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Abstract: Integrated modular avionics (IMA) architecture is widely adopted for the design of modern aircraft. It

simplifies the system development process and improves the system security and reliability. In IMA systems, avionics

applications are packed into various partitions, and integrated into a standard computing platform. How to determine

the schedulability of systems is one of the key problems. In this paper, using the characters of avionics systems, a

partition model with a strict period is built, and constraints in space, time, and communication are analyzed. Based

on the mixed integer linear programming formulation, a solution to determine the schedulability of IMA systems is

presented. Experience reveals that this solution not only determines the system schedulability, but also achieves the

required minimum number of modules and guides the design of IMA systems.
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1. Introduction

With the rapid development of microelectronics and computer technology, the complexity of aircraft increases,

and the design of avionics systems is developing in the direction of integration, modularization, generalization,

and intellectualization [1]. The traditional federated architecture is not suitable for large-scale avionics systems.

Integrated modular avionics (IMA) architecture, simplifying the design of avionics software and hardware and

improving the system security and reliability, is widely accepted by the avionics industry and adopted in the

system design of modern civil and military aircraft, such as B787, Airbus A380, and Lockheed Martin F-22

Raptor.

In IMA architecture, a partition is the basic execution environment of software applications according to

the ARINC 653 standard. Avionics tasks are packed into various partitions, and integrated into a standard and

shared computing platform. With the segregation of space and time, IMA architecture integrates the system

resources, separates hardware operations from user applications, and provides shared computing and communi-

cation resources. It not only guarantees that the applications can be designed and verified independently, but

also achieves deep system integration and information sharing [2].

Although IMA architecture reduces the weight and power consumption of the whole avionics system, it

brings serious partition distribution and scheduling problems. When partitions are integrated through IMA

architecture, designers have to determine the system schedulability and allocate proper resources and time

windows for each partition, in order to ensure the correctness and reliability of avionics systems. The main

problem amounts to finding a method that associates a module and a time window to each partition, such that
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all imposed constraints, i.e. space constraint, time constraint, and communication delay constraint, are verified

for all modules and partitions. However, as the number of partitions increases, the schedulability determination

and resource allocations of partitions become more and more serious. Designers find it impractical to solve the

problems only by hand, and are more dependent on the schedulability algorithms and decision-making tools for

resource allocations.

The partitions can be modeled as nonpreemptive tasks with strict periods, and the schedulability problem

is classified as a nonpreemptive and strictly periodic scheduling problem. It is very difficult to solve this

problem, because not only does the nonpreemptive attribute make it as difficult as NP hard [3], but also the

strictly periodic constraint increases the difficulty in obtaining schedulability conditions [4]. The schedulability

problem of tasks with strict periods or partitions in IMA systems is also one of the key problems in real-time

scheduling theory research [5].

Korst et al. [6] addressed the scheduling problem on two strictly periodic tasks, and presented a necessary

and sufficient schedulability condition, which had been proved to be a sufficient condition [7] for more than two

tasks. [8,9] solved the problem on a minimum processor platform and [10] gave a scheduling heuristic based on

the constraint that the period of new task was a multiple of those of the existing tasks [11]. With the idea of

game theory, [12] and [13] proposed best-response algorithms [14] to compute the crucial scaling factor of all

partitions and used it to determine the schedulability of partitions on a limit number of modules. However, the

partitions involved in these results are independent, and without communication constraints between partitions,

which narrows the range of applications. From the perspective of safety and reliability, [15] and [16] presented

a distribution strategy of partitions with communication dependency, and adopted graphic theory to reduce

the number of variables in the searching process. However, the communication delay is described with data

chains, and analyzed under the worst-case situations, without precisely expressing data transmission constraints

between partitions. At the same time, this kind of solution does not produce the minimum number of modules

required by the system, and cannot reduce the system weight and power consumption.

This paper first analyzes the characters of the partitions in IMA systems, builds partition model with a

strict period, and describes the constraints in space, time, and communication delay. Then, using mixed integer

linear programming (MILP) [17], the paper proposes an efficient solution to determine the schedulability of

IMA systems. Finally, experiments are conducted to show that the proposed solution determines the system

schedulability and achieves the minimum number of modules required.

