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Abstract: Design of wideband infinite impulse response (IIR) digital fractional order integrators (DFOIs) based on a

bio-inspired metaheuristic optimization approach called the cat swarm optimization (CSO) algorithm is presented in

this paper. To investigate the efficiency of the proposed approach, the CSO-based DFOIs are evaluated against those of

the approximations designed using real-coded genetic algorithm (RGA), standard particle swarm optimization (PSO),

and differential evolution (DE) by different magnitude and phase response error metrics. Simulation results reveal the

better frequency response of the CSO-based DFOIs in comparison with the competing designs. Both parametric and

nonparametric statistical hypothesis tests validate the performance consistency of CSO. Comparisons with the cited

literature confirm the efficacy of the proposed models.

Key words: Signal processing, digital fractional order integrators, cat swarm optimization, metaheuristic optimization,

statistical tests

1. Introduction

The fractional order integrators and differentiators [1] find applications in several domains [2–4] due to their

ability to describe the dynamical behavior of physical systems in an accurate manner [5]. A fractional order

integrator (FOI) is a system of infinite dimension and is characterized by the frequency response as given in

(1).

HFOI(jω) =
1

(jω)p
=

1

ωp
∠(− 90◦ × p), (1)

where p is the order of the FOI, p ∈ (0, 1), and ω is the angular frequency.

DFOIs are the digital approximated models for FOIs. In practical applications, DFOIs with smaller

orders are preferred since they reduce the computational complexity. Both direct and indirect discretization

techniques are used for DFOI design. The direct discretization approach uses the power series expansion [6],

continued fraction expansion (CFE) [7,8], Taylor series expansion [9], and MacLaurin series expansion [10], along

with operators such as Tustin [11,12], Simpson [13], Al-Alaoui [14], mixed Tustin–Simpson [15], and the impulse

response [16]. The least square method [17], Chebyshev–Padé approximation [18], and the rational Chebyshev

approximations [18] to design IIR DFOIs have also been reported. In the indirect discretization method [19–

21], the frequency domain mapping is performed in the continuous time domain, and the resultant transfer
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function is discretized. In the recent literature, the designs of DFOIs have been reported using discretization of

PSO optimized integer order digital integrators (DIs) [22]. PSO optimized DFOIs with an improved magnitude

response have also been reported in [23]. Power series expansion-based signal modelling is used to design DFOIs

in [24]. It may be noted that while variable DFOIs are reported in [25], however, this work deals with the

accurate realization of fixed DFOIs using a bio-inspired optimization algorithm called CSO [26]. While all the

DFOI design techniques cited in [6–24] employ a discretization operator, the approach presented in this paper

can generate the optimal IIR filter coefficients for the DFOIs without using any such operator. Hence, the

novelty of this paper is to present a single-step approach to obtain optimal and highly accurate DFOI models

as compared with the multistep DFOI realization methods reported in [6–24].

The rest of the paper is organized as follows: Section 2 provides the DFOI optimization problem

formulation. In Section 3, the proposed design problem is addressed using the CSO optimizer. The simulation

results, presented in Section 4, are exhaustively compared among the RGA-, PSO-, DE-, and CSO-based DFOIs

based on the frequency responses. In addition, two statistical tests are employed to analyze the design robustness

of CSO. A comparison with the cited literature is also presented. Finally, the essential conclusions of this work

are discussed in Section 5.

2. Problem formulation

The transfer function of the IIR DFOI of order N is defined by (2).

H (z) =
a1 + a2z

−1 + a3z
−2 + ...+ aN+1z

−N

b1 + b2z−1 + b3z−2 + ...+ bN+1z−N
, (2)

where ai and bi , i = 1, 2, 3, ..., N + 1, represent the numerator and denominator coefficients, respectively, of

H(z).

In this work, RGA [27], PSO [28], DE [29], and CSO algorithm [26] individually determine the optimal

values of coefficients of H(z) such that the root mean square magnitude error (RMSME) as given by (3) is

minimized.

RMSME =

√∑
||HFOI(ω)| − |H(ω)||2

q
(3)

Here q denotes the total sampled data points spaced between 0.02π to π radians/second.

The error metrics used for performance comparison among the DFOIs are the maximum absolute relative

magnitude error (MARME) and the absolute magnitude error (AME) as defined by (4) and (5), respectively.

MARME = Max{
∣∣∣∣ |HFOI(ω)| − |H(ω)|

|HFOI(ω)|

∣∣∣∣} (4)

AME = ||H(ω)| − |HFOI(ω)|| (5)

The group delay of the IIR DFOI is given by (6).

