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Abstract: In this paper, new electronically tunable grounded and floating inductance simulators employing a Z-

copy current follower current controlled conveyor (CFCCC) and one grounded capacitor have been proposed and their

workability has been demonstrated by PSPICE simulations in 0.18-µm TSMC CMOS technology.
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1. Introduction

Over the past several years, many new analog building blocks (ABBs) have been used to implement various signal

processing/generation functions including the simulation of inductors, realization of universal biquadratic filters,

sinusoidal oscillators, and nonsinusoidal waveform generators [1–10]. The various building blocks that have been

prominently employed in the past for simulating the inductors include the operational transresistance amplifier

(OTRA) [11,12], differential voltage current conveyor (DVCC) [13], current differencing buffered amplifier

(CDBA) [14], current differencing transconductance amplifier (CDTA) [15], voltage differencing differential input

buffered amplifier (VD-DIBA) [16,17], voltage differencing transconductance amplifier (VDTA) [18,19], voltage

differencing current conveyor (VDCC) [20,21], voltage differencing buffered amplifier (VDBA) [22], current

controlled current conveyor transconductance amplifier (CCCCTA) [23], current controlled current differencing

transconductance amplifier (CCCDTA) [24,25], current controlled current feedback amplifier (CC-CFA) [26],

current follower transconductance amplifier (CFTA) [27], current controlled current follower transconductance

amplifier (CCCFTA), [28] and current backward transconductance amplifier (CBTA) [29].

In the following, we present new electronically tunable grounded/floating inductance simulators realized

with the ABB named the Z-copy current follower controlled current conveyor (ZC-CFCCC). To the best

knowledge of the authors, ZC-CFCCC has not been put to use yet for the realization of electronically controllable

simulated inductors.

2. Electronically tunable grounded inductor

A current follower multiple-output current conveyor (CF-MOCC) was introduced in [1]. In the present work, we

have modified its structure by taking out an additional Z copy of the input current and used a current controlled
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conveyor in its second stage to realize a ZC-CFCCC. Thus, the ZC-CFCCC is a five-port active building block

characterized by the following terminal equation:



Vp

Vi

Iz

Izc

Ix


=



Rp 0 0 0 0

0 −Ri 1 0 0

1 0 −Yz 0 0

1 0 0 −Yzc 0

0 1 0 0 −Yx





Ip

Ii

Vz

Vzc

Vx


(1)

Here, Rp represents the input resistances of port p while R i represents the output resistance of the voltage

buffer implemented between port z and port i. Yz , Yzc , and Yx each constitute a parallel combination of a

resistor and a capacitor and represent the parasitic admittances associated with the ports z, zc, and x. When

implemented in CMOS hardware such as that shown in Figure 1, the values of Rp and R i are given by:
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Figure 1. An exemplary CMOS implementation of the ZC-CFCCC.

Rp =
1√

8µnCox

(
W
L

)
Ib1

, Ri =
1√

8µnCox

(
W
L

)
Ib2

(2)

Thus, Rp, and R i can be controlled by external DC bias currents Ib1 and Ib2 [23,24,28].

Consider now the proposed new realization of the electronically tunable grounded inductor shown in

Figure 2. A straightforward analysis of this circuit, using the port relationships of the ZC-CFCCC given in Eq.

(1), gives the input impedance of the circuit as (when Yz , Yzc , and Yx , the parasitic admittances at ports z,

zc, and x, are taken to be zero):

Zi = sRpRiC (3)

where

Rp =
1√

8µnCox

(
W
L

)
Ib1

and Ri =
1√

8µnCox

(
W
L

)
Ib2
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Figure 2. The proposed new electronically tunable grounded inductor.

If Ib1 = Ib2 = Ib , then the simulated inductance value is given by:

Ls = C
1(

8µnCox

(
W
L

)
Ib
) (4a)

It may be noted here that Rp and R i need not be equal. Availability of two external currents for realization

of a given value of inductance results in more flexibility in selecting these current sources. If only one current

is available to control the value of the simulated inductor then the other resistor required will be a fixed-valued

resistor. Therefore, the realized inductance can be varied electronically over a wider range.

On the other hand, if these parasitic elements are taken into consideration, then the impedance Z in is

given by:

Zin (jω) = Rs + jωLs (4b)

Rs (ω) =
ω2 (a1b1 − a0b2) + a0b0

ω4b22 + ω2 (b21 − 2b0b2) + b20
(4c)

Ls (ω) =
−a1b2ω

2 + (a1b0 − a0b1)

ω4b22 + ω2 (b21 − 2b0b2) + b20
(4d)

The quality factor is:

Q (ω) =
ω
[
−a1b2ω

2 + (a1b0 − a0b1)
]

ω2 (a1b1 − a0b2) + a0b0
(4e)

where

a1 = RpRiRxRzRzc (C + Cz) ; a0 = RpRiRxRzc; b2 = RpRiRxRzRzc (C + Cz) (Cx + Czc) ;
b1 = [RpRiRz (C + Cz) (Rx +Rzc) +RpRiRxRzc (Cx + Czc)] ; b0 = RpRi (Rx +Rzc) +RxRzRzc.