2. System module

2.1. Partition mechanism in IMA systems

Partition is an important concept in IMA systems. As shown in Figure 1, IMA architecture packets avionics

tasks into partitions and allocates partitions to modules. IMA architecture realizes space separation and time

separation between applications through partition mechanism.

Space separation: each partition is allocated to a module and gets a series of space resources such as

memory. Only the tasks in this partition can access these resources [18].

Time separation: every partition is distributed to a given time window, in which tasks in this partition

can be executed according to a certain scheduling algorithm. When the time window of the partition expires,

the partition will be hung up. Tasks in the partition are not executed until the next time window arrives.

In IMA architecture, each module can process multiple partitions with different periods according to the

given scheduling table. The scheduling table lists the execution order, starting execution time, and end time of

all partitions on this module.
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Figure 1. Partition mechanism in IMA system.

2.2. System module

Consider an IMA system constituted of m modules Π = {π1, π2, ..., πm} and n partitions Θ = {θ1, θ2, ..., θn} .
Each module πk(k ∈ [1,m]) has a fixed available memory space Mk and the maximum number of partitions Nk

that it can host. Meanwhile, we use m row m column array λ⃗ = (λk,l) (k, l ∈ [1,m]) to express communication

delay between modules. Each element λk,l is a floating number, representing the maximum data transmission

delay between the modules πk and πl . When k = l , λk,l represents the communication delay inside modules.

Each partition θi(i ∈ [1, n]) is characterized by a triple θi = ⟨ci, pi,mi⟩(i ∈ [1, n]) , where ci , pi , and mi

respectively represent the worst case execution time, period, and the memory space required by the partition

θi .

In an IMA system, some partitions may be in exclusion for security reasons, i.e. they cannot run on the

same module. An n row n column array η⃗ = (ηi,j) (i, j ∈ [1, n]) represents the exclusive relationship between

partitions. Each element ηi,j is a Boolean variable, expressing whether partitions θi and θj are exclusive or

not. When partitions θi and θj cannot run on the same module, ηi,j = 1; otherwise ηi,k = 0. That is,

ηi,j =

{
1 if θi and θj collide
0 otherwise

Every partition is made up of infinite jobs and under the strictly periodic constraint the time interval between

any two continuous jobs is fixed and equal to the period of the partition. Hence, if the start execution time of

partition θi is si , its rth job starts at si + rpi and ends at si + rpi + ci . Let Br
i (si)represent the time units

occupied by the rth job of θi ; then Br
i (si) = [si + rpi, si + rpi + ci). The partition model used in this paper is

illustrated in Figure 2.

In IMA systems, data may be received and sent by partitions along a processing chain. We use n row n

column array δ⃗ = (δi,j) (i, j ∈ [1, n]) to express the maximum communication delay between partitions. Each

element δi,j is a floating-point number, representing the maximum available time after the data are sent out

from partition θi and before the data are received by partition θj . When i = j , δi,j expresses maximum

communication delay inside partition θi , i.e. δi,i = pi .

846



HAO et al/Turk J Elec Eng & Comp Sci

s i

c i

Ti

t0 TiB i
0( s i ) B i

1( s i )

s i

ci

2Ti

Ti

Figure 2. Partition model.

3. Schedulability analysis

When an IMA system is schedulable, all partitions and modules need to meet constraints in space, time, and

communication delay [15].

1) Space constraint: (C1) Each partition must be hosted by one and only one module; (C2) Exclusive

partitions cannot be hosted by the same module; (C3) The number of partitions running on each module

cannot exceed the maximum number that the module supports; (C4) Total memory required by all

partitions running on the same module cannot exceed the available maximum memory space of the module.

2) Time constraint: (C5) The first job of each partition shall be completed before the period of the partition

ends; (C6) Any two partitions allocated on the same module have no time conflict.

3) Communication delay constraint: (C7) The time of data transmission between any two partitions shall

not exceed the predefined maximum communication delay of the two partitions.

When the partition set Θ = {θ1, θ2, ..., θn} on m modules is schedulable, each partition shall be allocated

to a suitable module and an effective start time, such that the whole IMA system meets constraints in all above

three aspects.

