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Abstract: This paper presents a fast and accurate fault classifier for three-terminal transmission circuits. Traditional

phasor-based methods fail to meet the high speed requirements of modern power grids and necessitate alternative

solutions. The transient-based schemes use advanced signal processing techniques to achieve fast and accurate fault

classification. As the three-terminal lines experience very pronounced transients during faults, the proposed method

makes use of the fault-generated transients to quickly and correctly classify the fault. Many transient-based schemes

fail to give the required accuracy since the transient patterns with relay-measured signals are highly influenced by fault

conditions. Therefore, a thorough analysis of transient patterns is carried out in this paper, and based on the typical

patterns revealed by the analysis of fault-generated transients an effective classification algorithm is developed. For

high-speed classification, only a quarter-cycle of postfault voltage signals measured at the relay points will be processed

for feature extraction using wavelet transform. The algorithm includes a hybrid procedure based on a probabilistic neural

network for tackling the effects of fault inception angle and fault resistance in transient variations. Particularly, it is

designed to overcome the problem with double-line-to-ground fault classification. The technique is simple and extensive

simulation studies and comparison substantiate the efficacy of the proposed method under different fault conditions.
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1. Introduction

Modern power grids are becoming complex interconnected power systems to facilitate the optimal utilization

of existing infrastructure and resources. In such power systems, extra-high voltage transmission lines carry

the bulk of the power to meet the demand at different load centers. Transmission lines play a vital role in

maintaining the grid integrity and therefore must have very effective protective relays for the reliable and stable

operation of the grid. Generally, a three-terminal line configuration is created if construction of a new substation

is not possible due to cost or right-of-way concerns. Significantly, due to lack of measurements at the tap point,

a three-terminal line protection requires further enhancements [1]. Figure 1 shows such a 400 KV line structure

present in an Indian power grid [2].

In transmission line protection, after fault detection, the line relay invokes a fault classification function

to identify the type of fault and the faulted phases for initiating possible single-pole tripping and autoreclosing

[3]. Hence, the fault classifier must be very quick and accurate to maintain system stability and continuity of

supply. Many fault classification algorithms are traditionally phasor-based, where the estimation of postfault
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Figure 1. A 400 KV three-terminal transmission circuit.

voltage/current phasors requires at least a half-cycle of data. Most of these methods are affected by dynamically

changing network configuration and fault conditions. Recently, a phasor-based method using sequential reactive

powers was proposed by Mahamedi and Zhu [4]. Despite its claim to be setting- and synchronization-free, one

entire cycle of fault data requirement is a critical factor influencing the speed of response.

Driven by the need for high-speed relaying, with the availability of efficient signal-processing techniques

and high-sampling-rate hardware a new class of classification algorithms based on fault-induced transients has

evolved. These transient-based algorithms process fault-generated traveling waves or high-frequency components

for feature extraction, mostly by using wavelet transform. In [5], a method using an initial current traveling

wave is reported, mentioning that it fails during three certain phase faults. A wavelet singular entropy-based

technique is presented in [6] by using a half-cycle postfault voltage signal. The problem with this method

is it requires the setting of three thresholds according to system situation. Another current transient-based

classification technique is proposed in [7], whose accuracy with double-line to ground (LLG) faults is only around

90%. Despite their speed advantage, a major problem for all these deterministic transient-based methods is the

influence of fault inception angle (FIA) and fault resistance (Rf ) on the fault transient magnitudes. Particularly,

LLG fault classification poses a big challenge due to misleading transient patterns generated during the faults.

In an effort to overcome the above problems due to system inconstancy and for better performance,

several authors explored artificial intelligence applications with fuzzy logic [8,9], artificial neural networks

(ANNs) [10,11], support vector machines (SVMs) [12,13], etc., to solve the fault classification problem. The

inputs to these knowledge-based methods are mainly either steady-state or transient components of the fault

voltage/current signals. Recently, Jamehbozorg and Shahrtash proposed a decision tree (DT)-based method

with half-cycle discrete Fourier transformation (HCDFT) [14], which requires computation of ten odd harmonic

phasors. A statistical DT-based approach [15] is accurate, but it takes two full cycles of current signals for

transient extraction. Another transient-ANN approach was developed with a rough membership neural network

in [16], but the results presented include only a 90◦ variation of FIA. In addition to all the above methods

primarily developed for two-terminal lines, a transient SVM-based classifier is designed for three terminal lines

in [17]. However, its poor performance (95% accuracy) in classifying grounded faults is not acceptable. In view

of the above drawbacks, a thorough investigation into the transient patterns generated during faults is necessary

for developing a useful classifier.

