
Turk J Elec Eng & Comp Sci

(2018) 26: 936 – 947

c⃝ TÜBİTAK

doi:10.3906/elk-1701-222

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Concurrency control algorithms for deduplicated cloud storage

Prabavathy BALASUNDARAM∗, Chitra BABU
Department of CSE, SSN College of Engineering, Chennai, Tamil Nadu, India

Received: 23.01.2017 • Accepted/Published Online: 16.07.2017 • Final Version: 30.03.2018

Abstract: Deduplication of data is essential to effectively use cloud storage. As the metadata in deduplicated cloud

storage are shared across multiple users, concurrent updates may result in inconsistencies. A coarse-grained locking

strategy that has been proposed earlier to overcome this difficulty is not suited for inline deduplication owing to poor

performance. In the present work, a fine-grained locking strategy that overcomes this shortcoming is proposed. A

metadata structure along with a set of concurrent control mechanisms to accomplish this is presented. This strategy is

shown to improve the throughput by as much as 60% with only marginal lock overhead.

Key words: Cloud storage, data deduplication, concurrency issues, locking

1. Introduction

Cloud storage is a service model in which data are maintained, managed, backed up remotely, and made available

to users through the Internet. Since redundancy is prevalent in cloud storage, it is essential to utilize the storage

space optimally. In order to achieve this, a well-known optimization technique, namely, deduplication [1], is

commonly used. This technique basically divides every incoming file into a set of fixed or variable sized blocks

[2]. Subsequently, secure hash algorithm 1 is used to find the hash value corresponding to each one of these

blocks. These hash values, which are also termed fingerprints, are compared against the fingerprint index to

detect duplicates and only one instance of these duplicate blocks is stored. Each entry in the fingerprint index

corresponds to a specific block that has its fingerprint, location, and reference count. Since each file is stored

as a set of blocks in the deduplicated cloud storage (DCS), that entire set of the constituent blocks is needed to

reconstruct a file during read operations. In order to facilitate this, the file recipe maintains the fingerprints of

these constituent blocks. These constituent blocks may either be unique ones specific to a file or may be shared

across multiple files.

Every access to the DCS consults the metadata, namely, the fingerprint index and the file recipe. During

the write operation, every incoming block is compared against the entries in the fingerprint index for its existence.

If a block already exists in the storage, its reference count alone is incremented by 1. Otherwise, it is placed in

the storage and the fingerprint index is updated with the corresponding entry. During a delete operation, the

reference count for every block corresponding to that file is decremented by 1. During a read operation, the file

recipe is initially consulted to find out the constituent blocks. Subsequently, the locations of these blocks are

obtained from the fingerprint index in order to assemble the entire file.

In the context of DCS, the blocks are typically shared among multiple files. As a consequence, concurrent

users may simultaneously access an entry in the fingerprint index corresponding to a block. In general, a read

∗Correspondence: prabavathyb@ssn.edu.in

936

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

request accesses the location information from the block entry to reconstruct a file. A write or delete request

increments or decrements the reference counts. Thus, when concurrent requests attempt to update the reference

count at the same time, the value of the reference count may become inconsistent. This problem is referred to

as “lost update.”

A periodic garbage-collection process removes the physical blocks in the storage whenever their reference

counts become 0. Due to the lost update problem and the consequent inconsistency in the value of the reference

count, it is possible that one or more blocks may be garbage-collected prematurely while some files continue

to refer to them. This would result in a file reconstruction error due to the unavailability of data blocks while

trying to assemble the file back during a read operation. Hence, concurrency control is an important research

issue that needs to be addressed in the context of DCS. An earlier work [3] proposes block-level postprocessing

deduplication for a live cluster file system where the incoming data are deduplicated only after the data have

been written into the disk. In this work, the entire shared fingerprint index is locked by a host during the

access to its entries. Such a coarse-grained locking strategy is not suited for the context of the present DCS

that performs inline deduplication, resulting in an increase in the response time. Hence, in the present work, a

novel fingerprint index structure that is amenable to a fine-grained locking approach along with the necessary

concurrency control mechanisms for the basic operations have been proposed.

The rest of this paper is organized as follows. Section 2 summarizes the research related to concurrency

control mechanisms in DCS. Section 3 describes the proposed fingerprint structure and the concurrency control

algorithms. Section 4 provides the implementation details, the metrics utilized, and the results from a detailed

performance analysis that substantiate the proposed strategy. Section 5 concludes the paper with possible

future research directions.