3.1. Space constraints analysis

Establish an n rowm column array a⃗ = (ai,k) (1 ≤ i ≤ nand1 ≤ k ≤ m) to describe the allocations of

partitions. Each element ai,k is a Boolean variable, representing whether partition θi is allocated to the

module πk or not. When partition θi is allocated to πk , ai,k = 1; otherwise ai,k = 0. That is,

ai,k =

{
1 if θi is assigned to module πi

0 otherwise

Space constraint (C1) shows that one and only one module can be allocated to any partition θi ; hence, the sum

of every row in partition assignment array a⃗ = (ai,k) is equal and only equal to 1, which can be expressed as

∀i ∈ [1, n],
∑

1≤k≤m

ai,k = 1

Space constraint (C2) requires that exclusive partitions cannot run on the same module, i.e. for partitions θi

and θj , if ηi,j = 1, their allocation ai,k , aj,k on any module πk cannot equal 1 at the same time, which can

be expressed as

∀i, j ∈ [1, n], ∀k ∈ [1,m]

ηi,j = 1 ⇒ ai,k + aj,k ≤ 1
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In mixed integer linear programming formulation, the following constraint condition can be used to describe

space constraint (C2):

∀i, j ∈ [1, n],∀k ∈ [1,m]

ηi,j × (ai,k + aj,k) ≤ 1

Space constraint (C3) restricts the number of partitions hosted by each module. The number of partitions on

every module cannot exceed the maximum number that the module supports, which can be expressed as

∀k ∈ [1,m],
∑

1≤i≤n

ai,k ≤ Nk

Space constraint (C4) is a limitation of memory resources on modules. For any module πk , the total memory

space required by all partitions running on it is no more than Mk , which can be expressed as

∀k ∈ [1,m],
∑

1≤i≤n

ai,kmi ≤ Mk

3.2. Time constraints analysis

Create an array s⃗ = (si) that contains n elements to represent the offset (i.e. the start time of the first job)

of each partition. Time constraint (C5) shows the value range of the start time of each partition, and can be

expressed as

∀i ∈ [1, n], 0 ≤ si ≤ pi − ci

Time constraint (C6) restricts the time windows of all partitions on the same module, requiring that no time

unit overlaps between any two partitions allocated to the same module.

When two partitions θi and θj are schedulable on the same module, all their jobs have no overlapping

time unit, i.e.

∀k, l ≥ 0, Bk
i (si) ∩Bl

j(sj) = ∅ (1)

Although condition (1) is a sufficient and necessary condition to determine the schedulability of two partitions,

it cannot be directly used because the jobs of partitions are generated infinitely [19]. [6] proposes a more efficient

and convenient determining condition.

Theorem 1 [6] Partitions θi and θj are schedulable on the same module, if and only if

ci ≤ (sj − si)mod(gi,j) ≤ gi,j − cj , (2)

where gi,j is the greatest common divisor of periods of θi and θj , i.e. gi,j = GCD(pi, pj).

For any two partitions, if they can be allocated to the same module, the start times of the two partitions

should meet condition (2). Then time constraint (C6) can be expressed as

∀i, j ∈ [1, n],∀k ∈ [1,m], ai,k = aj,k = 1,

ci ≤ (sj − si)mod(gi,j) ≤ gi,j − cj
(3)

In conditions (2) and (3), mod is not a linear operation; in MILP formulation, (sj − si)mod(gi,j) should be

replaced by the following equation:

(sj − si)mod(gi,j) = (sj − si)− gi,j × ei,j
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ei,j is a new integer variable, representing the quotient from the modulo operation mod, and its value ranges

from (ci − pi)/gi,j to (pj − cj)/gi,j . Then condition (3) should be updated to

∀i, j ∈ [1, n],∀k ∈ [1,m], ai,k = aj,k = 1,

ci ≤ (sj − si)− gi,j × ei,j ≤ gi,j − cj

ci−pi

gi,j
≤ ei,j ≤ pj−cj

gi,j

3.3. Communication delay constraint analysis

Constraint (C7) is a limitation of communication delays between partitions. The date transmission between any

two partitions must be completed in a predefined time interval. As shown in Figure 3, for any two partitions

θi and θj , there are two time delays after data are sent out from partition θi and before partition θj receives

them: 1) Communication delay between modules where partitions θi and θj are hosted, which is expressed

with di,j ; (2) Time delay after the data reach partition θj and before the job of θj begins, which is represented

by bi,j . Communication delay constraint (C7) can be expressed as

t

Θ i

c i

d i,j

Θ j

b i,j

c j

rpj (r+1)pj
sj+rpj

Figure 3. Data transfer time between two partitions.