In this paper, a new transient-based scheme for fast and accurate fault classification is proposed for

three-terminal lines. The proposed algorithm extracts the distinguishing features from the three phase voltage

signals by using wavelet transformation and a probabilistic neural network (PNN) is included to improve the

accuracy of the classifier with LLG faults. Unlike many other techniques, the scheme is simple, requires single

threshold setting, and its speed and accuracy are significantly high. The performance of the method is verified

by simulation of a three terminal line shown in Figure 1 using MATLAB/SIMULINK environment.
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In Section 2, the feature extraction is described, followed by feature analysis and algorithm formulation.

Section 3 presents the simulation details and performance results of the proposed algorithm. Finally, conclusions

are given in Section 4.

2. Transient features and algorithm formulation

Fault classification methods process voltage signals and/or current signals measured by the relays to extract

necessary discriminating features. Since most of the available algorithms use only postfault signals, the size of

a signal window plays an important role in deciding the speed and accuracy of the classification procedure. A

larger window size normally improves accuracy at the cost of speed and vice versa. However, use of a smaller

window without losing much accuracy is possible in transient-based schemes because of the wide-band nature

of the fault transients. In the proposed method, only postfault voltage signals of a quarter cycle duration from

all the three ends are taken as inputs and the choice is based on the fact that voltage transients are more than

current transients during faults in power systems [18]. A sampling frequency of 200 kHz is used as the faulted

lines contain high frequency components in the range of 10–100 kHz [19]. Such a sampling rate is common with

currently available hardware and, in addition, avoids the use of an antialiasing filter in digital relays [20]. The

high-frequency components present in voltage signals are extracted by using discrete wavelet transform (DWT),

which has proven to be an effective signal processing tool for power systems [21].

The feature extraction procedure is presented below, followed by a discussion on fault transient patterns

for developing the classification procedure.

2.1. Feature extraction

Figure 2 depicts the overall structure of the proposed scheme in which the classifier is activated by the fault

detector when a fault is detected in the line. The classifier algorithm takes the three phase voltage signals

(Va , Vb , and Vc) of 1/4 cycle time from the three ends and forms the line voltages (Vab , Vbc , Vca) and

zero-sequence voltage (V0) from the phase voltages. In spite of the communication requirements, use of three

end signals improves the feature strength, as explained later. The quarter-cycle windows of all fault voltage

signals shown in Table 1 are then decomposed to the first level by using the multiresolution analysis feature of

the DWT.

T

Communication 
Lines

S 1

S 3

S 2

Fault 
Detector
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PT
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Figure 2. Signal communication for the proposed fault classifier.
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Table 1. Voltages decomposed by the DWT.

End Phase voltages Line voltages Zero sequence voltages
1 Va1, Vb1, Vc1 Vab1,Vbc1,Vca1 V01 = (Va1 + Vb1 + Vc1)/3
2 Va2, Vb2, Vc2 Vab2,Vbc2,Vca2 V02 = (Va2 + Vb2 + Vc2)/3
3 Va3, Vb3, Vc3 Vab3,Vbc3,Vca3 V03 = (Va3 + Vb3 + Vc3)/3

The DWT of a digital signal is given by

DWT (m, k) =
1

√
a
m
0

∑
n

x(n)g

(
k − nb0a

m
0

am0

)
, (1)

where g(n) is the mother wavelet and x(n) is the input signal, and the scaling and translation parameters a

and b are functions of integer parameter m . Figure 3 shows measured phase voltage signals at end-1 for an

AG fault with the fault inception at 0.025 s. A 5 ms postfault voltage signal window and the first-level detail

coefficients (D1) coefficients of phase and zero-sequence voltages obtained using wavelet transformation are also

indicated.

Although many earlier techniques used higher-level decomposition, in this paper only first-level is pre-

ferred due to computational simplicity and accuracy of transient energy calculation. The transient-based meth-
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Figure 3. Phase voltages at end 1 and the D1 coefficients with an AG fault in Section 3.
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ods need denoising of input signals before their processing to avoid the effect of noise and an assumption is

made to that effect with the proposed method in this paper.

From the D1 coefficients, the transient signal energy for each voltage signal is calculated by using the

equation

Transient energy ψ =

√√√√ N∑
i=1

[D1 (i)]
2
, (2)

where N is the number of first-level detail coefficients after truncation of five samples, applied to eliminate the

edge effect.