2. Related work

Existing literature related to deduplication addresses issues such as the management of fingerprint index,

effective chunking mechanisms, reliability and placement of blocks in the disk for deduplicated storage systems

that perform inline deduplication. AA-Dedupe [4] analyzes the characteristics of the files and apply a suitable

chunking mechanism to minimize the metadata overhead. Efficient indexing [5] and scalable hybrid hash cluster

[6] have utilized efficient data structures to maintain the metadata. Guo et al. [7] and Efstathopoulos et al. [8]

used a sampling technique to obtain a sample subset of metadata from the disk to improve the read throughput.

Chunkstash [9] and sparse indexing [10] utilize efficient I/O devices (solid state drive, flash memory) to maintain

the fingerprint index in order to improve the performance of the lookup process in deduplication. Data domain

file system [11] utilizes different techniques such as bloom filter and segment informed segment layout for the

placement of blocks in order to improve the throughput of the deduplication.

Only a few works have investigated the provision of the concurrency control in the deduplicated storage

system. Strzelczak et al. [12] proposed a delete algorithm for the content addressable storage. A block can

contain pointers to other blocks. These pointers are the block addresses derived from the block content. If

a block is to be deleted, then the reference counter of all blocks pointed by it is decremented by 1. The

blocks whose reference counters become zero are treated as garbage and the space associated with such blocks

is periodically reclaimed. Clements et al. proposed [3] a decentralized deduplication system for storage area

networks clusters, which store virtual machine (VM) images. These VM images are stored in a cluster file

system without finding duplicates initially. The fingerprint index is stored in a shared disk. During the idle

time of CPU, deduplication is carried out by obtaining the lock on the fingerprint index. Hence, concurrent

937

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

requests do not cause any issues related to consistency. However, this approach is not suitable in the context

of the present DCS, since it performs inline deduplication.

Improved file sharing and file locking [13] describe the design of a file-sharing–enabled cloud storage

system. Concurrency issues that arise due to file sharing are handled by means of file locking and write

serialization, which utilizes a queue for placing the write requests to ensure that the writes do not conflict with

one another. However, this approach is restricted to file sharing in a nondeduplication system. It emerges that

issues related to consistency that arise due to deduplication have hitherto not been addressed.

3. Concurrency control for DCS (CCDCS)

In order to enable concurrency control for DCS, a set of concurrency control algorithms has been proposed

in this section. These algorithms utilize the proposed fingerprint index structure that supports concurrent

requests.

3.1. Proposed fingerprint structures: striped fingerprint index and enriched file recipe

The traditional fingerprint index consists of a set of entries related to each block that is available in the storage.

During concurrent requests, while one request is accessing a set of block entries, it is impossible to restrict

another request from updating this set either partially or entirely. This leads to inconsistent metadata. In

order to avoid this issue of inconsistency, it is essential to lock every block entry corresponding to a particular

file to serve a specific request. As a file may have numerous block entries, locking and releasing every block

entry involves considerable overhead. Alternately, the entire fingerprint index can be locked in an attempt to

maintain consistency of the metadata. However, this completely eliminates any parallelism, resulting in poor

performance. Hence, as a trade-off between the excessive locking overhead and the lack of parallelism altogether,

it would be better to lock only the relevant block entries corresponding to a particular file. Since the present

fingerprint index structure does not facilitate such fine-grained locking, it is essential to reorganize it.

In this context, this paper proposes a striped fingerprint index (SFI) that builds fingerprint index in two

levels. The first level index maintains the hash value of the file path and a pointer to the second level index,

which contains entries corresponding to the constituent blocks. A stripe represents an entry in the first level

index and its corresponding second level index as shown in Figure 1a.

Stripe

Stripe

Block Entry

Figure 1. Proposed data structures: a) striped fingerprint index, b) enriched file recipe.

The proposed enriched file recipe (EFR) shown in Figure 1b is a modification of the existing file recipe

to support access to the SFI. Since it is essential to obtain the stripe where a constituent block pertaining to a

file resides, EFR maintains the stripe information in addition to the fingerprint of every block.