∀i, j ∈ [1, n], di,j + bi,j ≤ δi,j (4)

The modules on which partitions θi and θj run are determined by the ith row and jth column in the partition

attribution vector a⃗ . di,j can be expressed as

di,j =
∑

1≤k≤m

∑
1≤l≤m

ai,kaj,lλk,l (5)

In Eq. (5), ai,k and aj,l are Boolean variables and their product is a quadratic constrain [20]. Then Eq. (5)

should be transformed in the MILP formulation. Introduce a Boolean variable wi,j,k,l to express the product of

ai,k and aj,l , i.e. wi,j,k,l = ai,k×aj,l . When and only when ai,k and aj,l are equal to 1, wi,j,k,l = 1; otherwise,

wi,j,k,l = 0. wi,j,k,l can be expressed as

wi,j,k,l ∈ [0, 1]

wi,j,k,l ≤ ai,k

wi,j,k,l ≤ aj,l

wi,j,k,l ≥ ai,k + aj,l − 1
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Putting wi,j,k,l into Eq. (5), di,j can be expressed as

di,j =
∑

1≤k≤m

∑
1≤l≤m

wi,j,k,lλk,l

If an item of data is sent out from partition θi at time t , it reaches the module that partition θj runs on at

the time t+ di,j . Assume the next job of partition θj is its rth job, then

bi,j = sj + rpj − t− di,j (6)

In the worst case, when an item of data arrives at the module that partition θj runs on, it happens to slightly

miss the start execution of a job of partition θj . In this situation, the waiting time is pj and so bi,j ≤ pj . Take

a modular operation on both sides of Eq. (6) with pj :

bi,j = (bi,j)mod(pj)

= (sj + rpj − t− di,j)mod(pj)

= (sj − t− di,j)mod(pj)

(7)

In Eq. (7), t is a float variable, representing a time that any job of partition θi runs, t ∈ {y | si + xpi ≤ y <

si+ ci+xpi, ∀x ≥ 0} . Since partitions θi and θj are with strict periods, t ∈ {y|si+xpi ≤ y ≤ si+ ci+xpi, 0 ≤

x ≤ lcm(pi,pj)
pi

} . Putting Eq. (7) into Condition (4), Condition (4) changes to

∀i, j ∈ [1, n], di,j + (sj − t− di,j)mod(pj) ≤ δi,j (8)

Similarly, the mod operation in Condition (8) is not linear; in the MILP formulation, (sj − t − di,j)mod(pj)

should be replaced with the following equation:

(sj − t− di,j)mod(pj) = (sj − t− di,j)− pj × qi,j

qi,j is an integer variable, representing the integer quotient from the modulo operation mod, i.e.qi,j = (sj −
t− di,j)/pj . The value range of qi,j is [(−t− di,j)/pj , (pj − cj − t− di,j)/pj ] . Hence, Condition (4) should be

changed to

∀i, j ∈ [1, n], sj − t− pj × qi,j ≤ δi,j

−t−di,j

pj
≤ qi,j ≤ pj−cj−t−di,j

pj

3.4. MILP solution

In this section, we determine the schedulability of IMA systems based on a MILP formulation. MILP is an

exact framework for linear programs in which some or all variables are required to take integer value, and

can completely search the resolution space to find a feasible solution for a periodic scheduling problem under

limited number of modules and partitions in IMA systems. We first use linear conditions to describe all space,

time, and communication delay constraints when the system is schedulable; we then list all time windows

and module allocations for the partitions and judge whether all constraint conditions are met. If there exists

a valid allocation to meet all constraint conditions, the IMA system is schedulable; otherwise, the system is

unschedulable.
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In practice, there may be many allocations that satisfy the constraint conditions and ensure the system

is schedulable. In order to achieve better system performance, an optimum object is often set in the process of

solving the schedulability problem. A strategy that is the most frequently used is to get the minimum number

of modules required by partitions, which reduces the weight and power consumption of the system as much as

possible.

