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Abstract: Railway tracks must be periodically inspected. This study proposes a new approach for eliminating two major

disadvantages experienced during rail inspection applications performed via computer vision. The first is the blurring

effect on images, resulting from physical vibration during movement on the rail lines. This effect significantly reduces the

high accuracy rate expected from anomaly inspection algorithms. The second disadvantage is the need to operate in real

time. This study presents a new three-stage computer vision method approach that eliminates both disadvantages. First,

a three-stage pipeline architecture is implemented and IMU-assisted blur detection is performed on images taken from

the left and right rail lines. Next, a convolutional neural network is used for learning. In the third test stage, anomaly

detection and classification training are conducted. By performing the implementation with parallel programming on

graphic processing units, a highly accurate, cost-effective computer vision rail inspection, based on image processing and

capable of operating in real time, is successfully carried out.
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1. Introduction

To avoid accidents, railway track components must be periodically inspected. Today this inspection is commonly

carried out using computer vision systems (CVSs) [1]. A typical CVS used for rail inspection consists of a light

source, a camera system, an encoder, and computer system components on which the application software will

run. This equipment can be mounted to the rail transportation vehicle. Specifically designed test equipment

can also be used. A rail inspection process using a CVS is expected to be cost-effective, suitable for real-time

operation, fast, and highly accurate [2]. In the rail inspection process, camera images constitute the input data

of the system using the CVS. However, the physical structure of the rail lines causes vibrations that blur the

images. This situation may decrease the general accuracy rate of the CVS [3]. Manual fixes for blurred images

are time-consuming and cannot be used in real-time inspection applications.

In image processing, an unclear image is described as having motion blur. Motion blur is created because

the object to be photographed is moving at a faster speed than the focus of the camera, e.g., when the hand

holding the camera moves at the moment the photograph is taken and the camera is shaken. In industrial

applications, lack of clarity due to motion blur is a general disadvantage that decreases the accuracy rate of the

system. In order to prevent motion blur in images, traditional methods such as fixing the camera with a tripod

or using Steadicam equipment are employed. However, these solutions are not sufficient for rail inspection

applications [4].
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The elimination of motion blur in image processing applications is called deblurring, and it is done by

modeling the blur as a convolution on the whole image. The success of the deblurring process depends on the

parameters, either manually selected or speculated, in the convolution process. In the works of Ito et al. for a

Sony camera, the motion blur created by the vibration of the camera movement is described in terms of empty

values in the Fourier spectrum [5]. To remove motion blur from images acquired in a series, speculating blur

kernel values has been proposed.

Wang et al. investigated the blurring effect on camera images for CVS rail inspection and proposed a

method for the deblurring process based on machine learning [6]. According to the study, two types of motion

blur can be created on rail lines. The blur type created by instant concussions from rail vibrations is described

as Gaussian blur.

A similar use of inertial measurement unit (IMU) data was proposed in another study [6] using a CVS

to perform the deconvolution process accordingly in real time. In the rail line inspection application, it was

possible to automatically detect the motion blur caused by the physical rail line vibrations on the images to

develop data to be input into the system. Thus, a preprocessing stage of automatic deblurring was conducted

in order to increase the overall accuracy rate of the rail inspection system.

Another important point in rail inspection applications using CVSs is that the system operates at high

speeds. Today, rail transport systems can move at speeds of 300 km/h. The fact that the inspection process

works at high speeds is extremely important in long-distance inspection applications.

Rail inspection applications using high-resolution cameras were shown to be capable of achieving a speed

of 75 km/h, depending on the frame sizes of the images taken [7].

To achieve higher operating speeds, 3D-laser cameras were used instead of high-resolution cameras. In

their study, Le et al. used a 3D-laser camera to find rail surface faults and achieved a real-time operating speed

close to 100 km/h. However, 3D-laser camera costs are very high.

In the literature, convolutional neural networks (CNNs) (different types of neural networks) have been

successfully applied to many applications such as self-driving cars, object detection and classification, industrial

inspection, and image recognition [8–11]. CNNs are very similar to feedforward neural networks. They are

made up of neurons that have learnable weights and biases. Each neuron receives some inputs, performs a

dot product, and optionally follows it with nonlinearity. However, CNNs are easier to train and have far fewer

parameters than fully connected networks with the same number of hidden units. Therefore, a CNN is used as

a machine-learning method in this study.

