although an additional transaction entity ⟨AccountHolder⟩ (receiver)

exists, it is not shown in the figure since its conforming named entities (Client Name and Account Number) are

not sequential.

Table 2. Dependency labels.

Name Explanation
SENDER From an IBAN or an Account Number to a PUNCT node
RECEIVER From an IBAN or an Account Number to a PUNCT node
TRANS EXPL From an Explanation to a receiver’s IBAN or an Account Number
TRANS AMOUNT From an Amount-Value to a receiver’s IBAN or an Account Number
NAME OF From an Organization Name or a Client Name to an Account Number or an IBAN
CURR OF From Currency to Amount Value
SAME Between duplicate entities of any type
OTHER Between uninformative entities and PUNCT node

Figure 3. Abstract representation of transactions on the toy example.

Each transaction defined in the same document has distinct receivers, although they may have the same

sender. Since receivers are unique to a transaction, we bind the ⟨Explanation⟩ and ⟨Amount⟩ of the transaction
to the receiver’s head (which should be either IBAN or Account Number as previously explained) with the

dependency relations Trans Expl and Trans Amount accordingly. The head node within an ⟨Amount⟩ is

always an Amount Value and a Currency entity is linked to this node via Curr Of label.

Unfortunately, real-world documents may look more complex than Figure 3. In Figure 4, the dependency

tree of a real-world document (from Figure 1) is shown. This time, not only the named entity types but also

their surface forms from the original text are provided within the nodes. There may be cases where an entity

is detected but is not involved in any transaction. For example, in Figure 4 there are four Currency entities

where two of them are properties of a transaction ⟨Amount⟩ and linked to related Amount Value with the

relation type Curr Of. The remaining two currency entities specify the account type (i.e. a USD account),

which is not defined as a property of an ⟨AccountHolder⟩ in our representation scheme. In order to preserve

the connectedness property of the dependency tree, we connect these entities to the PUNCT node with the

label Other. Another case may be duplication of entities that took part in the transaction, usually caused

by mentioning organization name (in the header/footer) or account number information multiple times. We

connect such entities to each other with the label Same according to their occurrence order.

835
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5.1. Representation for parsing

Once we have modeled the problem, the next stage is to represent documents with a representation scheme

suitable for the available dependency parsers. Most dependency parsing algorithms work with a column

based input format named after a CoNLL shared task [26]. Although there appeared many variations in

the following years, CoNLL-style formats became a de facto standard both for treebank representations [27,28]

and dependency parsers. In this format, each row represents tokens within a sentence and columns correspond

to fields of tokens. Traditionally, these fields are linguistic properties such as lemma, postag, and morphological

features followed by the identifier (id) of a parent node and its dependency type.

Inspired from the CoNLL scheme, we introduce 9 column/fields namely as ID, Form, NE, MINUS2,

MINUS1, PLUS1, PLUS2, HEAD, and DEPREL. The representation of our real-world example (Figure 1) is

provided in Table 3 (MINUS2 and PLUS2 is not shown due to space constraints). Similar to parts-of-speech

tags crucial to traditional dependency parsers, NE columns define the type of our syntactic units (named

entities). Following the relation-extraction literature that made great use of surrounding/context words, words

are included in a context window of 4 as input features in minus and plus columns. In order to address data

sparsity of context columns, entity types are used instead of word surface forms when available.

Table 3. Input data representation in columnar format.

ID Form NE MINUS1 PLUS1 HEAD DEPREL
1 123456 Account Nezdln̂ızdeki nolu 15 SENDER
2 USD Currency nolu hesabımız 15 OTHER
3 Koc A.s Organization Saygılarımızla Merkez 1 NAME OF
4 1-Emtr Client Alıcı Yargıcı 8 NAME OF
5 19.700,00 Amount Tutar Currency 8 TRANS AMOUNT
6 USD Currency Amount Açıklama 5 CUR OF
7 Nişantaşı Expl Açıklama IBAN 8 TRANS EXPL

8 TR231456.. IBAN 19 Alıcı 15 RECEİVER
9 2-Fuat Ahmet Client Alıcı Banka 14 NAME OF
10 USD Currency Bank Tutar 15 OTHER
11 25.736,88 Amount Tutar Currency 14 TRANS AMOUNT
12 USD Currency Amount Açıklama 11 CUR OF
13 Bağdat Cadde Expl Açıklama IBAN 14 TRANS EXPL
14 TR338412.. IBAN IBAN 15 RECEIVER
15 . PUNCT IBAN 0 ROOT

Formatting documents with a well-known representation scheme provides the possibility of using many

different preexisting parsers. In this article, we chose a well-known open-source transition-based parser, Malt-

parser [29], which has nine built-in deterministic parsing algorithms and easily modifiable feature models where

users can define new features of arbitrary complexity.