938

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

The following example illustrates the proposed indices SFI and EFR. When a file named File1, which

consists of blocks B1, B2, and B3, needs to be written into the DCS, hash value of the file path (i.e. S1) for File1

is found and kept in the first level index of the SFI. For every block of a file, the SFI is scanned to determine

whether an entry corresponding to that block already exists in the SFI. If there is such a matching entry, the

reference count of that entry alone is incremented in the stripe of the file that owns the block. Since these

blocks are unique to File1, new block entries are created and placed in the second level index of SFI. Similarly,

when another file named File2, which consists of blocks B1, B2, B4, and B5, arrives, a new stripe is created

in SFI with the blocks B4 and B5, since they are the only ones unique to this file. When a file File3, which

consists of blocks B1, B3, B4 and B5 arrives, a new stripe is not created, since all the blocks constituting this

file are already present in the SFI. Hence, reference counts for the corresponding blocks alone are incremented.

3.2. Concurrency control algorithms

This section describes the concurrency control algorithms for the read, write, and delete operations, which are

handled by DCS.

3.2.1. Concurrency control algorithm for read request

A read request for any given file consults both the EFR and SFI to reconstruct that file. The proposed algorithm

for read request incorporates Rule 1 to handle concurrency issues that may arise due to content sharing.

Rule 1: A shared lock is obtained on each stripe required by the read request to retrieve the locations

of the required blocks.

Rationale: Generally, reading does not require a lock. However, in this context, the shared lock is

necessary to prevent other write or delete requests from exclusively locking the same stripe.

Figure 2 illustrates the process for a read request. To read File2, the EFR is consulted initially to retrieve

the blocks B1, B2, B4, and B5, which constitute that file, and their corresponding stripes S1 and S2. A shared

lock is obtained on S1 to retrieve the locations L1 and L2 for the blocks B1 and B2, respectively. This step

is repeated for the stripe S2 to retrieve the locations L4 and L5 for the blocks B4 and B5, respectively. Once

the locations are available, the blocks are retrieved from the locations L1, L2, L4, and L5 on the disk. They

are then assembled according to the order of their occurrence in the EFR to reconstruct the file. Algorithm 1

provides the pseudocode for the read request.

3.2.2. Concurrency control algorithm for write request

During a write operation, blocks of the incoming file are compared against all the stripes available in the storage

to determine duplicates.

Algorithm 1 Concurrency control algorithm for read request.

Input: EFR of the file Result: Reconstructed file

S := Set of stripes from EFR

for (each stripe S i ϵ S) { Obtain Shared-lock (S i)

Get the locations of all the blocks in EFR Release Shared-lock (S i) }
Retrieve blocks from storage

Reconstruct the file

939

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

Figure 2. Process for read request.

Rule 2: Each required stripe is locked with an exclusive lock to perform the necessary update on the

specific set of block entries. The lock is released once the update is completed.

Rationale: Let us assume two write requests simultaneously try to update the reference count of a

particular block entry, for example, B1. Initially, if the reference count is 1, each of the two writes will

increment it to 2. However, the actual reference count should have been 3. This will result in a problem when

delete requests are issued to two of the three files containing that block. Thus, the reference count for B1 will

eventually become 0, while it should actually be 1. The blocks with zero reference counts are removed from

the storage by the periodic space reclaim process described in Algorithm 2. Hence, if a read is issued for the

remaining file with the block B1, it would result in an error. Thus, it is essential to lock the stripe during a

write request in order to avoid a file reconstruction error.

The write request is handled in two ways, depending on whether the file already exists in the system or

not.

Case 1: Existing file

Let us assume that an already existing file File1 in the storage is updated. The blocks of the new and old

versions of File1 need to be compared to find out which blocks have become stale. Based on this information,

the reference counts are correspondingly updated.

For example, the old version of File1 consists of blocks B1, B2, and B3, and the new version of File1

consists of blocks B1, B2, B4, and B12. The old EFR and the new EFR are compared to determine a set of stale

and new blocks. Since B3 in the old set is not a part of the new version of File1, its reference count should be

decremented. The new block B12 has been added to the existing stripe corresponding to File1. The reference

counts of the blocks B4 and B12 that belong to the new set should be incremented. Subsequently, the old EFR

of File1 is deleted and the new EFR is written into the storage. During the entire update, an exclusive lock is

maintained on S1. Figure 3a shows the procedure for such an update request.