Now the effective transient energy for each voltage signal is obtained by adding the signal energies of

the three ends (1, 2, and 3). The effective transient energy for phase, line, and zero-sequence voltage signals is

given by

Ψi = Ψi1 +Ψi2 +Ψi3 ; i = abc

Ψjk = Ψjk1 +Ψjk2 +Ψjk3 ; j = abc& k = bca

Ψ0 = Ψ01 +Ψ02 +Ψ03,

where Ψi is the effective transient energies of phase voltages, Ψjk is the effective transient energies of line

voltages, and Ψ0 is the effective transient energy of the zero-sequence voltage. The above set of energies is

normalized to form a feature array, called the normalized effective transient energy (NETE) array, as shown in

Figure 4. The NETE array, describing the high-frequency transient content on voltage signals, is used as input

for classifying faults in the present technique.

Zero 
Sequence 
Voltage

Ψ0ΨbΨa Ψc Ψab Ψbc Ψca

Phase Voltages Line Voltages

Figure 4. NETE array input to the classifier.

In the above procedure, the addition of three end energies is done to improve the sensitivity of the scheme

with respect to the fault location and Rf . In close-up faults, the voltage signal of the faulted phase measured

by the relay (at the faulted section end) contains very little transient energy. However, the relays at the other

two ends find appreciable energy in the measured signals. Therefore, use of only single-end measurements leads

to errors in classification of close-up faults.

2.2. Analysis of transient patterns:

Many transient-based classification techniques depend on a comparison of the fault transient energy magnitudes

of different phase voltages or currents and these magnitudes widely vary depending on the type of fault and fault

parameters. Therefore, methods based on the direct energy threshold fail to give accuracy and normalization

becomes a necessity to fix the thresholds. Despite the normalization, threshold fixing is difficult and often leads

978



BHUPATIRAJU et al./Turk J Elec Eng & Comp Sci

to inaccurate classification. An advantage of the proposed method in this paper is that it requires a single

threshold fixing.

The NETE feature array formed from the fault voltage signals will provide the necessary information for

classifying the fault. Initially, the ground involvement in the fault can be checked by verifying the energy on

zero sequence voltages, i.e. Ψ0 . For ungrounded faults, its value will be zero.

2.2.1. Grounded faults

Single line-to-ground (LG) faults: In LG faults, which amount to 85% of total faults in power systems, the

unfaulted phases also contain energy magnitudes that are close to that of the faulted phase. The unfaulted

phase energies (Ψb and Ψc) are nearer to the faulted phase energy (Ψa), thus making segregation of the faulted

phase difficult. Instead of using phase voltage energies, the proposed method uses energy on line voltages to

resolve this problem. Observing the energy on line voltages, Ψbc becomes zero, clearly indicating that the fault

is on phase A. Similarly, Ψca and Ψab will become zero for BG and CG faults, respectively.

LLG faults: Accuracy of classification in many algorithms is mainly affected by LLG faults, which

create misleading energy patterns. Although in many situations the faulted phases carry higher magnitudes of

transients than the unfaulted phases, during certain ranges of FIA, depending on the Rf , the transient presence

occurs the other way. Further, Figure 5 demonstrates the variation in energy with respect to FIA on phase

voltages during a BCG fault. The energy on faulted phases is more than the unfaulted for many inception

angles, except in the band from 60 to 130◦ . The width of this band is again a function of the Rf . Similar

inconsistent patterns appear for ABG and CAG faults, also with error bands between 0 and 180◦ . Nearly 1/3

of the LLG faults will be misclassified if the decision is based on the comparison of energy present on individual

phases. Hence, a neural network is considered a preferable solution for LLG fault classification in this work.

0 10 30 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 
Ψa Ψb Ψc

N
E

T
E

 o
f 

P
ha

s e
 V

ol
ta

ge
s

Fault Inception Angle

BCG Fault in S ection 3 L=60KM Rf =100 Ohms

70 90 110 130 150 170

Figure 5. Variation of energy on phase voltages with FIA (BCG fault).

2.2.2. Ungrounded faults

In the case of line-to-line (LL) faults, the two faulted phases contain equal values of transient energy in their

phase voltages and the other phase contains no transient energy. This distinctive feature clearly segregates an

LL fault and the ground is not involved in the fault. If the above condition is not satisfied during a fault without

ground involvement, then the fault is decided to be a three-phase (LLL) fault.