The learning problem in transition-based parsing is to induce a classifier for predicting the next transition

given a feature representation of the current parser configuration. SVMs are widely used algorithms for this

task [20,22] and are reported to perform better than most other machine learning algorithms [29]. MaltParser

offers two built-in machine learning packages for SVM: LIBSVM and LIBLINEAR. The difference between

these two algorithms can be summarized as follows: LIBSVM employs the kernel mechanism, which has the

ability to implicitly add conjoined features, whereas LIBLINEAR expects an explicit definition of all feature

combinations. The capability of modeling implicit interactions between features greatly eases our feature
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engineering process. LIBSVM is considered more memory-efficient than LIBLINEAR since it does not store

weight vectors. LIBLINEAR executes in O(k) both for training and parsing, where k is the number of features,

while LIBSVM’s worst-case running time can be O(n), where n is the number of training instances. Therefore,

LIBLINEAR can be considered much faster than LIBSVM.

6. Experimental results and discussions

In this section, we first explain the annotation process and the resulting transaction dataset and present our

experiments on different deterministic parsing algorithms.

6.1. Dataset and evaluation methodology

First, the human annotators were asked to label the named entities and their related transaction entities such

that entities of the same transaction will have the same unique identifier. For example, if an Amount Value and a

Currency are properties of the same ⟨Amount⟩ , they will be attached a unique number i as in Figure 1 (similar

for other ⟨TransactionEntity⟩s). Then annotators fill the transaction information (rt) for each document.

Annotation was performed by two trained annotators, where the first annotator labeled the document and

the second one (a more experienced annotator), reviewed the document, correcting annotation mistakes. The

resulting dataset contains 11741 dependency labels from 1603 documents. Out of these, 1141 of the documents

contain nonprojective dependencies2 while 21 documents contain multiple transactions.

A 10-fold cross validation was used for evaluation and LIBSVM was used as the learning algorithm for all

parsing models. Considering that our features are highly interactive (e.g., NE-FORM, NE-MINUS1, MINUS1-

FORM ), the capability of modeling implicit feature combinations has been the primary reason for choosing

LIBSVM. However, the best model was also tested with LIBLINEAR and provided the results in the following

section.

The most commonly used measures to evaluate dependency parsing results are attachment scores, known

as a label attachment score (LAS) and unlabeled attachment score (UAS), and label scores known as label

accuracy (LA). LAS is calculated as percentage of tokens for which a system has predicted the correct HEAD

and DEPREL, whereas UAS is percentage of tokens with correct HEAD. Similarly, LA is measured as ratio of

tokens with correct DEPREL. The experiments were evaluated on different parsing algorithms by the use of

the above measurements and the precision, recall and F-measure on the detection of specific relation types are

also provided.

6.2. Experiments and discussions

A rule-based approach currently in use in a real-world scenario (Section 3) was used as a baseline system.

This algorithm basically attaches the first encountered IBAN or Account Number as Sender and remaining

ones as Receivers. Similarly, the first Amount Values and Explanations are assigned to the first IBAN

or Account Number, while others are assigned to remaining receivers. Organization Name and Client Name

are attached to IBAN or Account Number with respect to their order. Likewise, Currencys are adjoined to

Amount Values according to their order. A 48.22% LAS was obtained using this baseline algorithm.

First, we experiment with standard Nivre algorithms [20]: nivreeager and nivrestandard with the default

feature models provided by MaltParser. These methods perform in linear time but are limited to projective

dependency structures. Since 71% of our dataset contains nonprojective samples, we then focus on parsing

2 A tree structure is nonprojective if there exists crossing dependency edges.
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algorithms that are capable of nonprojectivity, such as covnonproj [20], stackeager [23], and stacklazy [24].

According to Table 4, stackeager and stacklazy3 methods were the highest scoring algorithms, with 91.84% and

91.67% LAS scores.

Table 4. Evaluation of different parsing algorithms.

Algorithm LA UAS LAS
nivreeager 55.43 54.07 53.6
nivrestandard 54.71 53.54 53.14
covproj 56.59 55.56 55.37
covnonproj 92.63 91.54 90.96
stacklazy 93.65 92.23 91.67
stackeager 93.81 92.33 91.84

Figure 5 shows the experimental feature models for the best-performing algorithm, stackeager. Stack

algorithms use a stack to keep partially processed tokens, represented with σ ; a buffer (list of inputs) to keep

all nodes that have been on stack, shown with τ ; and another buffer (lookahead) containing all nodes that have

not been on stack, denoted with δ . σi represents the (i+ 1)th entity from the top of the stack. τi and δi

denote the elements within the input buffers similarly. A base model that uses only FORM and NE features

(shown with base tab in Figure 5) provides a LAS score of 88.58%. FM#2, which includes all context features

(M1, M2, P1, P2) of σ0 achieves 90.21% LAS. In FM#3, we have included the surrounding words of the entity

in σ1 and in FM#4 a smaller window (M1, P1) of τ0 and τ1 are employed. While FM#3 increased the score

by 0.80%, our best feature model (FM#4) achieved 91.84%. We also compared the best feature model by using

LIBLINEAR. This model achieved a LAS score of 91.14%, although performing faster (45 s versus 11 min with

10-fold CV on an Intel Core I5-3470 CPU @ 3.20 GHz machine with 12 GB of RAM.