When the number of partitions allocated to a given module is zero, i.e. all values of the column in

partition attribution vector a⃗ are zero, this module is not used. Use an array z⃗k that contains m elements to

record the use situations of modules. Each element zk is a Boolean value, representing whether the module πk

is used. If and only if ∀i ∈ [1, n], ai,k = 0, zk = 0; otherwise, zk = 1. zk can be expressed as follows:

∀i ∈ [1, n], ai,k ≤ zk ≤ 1

zk ≤
∑

1≤i≤n

ai,k

Let m′ denote the number of models used in an IMA system; then m′ =
∑

1≤k≤m

zk . In the searching process

of solving the schedulability problem by MILP formulation, the optimum object is to minimize the number of

modules used, and the constraints are the limitations of schedulability. The whole programming can be written

as follows:

minimum m′

subject to

∀i ∈ [1, n], ∀k ∈ [1,m], ai,k ∈ {0, 1} (9)

m′ =
∑

1≤k≤m

zk

∀i ∈ [1, n], ∀k ∈ [1,m], ai,k ≤ zk ≤ 1

∀k ∈ [1,m], zk ≤
∑

1≤i≤n

ai,k

(10)

∀i ∈ [1, n],
∑

1≤k≤m

ai,k = 1 (11)

∀i, j ∈ [1, n],∀k ∈ [1,m]

ηi,j × (ai,k + aj,k) ≤ 1
(12)

∀i ∈ [1, n], 0 ≤ si ≤ pi − ci (13)

∀k ∈ [1,m],
∑

1≤i≤n

ai,k ≤ Nk (14)

∀k ∈ [1,m],
∑

1≤i≤n

ai,kmi ≤ Mk (15)
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∀i, j ∈ [1, n],∀k ∈ [1,m], ai,k = aj,k = 1,

ci ≤ (sj − si)− gi,j × ei,j ≤ gi,j − cj

ci−pi

gi,j
≤ ei,j ≤ pj−cj

gi,j

(16)

∀i, j ∈ [1, n], wi,j,k,l ∈ [0, 1]

wi,j,k,l ≤ ai,k, wi,j,k,l ≤ aj,l
wi,j,k,l ≥ ai,k + aj,l − 1
di,j =

∑
1≤k≤m

∑
1≤l≤m

wi,j,k,lλk,l

t ∈ {y|si + xpi ≤ y ≤ si + ci + xpi,

0 ≤ x ≤ lcm(pi,pj)
pi

}

∀i, j ∈ [1, n], sj − t− pj × qi,j ≤ δi,j

−t−di,j

pj
≤ qi,j ≤ pj−cj−t−di,j

pj

(17)

In the linear programming solution, Condition (9) gives the value range of each element in partition attribution

vector a⃗ ; Condition (10) shows the use situations of the modules; Conditions (11), (12), (13), (14), (15), (16),

and (17) are derived from schedulability constraints (C1) to (C7). This formulation not only gets the minimum

number of modules required by partitions, but also provides a feasible module and time window allocation

for each partition while respecting the space constraint, time constraint, and communication delay constraint

between them. This approach not only determines the schedulability of an IMA system, but also guides the

resource allocations in IMA systems.

4. Case analysis

In this section, we illustrate the effectiveness of the proposed solution with a practical example. The central

maintenance system (CMS) of a transport aircraft is composed of five partitions including flying data acquisition,

configuration information management, data upload and download, fault monitoring, and data record. The

parameters of each partition are shown in Figure 4. Flying data acquisition partition must receive control

commands from other partitions within 300 ms, while data record partition needs get state information of other

partitions within 500 ms. There is no communication time limit between other partitions. Due to system safety,

the flying data acquisition partition and data record partition cannot run on the same module.