Case 2: File does not already exist in the system

If a file named File4 is written into the storage, it is first split into a set of blocks B1, B2, B7, and B8.

940

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

Figure 3. Process for write request: a) Case 1: existing file, b) Case 2: new file.

These blocks need to be checked for their presence among the stripes that belong to the SFI. In this case, S1

is the only such stripe. Hence, S1 is exclusively locked, and the reference counts of B1 and B2 are incremented

and then the lock is released. Further, B7 and B8 are new blocks. Hence, a stripe is created for File4 with B7

and B8 inserted into the second level index as shown in Figure 3b Algorithm 2 illustrates the above two cases

with the incorporation of Rule 2.

3.2.3. Concurrency control algorithm for delete request

The delete request reads the EFR to determine the list of blocks whose reference counts have to be decremented.

Algorithm 3 provides the pseudocode for a delete request by incorporating Rule 2.

Rationale: Let us consider a block B1 with the reference count 1. If there are simultaneous write and
delete requests to that block, the reference count is read by both the requests as 1. Subsequently, the write

request updates the reference count value to 2, and the delete request updates it to 0. Depending on the order

of the updates, the reference count can be 2 or 0, while the actual value should have been 1. This incorrect

update of reference count might lead to a premature removal of the block by the space reclamation process.

Consequently, a file reconstruction error will occur for the read requests that involve this block B1. Hence, it is

essential to lock the required stripes during the delete request.

Figure 4 depicts the process of a delete request with an example. If File2, consisting of the blocks B1,

B4, B2 and B5, has to be deleted, the EFR of that file is first checked to determine the list of stripes which

are to be accessed. In this case, the stripes to be accessed are S1 and S2. An exclusive lock is obtained on S1

to decrement the reference counts of the blocks B1 and B2. The process is repeated for S2 to decrement the

reference counts for the blocks B4 and B5.

4. Experimental evaluation

This section details the experimental setup, metrics for evaluation, and the results of the experiments.

941

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

Algorithm 2 Concurrency control algorithm for write request.

Input: File to be written (file), Set of blocks that correspond to file

Result: Updated SFI and EFR

B := Set of blocks to be written N := Set of all stripes from SFI

if (file exists) { B1 := Blocks in old EFR

Bnew := B - B1 // Set of blocks that exist in B but not in B1

Bold := B1 - B // Set of blocks that exist in B1 but not in B }

else { Bnew := B }

while (N is not empty) { /* Find a stripe which is not locked by another request */

if(some S i ϵ N is not locked){ Obtain Exclusive-lock (S i)

for (each block B j in Bnew)

if(S i has a block B j) {
increment reference count of B j by 1

remove B j from Bnew } }

for (each block Bk ϵ Bold) { if(S i has a block Bk) {

/* As block is no longer part of new file, the reference count needs to be decremented */

decrement reference count of Bk by 1

remove Bk from Bold }

release the Exclusive-lock(S i) }

Remove S i from N }

if(Bnew is not empty) {

if(stripe does not already exist)

Create a new stripe for the file.

Insert the block entries corresponding to Bnew into the existing or new stripe.

Write the data blocks into the storage }

if (file exists) Update the EFR else Create EFR

Figure 4. Process for delete request.

942

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

Algorithm 3 Concurrency control algorithm for delete request.

Input: EFR of the file Result: Updated SFI

S := Set of stripes obtained from EFR B := Set of blocks obtained from EFR

while(S is not empty) { /* Find a stripe which is not locked by another request */

if (some S i ϵ S is not locked) { Obtain Exclusive-lock(S i)

for(each B j ϵ B)

if (S i has chunk B j) {
Decrement the reference count of B j by 1

Remove B j from B }

Release the Exclusive-lock(S i) }
Remove S i from S }
Delete the EFR

4.1. Experimental setup

Private cloud storage was built using a set of four commodity machines with an open source framework, namely,

Eucalyptus [14]. This framework has several components: cloud controller (CLC), cluster controller, node

controller, walrus, and storage controller. CLC and walrus are installed in one of the commodity machines with

a configuration of Intel Core i7 2.8 GHZ, 4 GB RAM DDR3, and 800 GB HDD. The CLC is responsible for

transferring the requests from users to different components of the cloud.