FM#4

FM#3

σ0 σ1 σ2 δ0 δ1 δ2 τ0 

+ +

+ ++

+

+

+

+

+

+

+

FORM

NE

M1

M2

P1

P2

B
a
s
e

oo oo o oo

o o o

FM#2

Figure 5. Feature models (FM) used for stack algorithms.

In Table 5, comparison of baseline and best-performing parsing algorithm is given. According to this table,

while SENDER and RECEIVER have the highest precision and recall scores, followed by TRANS AMOUNT,

3 Stack algorithms change the order of nodes with a SWAP operation, turning nonprojective sentences into projective ones in
expected linear time, while covnonproj is a list-based quadratic time algorithm thath tries to link each new node to each preceding
node.
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TRANS EXPL and OTHER are the most difficult labels to detect. One of the reasons is the low occurrence
rates of the latter two in our dataset, i.e. there are not enough training samples to teach these labels. Another

important reason is their “free” form. The OTHER dependency label can originate from any type of entity

that is not part of a transaction, which may confuse the classifier. The baseline system handles SENDER and

RECEIVER relations relatively decently; in general, however, it performs very poorly with other relation types.

As we can see from Table 5, the baseline system does not support OTHER/SAME complex relation types and

has a total labeled F1 score of 48.99%.

Table 5. Evaluation based on relation types.

Baseline system Best system
Dependency label # P R F1 P R F1
CURR OF 1300 43.50 56.08 48.99 94.21 96.46 95.32
NAME OF 2475 32.57 32.89 32.73 85.11 88.24 86.65
OTHER 164 0.00 0.00 0.00 15.60 20.73 17.80
RECEIVER 1635 76.19 96.27 85.06 97.87 98.17 98.02
SAME 2688 0.00 0.00 0.00 94.37 87.28 90.68
SENDER 1613 90.52 89.96 90.24 96.88 98.26 97.57
TRANS AMOUNT 1635 60.45 56.94 58.65 96.85 95.96 96.41
TRANS EXPL 231 69.66 70.56 70.11 84.43 89.18 86.74
TOTAL 11741 49.79 48.22 48.99 91.84 91.84 91.84

In order to investigate the impact of data size on the performance of our system, we designed an

experiment that iteratively increases the training set size from 1- to 9-fold and measures the performance

over the same 1-fold test set. The results (Figure 6) reveal that the performance increases drastically by the

addition of the initial folds but converges late, designating that size of the used training data is near a saturation

point.
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Figure 6. The impact of training data size.

The use of the introduced relation extraction approach in the banking system improves customer satisfac-

tion and overall customer experience due to fast response times and eliminated reworking caused by error-prone

manual operations. After the system integration, 20% of the manual workforce is saved. This is accomplished

by digitalizing 53% of the process workflow. As a result, overall cycle time of target processes is reduced sig-

nificantly. Book-to-book money transfer cycle time is decreased from 45 min to 13 min and EFT cycle time is

decreased from 31 min to 19 min. On a yearly basis, 53% digitalization means 3.2 million transactions can be
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completed without a manual workforce, since there are roughly 6.5 million transactions arriving each year. As

a future study, we aim to increase the coverage of the system with different process types like bill payments,

automatic bill payment orders, and credit card payments, which include different entities.

7. Conclusion

In this paper, we have proposed a language-independent relation extraction method based on the idea of

dependency-parsing, which can handle nested, intersentential, and higher-order relations. Unlike previous

RE literature that use syntactic trees for input to their models, RE was formulated directly as a one-shot

dependency-parsing problem that does not require high-level preprocessing of input text. By designing a simple

dependency grammar for a sequence of named entities, we were able to use existing dependency analysis tools and

parsing algorithms. This method was evaluated using banking transaction documents, where each document

contained at least one 4-ary relation as {Sender, Receiver, Amount, Explanation} , and obtained a LAS of

91.84%.

The encouraging results of this novel application suggest that a problem that contains such complex

relations from any domain may be considered within dependency-parsing framework and solved with well-

established parsing algorithms. Due to the lack of labeled data with nested, higher-order, and document-

level relations, this method could not be evaluated with other datasets. However, we are convinced that our

application has a great potential for understanding user intentions from free formatted text, such as application

forms, petitions, customer orders, or company reports.

A major drawback of this method is the requirement of a labeled dataset. However, user intentions are

usually parsed from domain-specific documents, e.g., finance and law, which reduces the data sparsity and the

need for high amounts of training data. Another drawback may be designing a separate language (dependency

grammar) for each intention/relation. However, the template grammar introduced in this work contains the

basic elements of such grammars and can be used as a guide for new intention types. For the evaluation, only

the basic, language-independent features were used to avoid feature engineering. However, further optimization

of the used features and the employment of language-specific features [30] deserve more investigation in the

light of previous studies [31] in classical dependency parsing.

To conclude, the contributions of this paper can be summarized as (1) proposing a language-independent

and syntax-agnostic method for addressing the extraction of higher-level and nested relations at document

granularity, (2) handling noisy, ungrammatical, and unstructured text, and (3) reducing the overall cycle time

and saving 20% of the manual workforce.
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Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: SEW; 2009. pp.

94-99.
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