Consequently, an approach using a CNN-based three-stage pipeline architecture with parallel GPU

programming for rail inspection applications via a CVS is proposed in this study. In the first step, motion

blur is detected by analyzing the images taken from the rail lines along with IMU data. Then the deblurring

process is adaptively performed. In the second step, system learning was carried out with CNNs using the

learning data set. In the test phase, the performance values of the trained system were compared by obtaining

the accuracy performance and operating speed data over a 5-km section of rail line.

2. Railway analysis

Information about rail line components and the types of failures occurring in these components, as provided by

studies in the literature, will be analyzed in this section. The basic components constituting the rail lines are

given in Figure 1.

The part over which the rail vehicle wheels move constitutes the most significant component of rail
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Figure 1. Rail line components.

analysis in terms of transportation security. The building material consists of wood, concrete, or iron and

transmits the load on the rail line to the ballast.

The railroad building material consists of pebble stones, which distribute the load equally on the sleeper.

The unit has different geometrical shapes (hexagonal or round) that connect the rail line to the sleeper.

Rail line inspection is traditionally performed by manual and visual examination using human labor.

However, this type of inspection is slow and unsafe and, most of all, it remains limited to the knowledge of a

competent person. Another method is based on inspecting the rails using mechanical devices. This method,

called contact-based, diagnoses faults by using graphs obtained from the friction between the mechanical device

and the rail. It is fast and provides accurate results; however, because it requires contact with the rail, it may

damage the rails or increase existing damage [12].

In the works of Hackel et al., laser cameras were used for detecting anomalies such as missing screws and

traverse and rail fractures [13]. Aytekin et al. [14] detected deficient bolts on rail lines using a laser camera. The

main advantage of conducting rail inspection processes using 3D-laser cameras is the higher operating speed

and measurement accuracy, whereas the very high cost constitutes the main disadvantage.

Huber-Mörk et al. carried out a study classifying rail surface faults based on image processing [15]. In

their study, faults were classified as wear, puncture, and crack and were grouped by type. A 97% accuracy rate

was achieved in this study.

Railway analysis studies in the literature usually involve the detection of these components based on

image processing and identifying and/or classifying any deficiencies and failure conditions that occur in them

[16–18]. Santur et al. proposed a method to detect rail faults using a laser camera [16]. Karaköse et al. carried

out a study on rail diagnosis based on the fuzzy integral [17]. In the works of Li et al., morphological image

processing was used to detect rail surface faults [18].

This study proposes a cost-effective approach that addresses all the disadvantages seen in the literature.

This approach is based on CNNs that are suitable for pipeline architecture. It uses two cameras to monitor

both sides of the rail lines, three GPUs, and one computer compatible with the Nvidia CUDA.

3. Proposed approach

A general block diagram of the proposed approach method is given in Figure 2. In the first step, the obtained

left and right line images were processed simultaneously on GPU-1 and GPU-2, and the image from which the

noise and motion blur were removed was transferred to GPU-3 as the data matrix. In the second pipeline stage,

GPU-3 was used for the CNN learning model. In the third pipeline stage, anomaly detection classification was

performed on both image frames in a CNN previously trained with data on the computer [9].
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Figure 2. Proposed approach.

3.1. First pipeline stage (blur detection and deblurring process)

In this application, an IMU-based approach was proposed to detect Gaussian blur on the image and to implement

the deblurring process in an adaptive manner. A block diagram of this stage is given in Figure 3. IMUs are used

in autonomous mobile robots and in seafaring, aerial, and space vehicles. These systems have accelometers,

gyroscopes, and magnetometers within them and are used to find positional information and establish balance

in control applications [2]. IMUs are used in industrial applications and are selected for their desirable features,

which include degrees of freedom (DOFs), good working speed, and precision measurement. The highly accurate

Xsens 10 kHz 10-DOF MTi 100-series IMU was used in this application [19]. In Euler space (Figure 3), the

angle of the object in the x-axis is called roll, in the y-axis pitch, and in the z-axis yaw. To find Euler

angles, transformation matrices, Kalman filters, and the open-source attitude heading reference system (AHRS)

algorithm, developed by Sebastian Madgwick, are commonly used [20].
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Figure 3. (a) IMU-assisted deblurring process, (b) Euler angles.