Node controllers are installed in three other commodity machines with a configuration of Intel Core

i5 2.8 GHZ, 4 GB RAM DDR3, 500 GB HDD for maintaining the data blocks. Two of these commodity

machines are designated to maintain the striped fingerprint indices corresponding to less mutable (LM) and

more mutable (MM) types of files, respectively, along with the data blocks. Each SFI has been implemented

using the concurrent map of MapDB library. It helps to create an on-disk implementation of the map data

structure. Further, it also supports concurrent accesses to it by several parallel threads. Two maps have been

utilized to create the SFI. The first-level map contains the file path as key and the second-level map contains

the location of the block object, which is the abstraction of the block entry. The walrus component controls

the storage, retrieval, and deletion of data in the cloud through put, get, and delete APIs, respectively. The

implementations of these APIs without incorporating deduplication are available in putObject(), getObject(),

and deleteObject() methods of WalrusManager.java, which resides in the /edu/ucsb/eucalyptus/cloud/ws

directory.

The put API has been modified to incorporate deduplication process, which divides the stream of data

corresponding to a file into a set of fixed or variable sized blocks. Further, fingerprints for these blocks are

found by utilizing MessageDigest class. Since walrus knows the addresses of the node controllers that contribute

storage and compute resources to the cloud, these fingerprints and data blocks are sent to their respective nodes.

Further, the concurrency control algorithm for write request given in Algorithm 2 also has been implemented.

The source code was modified using Eclipse SDK 4.3. Apache Ant was used to build this rewritten walrus module

to generate eucalyptus-walrus.jar file in the target directory. This newly generated .jar file has been placed in

the folder /usr/share/eucalyptus/ by replacing the old file. Subsequently, the services of Eucalyptus are

restarted. Once the hosts are up, the put API is invoked to call the modified putObject() method. Similarly,

943

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

getObject() and deleteObject() were suitably modified to realize the concurrency control algorithms for read

and delete requests given in Algorithms 1 and 3, respectively. Though the cloud has been set up with only four

machines, it is possible to scale this environment to a maximum of 256 machines [14].

4.2. Metrics for evaluation

The proposed CCDCS was compared with DCS, which utilizes the basic algorithms for primitive operations,

namely, read, write and delete, without involving concurrency control by utilizing a set of common evaluation

metrics, namely, the response time, lock overhead, and throughput.

Response time: Time taken to respond to a request.

Lock overhead: Overhead involved in locking and unlocking the stripe for accessing the block entries.

Throughput: Number of requests serviced per unit time. The higher the throughput, the better the

performance.

4.2.1. Effect of concurrency control algorithms on response time

A tool called Agent Ransack was used to collect information about real trace of data pertaining to 100 personal

workstations to detect the types of files they utilize, and the minimum, average, and maximum size of each

type of file. The types of files utilized were .doc, .ppt, .pdf, .txt, .rar, .exe, .mkv, and .mp3 (to name a few)

and the minimum, average, and maximum sizes for some types of files are listed in the Table. These files can

be categorized as LM and MM.

Table. Summary of types of files.

File type Min. size Avg. size Max. size
DOC 68 K 180 K 1 M
TXT 26 K 606 K 800 K
PPT 126 K 976 K 2 M
PDF 216 K 403 K 2 M
EXE 142 K 298 K 466 K
RAR 876 K 2 M 4 M
MP3 2.6 M 5 M 6 M
MKV 397 M 691 M 1.88 G

LM files: Files that are less prone to modification are less mutable files. Files of these types (.rar, .exe)

are known as target types. That is, a user can change the content of these files only by making changes in their

source files. Hence, changes made in these files will be less and fixed-size chunking is used to detect duplicates.

MM files: Files that are more prone to modification belong to this category. As the user might change

the contents frequently in these types of files (.ppt, .doc, .odp, .odt, .txt), variable-sized chunking is used to

detect duplicates.

A representative file of average size has been considered for both LM and MM. The read, write, and

delete requests were generated for both DCS and CCDCS to measure the response time for each request. This

experiment was repeated 5 times and the average response times were noted and plotted as shown in Figures

5a–5c. The number of blocks generated will be more, as variable-sized chunking is utilized for the MM file.

Hence, the average response time for the MM files is longer than that of the LM files. Since CCDCS utilizes

lock-based concurrency control algorithms, every request locks and unlocks the stripes that are required for it.