τ = −dθ(ω)

dω
, (6)

where θ(ω) = ∠H(ω) is the phase angle of the DFOI.
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It is worth emphasizing that while the CSO algorithm has been employed for the identification of a few

well-known benchmark IIR plants in [30], this paper presents the design of IIR DFOIs using CSO for the first

time in the literature. Furthermore, unlike [30], a thorough analysis based on the magnitude and phase responses

of the designed DFOI model-based signal processing system is investigated. Additionally, while [30] employs a

white signal of zero mean, unit variance, and uniform distribution for the system identification technique, the

proposed optimization method is carried out entirely in the frequency domain as defined by (3).

3. Cat swarm optimization (CSO) algorithm

CSO is a metaheuristic optimization algorithm inspired by the optimal use of body energy by cats [26]. The

search strategy in CSO is based on employing the cats to function in two different modes, namely the seeking

mode and the tracing mode. Each randomly initialized np number of cats in the D= (N+ 1) × 2 dimensional

problem search space has its position, velocity, an error fitness value, and a flag to determine if it is in seeking

mode or in tracing mode. The ratio of the total quantity of cats present in the tracing mode concerning the

entire population of cats in the DFOI design problem search space is called the mixture ratio (MR). MR provides

a balance between diversification and intensification phases in CSO. The optimal solution in CSO is the best

position attained by any one of the cats. The two modes of operation of CSO are as follows.

3.1. Seeking mode

The seeking mode models the resting but the alert behavior of a cat. Hence, this mode deals with the process of

diversification in the DFOI design problem search space. The control parameters used in this mode are defined

as follows.

Seeking memory pool (SMP): The total number of copies of a cat generated in the seeking mode.

Seeking range of selected dimension (SRD): The maximum difference that exists between the present and

the past values in the dimension that is selected to undergo mutation.

Counts of dimension to change (CDC): The total number of dimensions to undergo mutation.

The following steps are employed in the seeking mode:

Step 1. From a randomly generated population of np (= 50) number of cats, randomly select MR fraction

of cats in the tracing mode and (1−MR) fraction of cats in the seeking mode.

Step 2. Create SMP number of copies for the ith cat in the seeking mode.

Step 3. Depending on the value of CDC, the positions of all the copies are updated by conducting random

addition or subtraction of SRD fraction of the current value of the position.

Step 4. Determine the error fitness value for all the copies according to (3).

Step 5. Identify the cat with the least value of error fitness and place it at the location of an ith cat in

the seeking mode.

Step 6. Repeat from Step 2 until all the cats are exhausted.

3.2. Tracing mode

This mode deals with the intensification phase in the optimization problem search space. This mode models

the tracing of prey by a cat, which results in a considerable expenditure of its body energy. Hunting the prey

by the cat is modelled regarding a substantial change in its position. The position and the velocity for the ith
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cat are defined by (7) and (8), respectively.

Xi = (Xi1, Xi2, ..., XiD) (7)

Vi = (Vi1, Vi2, ..., ViD), (8)

where D is the dimension of the optimization problem.

The global best position gbest of the population of cats is modelled by (9).

gbest = (gbest1, gbest2, ..., gbestD) (9)

The velocity and the position of the ith cat are given by (10) and (11), respectively.

ViD = w × ViD + C ×m× (gbestD −XiD), (10)

where w represents the inertia weight; C denotes the acceleration constant; m ∈ [ 0, 1 ] is a random number

with uniform distribution.
XiD = XiD + ViD (11)

Figure 1 shows the flowchart of the CSO algorithm.

4. Simulation results and discussion

RGA [27], PSO [28], and DE [29] are popular evolutionary optimization algorithms and are not examined here.

However, the chromosome representation of RGA for DFOI design based on the two-point crossover technique is

shown in Figure 2. In this work, the two-point crossover is used for RGA where the two cut points are randomly

generated. While choosing more than two cut-points increases the optimization time for RGA, a single-point

crossover is too simple. Hence, the two-point crossover is preferred in this work.

The values of the parameters of the benchmark algorithms and CSO selected for this work are presented

in Table 1. The designed DFOIs of orders 3 and 5 based on RGA, PSO, DE, and CSO achieved by minimizing

(3) by setting p = 0.50 are shown in (12)–(19).

HRGA 3 (z) =
0.9381− 0.9511z−1 + 0.0869z−2 + 0.0505z−3

0.9976− 1.5956z−1 + 0.6229z−2 − 0.0044z−3
(12)

HPSO 3 (z) =
0.9155− 0.9423z−1 + 0.0866z−2 + 0.0572z−3

0.9832− 1.5893z−1 + 0.6359z−2 − 0.0109z−3
(13)

HDE 3 (z) =
0.9411− 0.9376z−1 + 0.0926z−2 + 0.0518z−3

1.0111− 1.5947z−1 + 0.6368z−2 − 0.0217z−3
(14)

HCSO 3 (z) =
0.9400− 0.9197z−1 + 0.0521z−2 + 0.0563z−3

1.0170− 1.5760z−1 + 0.5726z−2 + 0.0123z−3
(15)