990



SANTUR et al./Turk J Elec Eng & Comp Sci

3.2. AHRS algorithm

AHRS is an algorithm used to find the Euler angles of an object in a three-dimensional space, as shown in

Figure 3. The AHRS algorithm computes the Euler angles using the IMU data as input data. The camera

moves instantly due to the vibration that occurs on the rail lines and a blurring effect occurs on the frames. In

this study, the AHRS algorithm is used to detect camera vibrations. The adaptive deblurring process has two

steps:

• Step 1 (learning): The blurred frames collected on the rail line are manually deblurred, the best threshold

value obtained in the deblurring process is recorded with the time stamp, and the Euler angles are obtained

from the AHRS algorithm. Thus, Euler angles and deblurring threshold value pairs are obtained.

• Step 2 (test): The new images obtained in the test phase and the simultaneously measured Euler angles

are compared. The images above the threshold value are accepted as blurred, and the deblur parameters

are adaptively selected on these images with the closest class obtained in the first step.

• The AHRS algorithm updates the quaternion vector given in Eq. (1) by computing with the IMU data,

and the new quaternion vector provides the rotation matrix and Euler angles. IMU and AHRS units are

given in Table 1. The initial rotation matrix is given in Eq. (2). The Euler angles (pitch, yaw, and roll)

are calculated as in Eqs. (3–5) [20].

Table 1. IMU and AHRS units.

IMU units Data Max. DOF Unit

Accelerometer Acceleration speed x, y, z m/s2

Gyroscope Change in angular speed x, y, z rad/s

Magnetometer Magnetic zone x, y, z au

AHRS units Output value (degrees) Fault sensitivity

Pitch –90 . . . +90 0.2 . . . 0.4

Yaw –180 . . . +180 0.2 . . . 0.4

Roll –180 . . . +180 0.2 . . . 0.4

q = [q0 q1 q2 q3] (1)

R =

 1 0 0
0 1 0
0 0 1

 (2)

p = arctan?
2(q0q1 + q2q3)

q20 − q21 − q22 + q23
(3)

y = −arcsin?(2(q1q3 − q0q2)) (4)

r = arctan
2(q0q3 + q1q2)

q20 + q21 − q22 − q23
(5)
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This vibration value will be deemed a concussion if it is higher than the threshold value, as shown in Eq. (6),

and it will be regarded as having created a blurring effect on the image. The blur kernel amount estimated

for the deblurring process will be the amount of change in these angles. The blurring process can be defined

mathematically as in Eq. (7). The motion blur is created after the convolution of the input image (I) and blur

kernel (K) matrices, with the addition of noise (N). The aim here is to find the net image after the convolution

process. Therefore, the blurred image needs to be deblurred with the blur kernel K value. In this study, the

point spread function (PSF) selects the nearest value obtained from Step 1. The simplified mathematical model

of the system is given in Eq. (8).

D =

{
1, if p | y | r > trh
0, otherwise

(6)

B = I ⊗K +N (7)

PSF = (Dα).

 |pt − pt− 1|
|yt − yt− 1|
|rt − rt− 1|

(8)

3.3. Second pipeline stage (learning stage CNN)

In the learning and test stages, healthy and faulty rail images are collected for use in learning algorithms. The

data of these two classes are trained in compliance with the CNN algorithm. A typical CNN has three main

layers, as shown in Figure 4.

Figure 4. CNN model for the proposed approach.

1) Convolutional layer: The convolutional layer is the core building block of a CNN. This layer’s parameters

consist of a set of kernels that have a small receptive field but extend through the full depth of the input

volume. During the forward pass, each filter is convolved across the width and height of the input volume,

computing between the entries of the filter and the input and producing a two-dimensional activation map

of that filter.