There are 3 homogeneous modules in the system. The available memory space of each module is 10 MB

and the maximum number of partitions can be hosted by each module is 3. The maximum communication

delay between any two modules is 1 ms. With the models proposed in section 2, parameters of the system are

described as follows:

(1) partition set: Θ = {θ1, θ2, θ3, θ4, θ5} ; parameters of partitions: θ1 = ⟨30, 100, 4⟩ ,θ2 = ⟨10, 100, 2⟩ ,
θ3 = ⟨20, 50, 3⟩ , θ4 = ⟨40, 200, 1⟩ and θ5 = ⟨30, 150, 5⟩ ; Only partitions θ1 and θ5 are exclusive, then in

the exclusive relationship array η⃗ = (ηi,j), all elements except η1,5 and η5,1 are equal to 0. The maximum

communication delays between partitions are shown in Table 1.

852



HAO et al/Turk J Elec Eng & Comp Sci

CMS

Partition 1

Flying data 
acquisition

Runtime:30ms
Period:100ms
Storage:4MB

Partition 2

Configuration 
management

Runtime:10ms
Period:100ms
Storage:2MB

Partition 3

Data upload 
and download

Runtime:20ms
Period:50ms
Storage:3MB

Partition 4

Fault 
monitoring

Runtime:40ms
Period:200ms
Storage:1MB

Partition 5

Data  record

Runtime:30ms
Period:150ms
Storage:5MB

Figure 4. Partitions and its parameters of CMS.

Table 1. Maximum communication delay between partitions.

Partition no. 1 2 3 4 5

1 100 ∞ ∞ ∞ 500

2 300 100 ∞ ∞ 500

3 300 ∞ 50 ∞ 500

4 300 ∞ ∞ 200 500

5 300 ∞ ∞ ∞ 150

(2) module set: Π = {π1, π2, π3} ; attributes of module: ∀k ∈ [1, 3], Nk = 3,Mk = 10; communication delay

between modules λ⃗ = (λk,l) is described in two different cases: communication delay between different

modules is 1 ms, i.e. ∀k, l ∈ [1, 3], λk,l = 1; communication delay on the same module is zero, i.e.

∀k ∈ [1, 3], λk,k = 0.

Putting the above parameters of modules and partitions into the solution presented in Section 2.4 and

solving it with Cplex Optimizer programming solver we get that the minimum number of modules required is

2, i.e. m′ = 2, and the values of partition offset vector s⃗ = [5, 8, 0, 0, 2]. The partition attribution vector a⃗ is

shown in Table 2.

Table 2. Partition attribution vector form MILP.
hhhhhhhhhhhhhhhPartition no.

Module no.
1 2 3

1 0 1 0

2 0 1 0

3 1 0 0

4 0 1 0

5 1 0 0

From Table 2 we can find that partitions θ3 and θ5 are allocated to the module π1 , while partitions θ1 ,

θ2 , and θ4 are assigned to module π2 . As this IMA system only needs two modules to run all partitions, this

system is schedulable. According to partition offset vector s⃗ and partition assignment vector a⃗ , obtained from

the MILP solution, the main time frames on modules π1 and π2 are shown in (a) and (b) of Figure 5.
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Θ 3 Θ3
IDLE

10 20 30 40 50 60 70 800

Θ3

90 100 110 120 130 140 150

Θ5
IDLE

Module 1 main time frame

Θ4 Θ1

10 20 30 40 50 60 70 800 90 100 110 120 130 140 150

IDLE

Module 2 main time frame

Θ1

160 170 180 190 200

Θ2
IDLEΘ2

IDLE

(a)

(b)

Figure 5. The main time frames of CMS.

5. Conclusion

In this paper, we first build a module model and partition model with a strict period, and analyze the constraints

in space, time, and communication delay when IMA systems are schedulable. Then based on MILP formulation,

we propose a solution to search all available space and determine whether all partitions are schedulable on a

limited number of modules. Besides dealing with the space constraint, which has been the sole concern of many

previous solutions, our approach handles the time and commutation requirements of the partitions of IMA

systems. Our approach determines the allocation of modules and time windows to partitions and the schedule

for communication delay between each two partitions. A practical example shows that the solution proposed not

only provides a determination of the schedulability of an IMA system, but also achieves the minimum number

of modules required by all partitions, which reduces the system weight and power consumption of the system,

and provides a way of allocating resources for IMA systems.
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