979



BHUPATIRAJU et al./Turk J Elec Eng & Comp Sci

2.3. Algorithm formulation

Based on the above feature analysis, a hybrid algorithm is developed in this paper to classify all types of faults

very accurately. In this algorithm, determination of ground involvement and classification of LG, LL, and LLL

faults will be carried out by a deterministic procedure, as explained earlier. For LLG faults, in view of the

misleading transient patterns, a neural network is incorporated, thus making the algorithm a hybrid one. The

algorithm takes the NETE array as input and initially checks whether the fault is grounded or not. If the fault

does not involve the ground, then it checks for LL or LLL faults. In the case of a grounded fault, the algorithm

first checks for different LG faults; if not concluded, the only remaining possibility is an LLG fault. Then a

trained PNN is activated for LLG faults to identify the faulted phases. A PNN application for only LLG faults

gives better overall accuracy and makes the algorithm suitable for real-time implementation. A brief description

of PNNs followed by the overall flowchart is given below.

PNNs: a PNN is a supervised learning network that belongs to the general category of radial basis

networks. Many classification problems utilize pattern recognition techniques that are based on the theory of

Bayesian classification [22]. These techniques, realized by probabilistic model networks, require estimation of

probability density function (PDF) and for an input x belonging to a category A. The PDF is given by

fA (X) =
1

(2π)
p/2
σp

1

m

m∑
1

exp

[
− (X −XAi)

T
(X −XAi)

2σ2

]
(3)

where i is the pattern number, m is the total number of training patterns, XAi is ith pattern from category A,

σ is the smoothing parameter, and p is the dimensionality of measurement space. The smoothing parameter is

fixed by the spread value in MATLAB simulation.

With enough training data, a PNN is guaranteed to converge and its fast learning makes it suitable for

real-time applications, as in [23]. In the present application, the PNN is initially trained with several NETE

patterns obtained from the simulation for different LLG faults. Patterns are generated by considering wide

variations in FIA, Rf , and fault location. The PNN will have seven inputs and a single output, as shown

in Figure 6a. The overall flowchart for the proposed scheme is shown in Figure 6b. The value of ε (single

threshold) is set to be very small and should be ideally zero.

3. Simulation details and results

The classification procedure developed above was verified by simulation using the 400 KV line shown in Figure

1 with the parameters given in Table 2. The system was simulated in MATLAB/SIMULINK with a distributed

parameter model (Bergeron’s model) for the transmission lines, so that the fault signals exhibited the high-

frequency transient components generated. Wavelet decomposition was done using bior2.2 as the mother wavelet

because of its effectiveness in processing power system transients [24]. A total of 14,040 different fault cases

were considered for simulation by varying fault type, fault location, FIA, and Rf , as shown in Table 3, to verify

the performance of the proposed algorithm with a practical value of 0.02 for ε . The transient energy patterns

obtained for different faults are shown in polar scatter plots to justify the validity of the proposed algorithm.

Table 2. 400 KV Transmission line parameters.

R1 = 0.029792 Ω/km L1 = 1.05678 mH/km C1 = 11.04137 nF/km
R0 = 0.16192 Ω/km L0 = 3.947042 mH/km C0 = 7.130141 nF/km
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Table 3. Fault conditions considered.

Condition Range
Fault type AG, BG, CG, AB, BC, CA, ABG, BCG, CAG, ABC
Fault resistance 0 Ω, 50 Ω, 100 Ω
Fault inception angle 0◦ to 350◦ in steps of 10◦

Fault location Every 10 KM in each section
Total number of cases 14,040 (1404 for each fault type)

The performance of the proposed technique for LG faults was assessed by simulating 4212 faults at

different locations. Figures 7a and 7b show the variation of transient energy with FIA on phase and line

voltages, respectively, for AG faults (1404 cases). Note that Ψb and Ψab patterns are not visible in these plots

as they lie beneath Ψc and Ψca , respectively. Although the energy values of phase voltages for both faulted

(Ψa) and unfaulted (Ψb and Ψc) lines are nearly overlapping, the values of line voltages clearly indicate the

faulted phase; i.e. for all AG faults, the value of Ψbc approaches zero. The present procedure had an accuracy

rate of 100% in classifying LG faults.
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Figure 7. Energy patterns for AG faults a) phase b) line.

In LLG faults, the transients generated clearly brought out the typical patterns that make classification

difficult. Figures 8a and 8b show the variation of energy on phase voltages for ABG faults with two different

Rf s (0 and 100 Ω). The unfaulted phase energy (Ψc) was more than the faulted phase energy for a range of

inception angles and this range was large, with an increase in Rf . Similar patterns were obtained for BCG

and CAG faults as well. The symmetry of patterns in the polar plots shows that consideration of FIA variation

from 0 to 180◦ is very much necessary while developing transient-based classification algorithms.

Regarding performance levels, the PNN was activated for all LLG faults without fail, and the classification

accuracy with the trained PNN was very high (99.59%). The results of the 4212 cases simulated validate the

application of PNN for classifying only LLG faults.