Cl
ij =

m− 1∑
a=0

m− 1∑
b=0

wabf
l− 1
(i+ a)(j + b) (9)

The convolutional layer’s mathematical model is given in Eq. (9). In the equation, f represents the input

image value, W represents an m × n dimension kernel matrix, and C represents the count of subsampling

of this layer.
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2) Pooling layer (feature selection): The pooling layer is a form of nonlinear downsampling. There are several

methods for implementing pooling, among which max pooling is the most common. The most common

form is a pooling layer with applied filters of 2 × 2 in size (Figure 4).

3) Connected layers: With several convolutional and max pooling layers, the high-level reasoning in the neural

network is performed via fully connected layers. Neurons in a fully connected layer are fully connected to

all activations in the previous layer, as seen in regular neural networks.

3.4. Third pipeline stage (test stage CNN)

In the test stage, a rail that contains faulty and healthy images not previously used in the system is selected.

Then frames from this railway are acquired again and the results are compared with the learned CNN model.

3.5. Test analysis

In machine-learning applications, the confusion matrix given in Table 2 is used to obtain the accuracy (Acc),

precision, and recall values of the system. The confusion matrix for the proposed method is as follows. The

description of true positive (TP), false negative (FN), true negative (TN), and false positive (FP) values are

given below.

Table 2. Confusion matrix.

Prediction

Actual

P (Healthy) N (Faulty)

P (Healthy) TP FN

N (Faulty) FP TN

TP: Rail frames that are classified as “healthy” by the system and are actually “healthy” (correctly

classified as “healthy” by the system).

TN: Rail frames that are classified as “faulty” by the system and are actually “faulty” (correctly classified

as “faulty” by the system).

FP: Rail frames that are classified as “healthy” by the system and are actually “faulty” (wrongly classified

as “healthy” by the system).

FN: Rail frames that are classified as “faulty” by the system and are actually “healthy” (wrongly classified

as “faulty” by the system).

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, Acc =

TP + TN

N
(10)

Precision =
TP

TP + FP
(11)

F1 score =
2TP

2TP + FP + FN
(12)

The confusion matrix in Table 2 gives the sensitivity value of the true positive rate (TPR) of the system, given

in Eq. (10). This value is also known as the recall value. An ideal system is expected to have a TPR value close
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to 1 in a range of 0 to 1 and a false positive rate (FPR) value close to 0. Acc gives the overall accuracy of the

system. A positive is obtained by dividing the graded images (rail images classified as “healthy” for this study)

by the number of samples, as shown in the precision TP sample number via Eq. (11). Finally, the F1 value is

given by Eq. (12). The software and hardware components used in the proposed system are given in Table 3.

Table 3. Hardware and software components used in the proposed method.

Component Explanation

Operating system Ubuntu 16.04

GPU Nvidia Geforce GTX 750

Camera Mako G032B/C [21]

Programming language Python tensorflow [22]

Image processing/deblurring Python numpy, scipy, scikit libraries

AHRS Programmed in the Python

4. Experimental results

This study aimed to detect anomalies on rail lines. Experimental studies were carried out using a three-stage

pipeline architecture in the training and testing phases. For the training phase, a data set consisting of rail

images was collected on the rail line. For this purpose, a special transportation device was designed to carry

equipment (i.e. GPUs, computer, cameras, and an IMU) and be manually driven on the rail line (Figure 5).

 

a) Experimental test tool

b) Xsens mti-100 imu

 

c) Mako G032B/C Camera

Figure 5. (a) Experimental test tool, (b) Xsens MTi-100 IMU, (c) Mako G032B/C camera.

In the results, as expected, greater changes in IMU data caused the blur rate to increase. In the case

of too much concussion, although blur detection was performed successfully, the deblurring process could not

be performed. This is a common problem with image processing applications when the blur rates are higher.

The blur detection and deblurring results are shown in Figure 6, along with the changes in pitch, yaw, and roll

Euler angles obtained by the AHRS algorithm.
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Figure 6. AHRS output data, blur detection, and deblurred image.

In the experimental studies, blur detection, deblurring, and the classification process with the CNN could

be performed at 40 frames per second. This value indicated that the system could run on data sets collected

from a testing device moving at the speed of 144 km/h based on image processing. Real-time operating speed

was calculated by taking the fov value as 50 cm and was determined to be 72 km/h.