HRGA 5 (z) =
0.9597 + 0.0871z−1 − 0.6719z−2 − 0.0914z−3 + 0.1169z−4 − 0.0268z−5

1.0397− 0.5055z−1 − 0.8463z−2 + 0.2425z−3 + 0.2146z−4 − 0.0780z−5
(16)

HPSO 5 (z) =
0.9623 + 0.0934z−1 − 0.6780z−2 − 0.0868z−3 + 0.1385z−4 − 0.0277z−5

1.0446− 0.4971z−1 − 0.8559z−2 + 0.2436z−3 + 0.2355z−4 − 0.0893z−5
(17)
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1. Randomly initialize the position, velocity, flag in Seeking Mode (SM) or 

Tracing Mode (TM) of every cat. The minimum and maximum velocity 

are denoted by Vmin  and Vmax , respectively. 

2. Choose Mixture Ratio (MR) 

1. Evaluate the fitness values of all the cats.  

2. Store the position of the cat that achieves the best fitness 

value as gbest. 

Is Flag in 

SM? 

Initiate SM Initiate TM 

Randomly distribute the cats into TM and SM based on MR value, and 

update their positions. 

yes no

Choose the cat ( = gbest) that best minimizes the fitness function 

Is maximum function 

evaluation = 10000D? 

no

yes

Randomly generate np number of cats in D dimensional search space. 

Start 

Declare gbest as the optimal solution 

Stop 

Figure 1. Flowchart of CSO.

Figure 2. Chromosome representation for RGA-based DFOI design.

HDE 5 (z) =
0.9642 + 0.0936z−1 − 0.6663z−2 − 0.0851z−3 + 0.1182z−4 − 0.0333z−5

1.0577− 0.4941z−1 − 0.8669z−2 + 0.2452z−3 + 0.2253z−4 − 0.0840z−5
(18)
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Table 1. Parameter values of the algorithms used in this work.

Parameter RGA PSO DE CSO

Size of population 50 50 50 50

Maximum number of
10,000 ×D 10,000 ×D 10,000 ×D 10,000 ×D

function evaluations

Crossover probability,
0.80, Two point - - -

crossover

Mutation probability, 0.01, Gaussian
- - -

mutation (mean : 0, variance : 1)

Selection, elitism Roulette wheel, 1 / 5 - - -

C1, C2 - 1.494, 1.494 - -∣∣vmin
i

∣∣ , |vmax
i | - 0.01, 1.0 - -

wmax, wmin - 0.9, 0.4 - -

Cr, F - - 0.5, 0.05 -

SMP, CDC, SRD - - - 5, 0.6, 2

MR - - - 0.1

w, C - - - 0.4, 1.5

Vmin, Vmax - - - - 0.1, 0.1

HCSO 5 (z) =
0.9480− 1.6230z−1 + 0.7107z−2 + 0.0104z−3 − 0.0354z−4 + 0.0074z−5

1.0220− 2.3480z−1 + 1.7380z−2 − 0.4259z−3 + 0.0213z−4 − 0.0057z−5
(19)

5. Comparison of frequency response

Table 2 confirms that CSO-based DFOIs outperform the competing DFOIs by RMSME and MARME metrics.

The CSO-based designs also demonstrate the least sample deviation from the flat group delay (τmax). Figures

3(a)–(f) present the magnitude, AME, and phase plots of the designs, respectively.

Table 2. Comparison among the designed DFOIs.

N Algorithm RMSME (dB) MARME (dB) τmax (samples)

3

RGA –24.6 –19.1 5.11

PSO –26.3 –19.8 5.07

DE –29.6 –20.1 5.24

CSO –42.0 –27.9 4.47

5

RGA –30.4 –25.1 5.38

PSO –32.5 –26.7 5.52

DE –33.7 –26.9 5.17

CSO –39.5 –30.8 0.47
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Figure 3. (a) Magnitude responses of the designed DFOIs of order 3. (b) AME responses of the designed DFOIs of

order 3. (c) Phase responses of the designed DFOIs of order 3. (d) Magnitude responses of the designed DFOIs of order

5. (e) AME responses of the designed DFOIs of order 5. (f) Phase responses of the designed DFOIs of order 5.
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5.1. Consistency analysis

The performance of CSO as a consistently accurate optimizer for the design of DFOIs is statistically confirmed

by conducting the t-test [31] and the Wilcoxon rank-sum test [31] on RGA-CSO, PSO-CSO, and DE-CSO pairs.