In the LL faults, the present technique classified all faults except 2 (out of 4212 cases) correctly by using

the energy values of the phase voltages. Figure 9a shows the variation in energy of phase voltages for all phase

A-to-phase B (AB) faults simulated (Ψa patterns not visible). Clearly, the unfaulted phase always exhibited

982



BHUPATIRAJU et al./Turk J Elec Eng & Comp Sci

  0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

180 0

 o  -- Ψa b o  – Ψbc    o  -  Ψc a

FIA
FIA

180

  

0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

0

 o  -- Ψa  o  – Ψb   o  -  Ψc

Figure 8. Energy patterns on phase voltages for ABG faults a) Rf = 0 Ω, b) Rf = 100 Ω.

a value of energy (Ψc) close to zero. The normalized energy on faulted phase voltage signals (Ψa and Ψb)

remained fairly constant at 0.353. A similar pattern was obtained for BC and CA faults as well.
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Figure 9. Energy patterns on phase voltages a) AB faults, b) ABC faults.

All the symmetrical three-phase faults (ABC faults) simulated were classified by the present method

with 100% accuracy. Figure 9b shows the typical transient patterns developed on phase voltages for three-phase

faults. The NETE magnitudes of different voltage signals varied widely with respect to FIA and in no case did

the NETE meet the pattern of any LL fault.

The overall accuracy of performance with the proposed hybrid classifier was very high. Particularly,

its ability to classify more frequent LG faults with 100% accuracy is an attractive feature. The results of

the simulation show that the technique is quite insensitive to fault location, Rf , and FIA, which is a definite

advantage over conventional phasor-based methods. Moreover, the classification of LLG faults using a PNN

overcomes the major drawback of many existing transient-based methods in classifying LLG faults. Table 4

gives the complete simulation results for all 14,040 faults considered, with only 17 misclassifications in total. A
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performance comparison with three recently reported methods [7,17,25] in Table 5 reveals the improvement in

accuracy achieved by the proposed technique.

Table 4. Classification results.

Given fault type Fault classification result

(All 1404 cases)↓ 1 AG 2 BG 3 CG 4 ABG 5 BCG 6 CAG 7 AB 8 BC 9 CA 10 ABC

AG 1404 0 0 0 0 0 0 0 0 0

BG 0 1404 0 0 0 0 0 0 0 0

CG 0 0 1404 0 0 0 0 0 0 0

ABG 0 0 0 1400 0 2 2 0 0 0

BCG 0 0 0 1 1397 4 0 2 0 0

CAG 0 0 0 2 2 1398 0 0 2 0

AB 0 0 0 0 0 0 1404 0 0 0

BC 0 0 0 0 0 2 0 1402 0 0

CA 0 0 0 0 0 0 0 0 1404 0

ABC 0 0 0 0 0 0 0 0 0 1404

Table 5. Accuracy of classification.

Sl. no. Fault type
Number of cases

Accuracy %
Accuracy % Accuracy % Accuracy %

cases reported by [7] reported by [17] reported by [25]

1 LG 4212 100 100 95.3 99.72

2 LL 4212 99.95 100 99.3 100

3 LLL 1404 100 100 99.7 100

4 LLG 4212 99.59 90.61 96.8 97.50

Overall 14040 99.88 99.53* 97.77 99.17

*Based on the probability of occurrence of different types of faults.

4. Conclusions

This paper presented a new voltage transient-based fault classification technique for three terminal lines that

requires communication from the three ends for processing fault-induced voltage transients. An analysis of

transient patterns revealed the influence of FIA and Rf , and that FIA variation from 0 to 180◦ needs to be

considered while designing transient-based schemes. Based on investigations into fault transient patterns, a

hybrid algorithm was developed by including a PNN to resolve the misleading transient pattern problem with

LLG faults. The deterministic procedure for LG, LL, and LLL faults is very effective, with near 100% accuracy,

whereas the PNN solution for LLG faults was 99.59% accurate. The proposed method copes well with the

adverse influence of FIA and Rf . The exhaustive simulation results presented indicate the accuracy of the

scheme with all types of faults, and its speed is evident from the use of only a quarter-cycle of fault voltage

signals for processing. The method is simple, as it requires only voltage measurements, single threshold setting,

and first-level wavelet decomposition.

In practical implementation, the bandwidth of the transducers, communication requirements, and proces-

sor speed play a significant role. Optical PTs having a wide bandwidth and fiber-optic communication systems
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are needed in this scheme. Scope for further work includes hardware implementation and development of a

noise-tolerant communication-free technique.
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