Hence, the average response time for any operation with respect to CCDCS is slightly longer than that of DCS.

944

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

(a) (b) (c)

0

500

1000

LM File MM File

R
es

p
o

n
se

 t
im

e
in

 m
se

c

0

500

1000

1500

LM File MM File

R
es

p
o

n
se

 t
im

e
in

 m
se

c

0

200

400

600

800

LM File MM File

R
es

p
o

n
se

 t
im

e
in

 m
se

c DCS CCDCS DCS CCDCS
DCS CCDCS

Figure 5. Response time: a) read request, b) write request, c) delete request.

4.2.2. Effect of concurrency control algorithms on lock overhead

A WorkloadA that consists of LM files and WorkloadB that consists of MM files were considered for this
experiment. While LM files are split into a set of fixed size blocks, the MM files are split into a set of variable

sized blocks. MM files are frequently modified by the user and this leads to several versions of the same file

being stored. These versions share common content. Thus, the number of blocks to be locked is more for MM

files than for LM files. The locking overhead is proportional to the time involved in locking and unlocking the

stripes, as shown in Figure 6.

0

1000

2000

3000

4000

20r 40r 60r 80r 100r

L
o

ck
 o

ve
rh

ea
d

 i
n

 m
se

c

Number of requests

LM File MM File

Figure 6. Lock overhead.

4.3. Effect of concurrency control algorithms on throughput

An experiment was conducted to find the throughput in terms of number of requests served per minute for the

proposed CCDCS and DCS. It was found by performing load testing. One hundred concurrent requests were

generated by using parallel threads. Any request to the DCS needs to contact the SFI. Since SFI supports

concurrent access, each request obtains locks on the required stripes according to the algorithms and performs

the necessary actions. This experiment considered two workloads, namely WorkloadC and WorkloadD. The

former consisted of LM files with an average file size of 456 KB while the latter consisted of MM files with

an average files size of 358 KB. The getObject() method involves reading file recipe, block retrieval, and file

reconstruction. A count variable is incremented once this process is completed. A timeThreshold variable was

set to current time plus 60,000 ms. The count value is noted when the current time reaches timeThreshold. The

945

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

number of concurrent requests is varied from 20 to 100 to note the read, write, and delete throughput. These

experiments were executed five times to determine the average number of requests served and this is plotted in

Figure 7a. Similarly, the number of write and delete requests served per minute were determined and plotted

in Figures 7b and 7c. MM files generate more blocks than LM files owing to the use of variable-sized chunking.

Consequently, the time involved in locking and accessing the blocks is also longer for the MM files. Hence, the

throughput for LM files is more than MM files.

0

20

40

60

80

20r 40r 60r 80r 100r

�
ro

u
gh

p
u

t
(R

eq
u

es
ts

/M
in

u
te

)

Number of requests

(a) (b) (c)

0

10

20

30

40

50

60

20r 40r 60r 80r 100r �
ro

u
gh

p
u

t
(R

eq
u

es
ts

/M
in

u
te

)

Number of requests

LM File MM File

LM File MM File LM File MM File

0

20

40

60

80

20r 40r 60r 80r 100r

�
ro

u
gh

p
u

t
(R

eq
u

es
ts

/M
in

u
te

)

Number of requests

Figure 7. Throughput: a) read request, b) write request, c) delete request.

5. Conclusions

The proposed CCDCS was built by utilizing commodity machines. Primitive operations, namely read, write,

and delete operations, were implemented using algorithms 1, 2, and 3, respectively. This helps in allowing

concurrent users to access the CCDCS without compromising the consistency of the fingerprint index. Multiple

experiments were conducted to compare the performances of the proposed CCDCS and the DCS in terms of

lock overhead.

The results clearly demonstrate that the average lock overhead for any file in CCDCS was 14% greater

than DCS. Further, the average throughput for CCDCS was increased by about 60% when compared to that of

DCS. In this context, though the time taken for executing each request is slightly higher due to the overhead

associated with locking, the throughput increases significantly as the system facilitates concurrency.

References

[1] Zeng W, Zhao Y, Ou K, Song W. Research on cloud storage architecture and key technologies. In: 2nd IEEE 2009

Interaction Sciences Information Technology, Culture and Human International Conference; 24–26 November 2009;

Seoul, Republic of Korea: IEEE. pp. 1044-1048.