The first convolution layer takes a normalized image and filters it with kernels of 10 × 4 pixels. The

second convolution layer takes the pooled feature map of the first layer and filters it with kernels of 10 × 5

pixels. The kernel size of the third convolution layer is 5 × 2 pixels. In this model, max-pooling units of 2

× 2 pixels are used. The activation function is hyperbolic tangent function. After three convolutional and

max-pooling layers, the high-level reasoning in the CNN is performed via fully connected layers. In the learning

stage 3500 railway images and in the test stage 2000 railway images were used.

Some of the classification results obtained in the test phase from the network and trained to use the CNN

for anomaly detection are seen in Figure 7. According to the classification of the images, (a) had no detected

anomalies and is classified as TP, (b) is classified as FN, (c) is classified as TN due to abrasion-related rail faults,

and (d) is classified as FP. The performance of the proposed system is given in Table 4. The values shown in

the table are the output values of the method. The output values of the CNN were manually controlled and

the confusion matrix was created.

For the proposed method, the run times obtained after pipeline implementation and the total time spent

for each image are given. In the training and testing stages, each image obtained with the high-resolution

cameras from the rail line has a high resolution of 658 × 492. The proposed method, when running on a GPU

with Nvidia CUDA, blur detection, deblurring operation, and classification, can be performed for 40 images in

1 s.
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a) Healthy frame as TP (Correctly classified as “healthy”)
b) Faulty frame as FN (Wrongly classified as “faulty”)

b) Faulty frame as TN (Correctly classified as “faulty”) c) Healthy frame as FP (Wrongly classified as “healthy”)

 

Figure 7. Test stage experimental inspection results.

Table 4. Confusion matrix for the proposed method.

Prediction

Actual

P N

P 1856 43

N 3 98

TPR Precision F1 score

Test performance 0.977 0.99 0.98

5. Conclusion

In general, there are three criteria expected from a rail inspection application. These are highly accurate results,

high operating speed, and cost-effective implementation of the system. The images constitute the input data of

the system in the application using a CVS. These rail images must be clear and noiseless in order to obtain a

high rate of accuracy. However, the vibrations caused by physical conditions on the rail lines lead to motion blur

on the images that are to be the input data of the system. For the real-time operation of the application, the

motion blur must be dynamically and quickly detected and eliminated. Therefore, this study proposed the use

of an IMU along with cameras in the rail inspection system. In the study, pitch, yaw, and roll values in Euler

space were obtained by combining sensor data obtained from the IMU with the AHRS algorithm. The PSF

value required for blur detection and the deblurring process could be dynamically found through the changes

in these values. In the blur detection process, the TPR was 98% and the FPR was 2%. The TPR value in rail

line anomaly detection was obtained at the high accuracy rate of 97%. A precision of 99% and an F1 score of

98% were obtained.

The second criterion of success expected from rail inspection applications is high operating speed. For
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this purpose, some rail inspection systems use 3D-laser cameras that ensure high accuracy and high operating

speed due to their measurement precision. However, their high cost is their main disadvantage.

The third criterion of success expected from rail inspection applications is the cost of implementing the

system, which should be feasible and economical. High speed and accuracy can be obtained in applications using

3D-laser cameras; however, their cost is quite high. In this study, an IMU-supported, cost-effective inspection

method using a high-speed industrial camera was presented.

A benefit of the study is that learning and testing are done with CUDA programming and the pipeline

architecture is on Nvidia GPUs. This approach is 10–20 times faster than traditional programming and that

depends on the GPU properties used.

The recommended system can perform blur detection, deblurring operations, and classification of 40

images at a resolution of 658 × 492 in 1 s. This value can be regarded as the worst running speed; however,

since blurring does not occur on every image in real-time applications, the deblurring process will not need

to be performed for every image. The main disadvantage of the proposed method is that, although the blur

can be detected when the vibration is excessive, the deblurring operation cannot be successfully performed in

those cases. As a result, a cost-effective, real-time rail inspection approach that uses a three-stage pipeline

architecture was presented.
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