These pair-wise statistical procedures perform individual comparisons between two algorithms, obtaining in each

application a P-value independent from one another. Thus, to carry out a comparison that involves more than

two algorithms, multiple comparison tests are used. The testing of the null hypothesis statement where both the

data samples are gathered from a population with identical mean and having normal distribution is performed by

conducting the two sample t-test. This parametric type hypothesis test assumes independence, normality, and

homoscedasticity of data samples. On the other hand, the Wilcoxon rank-sum test is a nonparametric hypothesis

test that tests the similarity or dissimilarity in the performance of the algorithms/approaches/applications based

on two data sets gathered from the same population without conforming to a particular type of data distribution.

Thus, the Wilcoxon test does not assume the properties of independence, normality, and homoscedasticity. These

hypothesis tests can be conducted at a fixed level of significance, α , or by determining the smallest level of

significance (called P-value) that results in the rejection of the null hypothesis. Thus, the smaller the P-value,

the higher is the evidence to reject the null hypothesis.

In this work, the null hypothesis statement for these tests (at 99% significance) is defined as: “RMSME

performance for the designed DFOIs does not show any significant difference”. Both the tests are performed

with 60 data samples from each algorithm and for each order of DFOI. These data samples are generated by

executing the RGA-, PSO-, DE-, and CSO-based optimization programs written in MATLAB programming

language for 60 independent trial runs for each of the algorithms for both the orders of the DFOIs. Tables 3

and 4 show the t-test and the rank-sum test results, respectively. The decision for the test is given by h = 1/0

for the rejection/acceptance of the null hypothesis. The confidence interval for the t-test result is denoted by

CI. Both the tests show an h-index of 1, which proves that there is a significant difference in the performance of

the designed DFOIs based on CSO as compared with RGA/PSO. That is, CSO provides significantly accurate

DFOI models as compared with those designed with the other algorithms. A very small P-value is also obtained

for each of the design cases for both these tests as shown in Tables 3 and 4. Hence, the results obtained for

both the tests reveal that CSO-based designs consistently outperform the competing DFOIs by achieving the

smallest RMSME for all the test cases. Thus, CSO can be regarded as a consistently superior optimization tool

for realizing IIR DFOIs.

Table 3. t -test results.

N Index
Algorithm pair

CSO/RGA CSO/PSO CSO/DE

3

h 1 1 1

P-value 6.17 × 10−51 1.27 × 10−51 1.40 × 10−43

CI [ –22.3, –18.3 ] [ –19.4, –15.9 ] [ –15.5, –12.2 ]

5

h 1 1 1

P-value 7.49 × 10−34 1.27 × 10−25 1.86 × 10−21

CI [ –14.5, –10.6 ] [ –10.2, –6.9 ] [ –8.3, –5.3 ]
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Table 4. Wilcoxon rank-sum test results.

N Index
Algorithm pair

CSO/RGA CSO/PSO CSO/DE

3
h 1 1 1

P-value 3.55 × 10−21 3.73 × 10−21 5.04 × 10−21

5
h 1 1 1

P-value 8.72 × 10−20 3.17 × 10−18 5.92 × 10−16

5.2. Comparison with the literature

Table 5 shows the evaluation of RMSME and MARME performances of the proposed CSO-based DFOIs with

the cited literature. It is easily seen that both the error metrics are significantly smaller for the proposed DFOIs.

Figures 4(a) and 4(b) show the AME plots for the CSO-based DFOIs along with the reported designs, which

justify the improved modelling accuracy of the proposed designs.

Table 5. Comparison of proposed DFOIs with the cited literature.

N Model
RMSME MARME

(decibel) (decibel)

3

(2013) [22] PSO –17.7 –11.5

(2015) [23] PSO –15.1 –9.6

(2015) [23] Linear interpolation –16.9 –10.3

CSO –42.0 –27.9

5

(2013) [18] Chebyshev–Padé with Tustin –23.2 –9.3

(2015) [20] Indirect discretization –33.2 –25.1

(2015) [23] Linear interpolation –23.6 –15.9

(2015) [23] PSO –24.9 –17.0

(2015) [24] Power series expansion series modelling –26.1 –15.5

CSO –39.5 –30.8

6. Conclusions

This paper presents a population-based bio-inspired optimization algorithm called CSO for the efficient design

of accurate digital fractional order integrators (DFOIs). The research work (a) demonstrates the applicability

of the CSO algorithm for the design of stable and accurate wideband DFOIs, and (b) justifies the superiority

of CSO-based DFOIs over the designs based on RGA, PSO, DE, and the published literature with respect to

different performance indices. Both parametric and nonparametric hypothesis tests results statistically validate

that CSO-based DFOIs consistently outperform the competing designs and attain the smallest RMSME. The

CSO-based third and fifth order designs also demonstrate improvements in RMSME of 137.28% and 18.97%,

respectively, over the best approximations cited in the literature.
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Figure 4. (a) AME plot comparison for the proposed CSO-based DFOIs (N= 3) with the reported designs. (b) AME

plot comparison for the proposed CSO-based DFOIs (N= 5) with the reported designs.
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