[2] Policroniades C, Pratt I. Alternatives for detecting redundancy in storage systems data. In: USENIX 2004 Annual

Technical Conference; 27 June–2 July 2004; Boston, MA, USA: Usenix Association. pp. 73-86.

[3] Clements AT, Ahmad I, Vilayannur M, Li J. Decentralized deduplication in SAN cluster file systems. In: 11th

USENIX 2009 Annual Technical Conference; 14–19 June 2009; Santa Clara, CA, USA: Usenix Association. pp.

101-114.

[4] Fu Y, Jiang H, Xiao N, Tian L, Liu F. Aa-dedupe: An application-aware source deduplication approach for

cloud backup services in the personal computing environment. In: IEEE 2011 Cluster Computing International

Conference; 26–30 September 2011; Austin, TX, USA: IEEE. pp. 112-120.

[5] Thwel T, Thein NL. An efficient indexing mechanism for data deduplication. In: IEEE 2009 Current Trends in

Information Technology Conference; 15–16 December 2009; Dubai, United Arab Emirates: IEEE. pp. 1-5.

946

BALASUNDARAM and BABU/Turk J Elec Eng & Comp Sci

[6] Xu L, Hu J, Mkandawire S, Jiang H. SHHC: A scalable hybrid hash cluster for cloud backup services in data

centers. In: 31st IEEE 2011 Distributed Computing Systems Workshops International Conference; 21–24 June

2011; Minneapolis, MN, USA: IEEE. pp. 61-65.

[7] Guo F, Efstathopoulos P. Building a high performance deduplication system. In: USENIX 2011 Annual Technical

Conference; 15–17 June 2011; Portland, OR, USA: Usenix Association. pp. 1-14.

[8] Efstathopoulos P, Guo F. Rethinking deduplication scalability. In: 2nd USENIX 2010 Hot Topics in Storage and

File Systems Conference; 22–25 June 2010; Berkeley, CA, USA: Usenix Association. pp. 1-5.

[9] Debnath B, Sengupta S, Li J. ChunkStash: Speeding up inline storage deduplication using flash memory. In:

USENIX 2010 Annual Technical Conference; 22–25 June 2010; Boston, MA, USA: Usenix Association. pp. 1-15.

[10] Lillibridge M, Eshghi K, Bhagwat D, Deolalikar V, Trezis G, Camble P. Sparse indexing: Large scale inline

deduplication using sampling and locality. In: 7th USENIX 2009 File and Storage Technologies Conference; 24–27

February 2009; San Francisco, CA, USA: Usenix Association. pp. 111-123.

[11] Zhu B, Li K, Patterson H. Avoiding the disk bottleneck in the data domain deduplication file system. In: 6th

USENIX 2008 File and Storage Technologies Conference; 28–29 February 2008; San Jose, CA, USA: Usenix

Association. pp. 1-14.

[12] Strzelczak P, Adamczyk E, Herman-Izycka U, Sakowicz J, Slusarczyk L, Wrona J, Dubnicki C. Concurrent deletion

in a distributed content-addressable storage system with global deduplication. In: 11th USENIX 2013 File and

Storage Technologies Conference; 13–15 February 2013; San Jose, CA, USA: Usenix Association. pp. 161-174.

[13] Sundarrajan R, Neelamegam K, Prabagaran VT. Improve file sharing and file locking in a cloud. In: IBM 2010

White Paper; IBM. pp. 1-22.

[14] Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D. The eucalyptus open-source

cloud-computing system. In: 9th IEEE/ACM 2009 Cluster Computing and the Grid International Symposium; May

18 2009; TBD Shanghai, China: IEEE. pp. 124-131.

947

	Introduction
	Related work
	Concurrency control for DCS (CCDCS)
	Proposed fingerprint structures: striped fingerprint index and enriched file recipe
	Concurrency control algorithms
	Concurrency control algorithm for read request
	Concurrency control algorithm for write request
	Concurrency control algorithm for delete request

	Experimental evaluation
	Experimental setup
	Metrics for evaluation
	Effect of concurrency control algorithms on response time
	Effect of concurrency control algorithms on lock overhead

	Effect of concurrency control algorithms on throughput

	Conclusions