(4f)
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3. Electronically tunable floating inductor

From the circuit of the proposed electronically tunable grounded inductor it is observed that the configura-

tion implements an active gyrator with its input port being node M and the output port being node N. A

straightforward analysis of this gyrator circuit results in the following short circuit admittance matrix:

[Y ] =

[
0 1

Ri

− 1
Rp

0

]
(5)

Therefore, using two such active gyrators and one grounded capacitor embedded between them, an

electronically tunable floating inductor (FI) can be realized as shown in Figure 3, for which the short-circuit

admittance matrix is found to be:

I
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Figure 3. The proposed new electronically tunable floating inductor.
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(6)

where

Rp = Ri = R =
1√

8µnCox

(
W
L

)
Ib

Thus, the value of the realized floating inductance can be varied by changing external bias current Ib . It may be

noted that this can be implemented quite easily by supplying equal DC bias currents to the two ZC-CFCCCs,

unlike the constraints imposed by passive component matching as prevalent in many of the classical floating

inductance simulation circuits using op-amps. If the parasitic admittances associated with ports z, zc, and x

are taken into account then the nonideal short-circuit admittance parameters (for Ib1 = Ib2 = Ib , R i = Rp =

R) are found to be:

y11 =

(
1

R2
EQ

+ 1
REQRz

+ 1
R2

)
+
(
2 CP

REQ
+ C

REQ
+ CP

Rz
+ Cz

REQ

)
s+

(
C2

P + CPC + CPCz

)
s2(

1
REQ

+ 1
Rz

+ (CP + Cz + C) s
) (7)

y12 =
− 1

R2(
1

REQ
+ 1

Rz
+ (CP + Cz + C) s

) = y21 (8)
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y22 =

(
1
R2

z
+ 1

REQRz
+ 1

R2

)
+
(
2Cz

Rz
+ C

Rz
+ CP

Rz
+ Cz

REQ

)
s+

(
C2
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)
s2(

1
REQ
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Rz
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) (9)

where

REQ = Rzc||Rx, CP = Czc + Cx, Rs =
RpRi

Rz
and Ls = RpRi (C + Cz) (10)

The expressions for the y-parameters, as above, appear to be quite formidable and do not lend themselves

to meaningful interpretations directly. We therefore measure the y-parameters of the circuits using PSPICE

simulations and plot their frequency responses along with the theoretical plot of Eqs. (7)–(9) in MATLAB in

the next section.

4. SPICE simulations, application examples, and results

The CMOS implementation of the proposed ZC-CFCCC using 0.18-µm TSMC process technology parameters

has been used to verify the workability of the circuits presented in this paper. Measured values of the

characterizing parameters of the ZC-CFCCC given in Eq. (1) at DC bias voltage ±2.5 V and DC bias currents

40 µA are given in Table 1, whereas the aspect ratios of the various MOSFETs are shown in Table 2. The

measured value of THD of an amplifier configured with ZC-CFCCC when the input current was varied between

20 and 80 µA was found to vary between 0.75% and 3.5% at 1 MHz (when z and i terminals are terminated

with equal resistance of 10 kΩ).

Table 1. Characteristic parameters of ZC-CFCCC.

S. no. Parameter Value

1 Rp 591 Ω

2 Rz 4.9178 MΩ

3 Cz 6.3234 × 10−14 F

4 Rzc 4.9178 MΩ

5 Czc 7.2123 × 10−15 F

6 Rx 4.79990 MΩ

7 Cx 7.3772 × 10−15 F

8 Ri 591 Ω

9 Power consumption 2.47 mW

10
Linear range of current transfers

–0.8 to +0.75 with gain 1.00049
Ip/Iz, Ip/Izc, and Ii/Ix (mA)

11
Linear range of voltage transfers (V)

–3.0 to +3.0 with gain 0.9882
Vz/Vi

12

3 dB bandwidth (MHz)

(i) Ip/Iz,and Ip/Izc 527

(ii) Ix/Ii 1215.8

(iii) Vi/Vz 2860
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Table 2. Aspect ratios of MOSFETs used in ZC-CFCCC realization.

MOSFETs W/L (µm/µm)

M1, M2, M25, M26 25/0.25

M3, M4, M27, M28 50/0.25

M5–M24, M29–M44 2.5/0.25

The proposed grounded inductor circuit was simulated with C = 1 nF for different values of bias current

Ib starting from 0.01 µA to 200 µA. The variation of inductance with bias current is shown in Figure 4, which

is similar to the variation of inductance with bias current for other electronically tunable lossless grounded

inductance circuits, such as the one given in [20]. It was found that inductance value could be varied from 998

H to 135 µH, over the above range. The typical value of inductance for a bias current of 40 µA was found to

be 350 µH while the power consumption was 2.47 mW.
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Figure 4. Variation of inductance with bias current.

The frequency response of the simulated inductor was also determined in PSPICE (for Ib = 40 µA) and

is shown in Figure 5 (L = 350.04 µH at a frequency of 35.3 KHz). Independent simulations have shown that the

value of the inductance remains within a tolerance value of 10% up to a frequency of 2.99 MHz. We have also

superimposed on the frequency response the theoretical plots as obtained from Eqs. (4c) and (4d). From the

frequency response plots it is observed that the inductance value remains nearly constant only up to a particular

frequency. This is corroborated by the behavior of simulated lossless grounded inductors realized with other

active building blocks [15–18]. Though the parasitic resistance associated with the simulated inductor becomes

negative at higher frequencies, the application circuits have not shown any unstable behavior. The quality

factor of the simulated grounded inductor (for bias current of 40 µA) was also measured and found to be 335

at 10 kHz. Figure 6 shows the variation of quality factor with frequency. The simulated results agree quite

well with the theoretical ones. The discrepancy between theoretical and simulated results mainly stems from

nonideal gain and parasitic impedance effects of the ZC-CFCCC.

1046



SINGH et al./Turk J Elec Eng & Comp Sci

(a) (b)

10
2

10
4

10
6

10
8

10
10-3

-2

-1

0

1

2

3
x 10

-3

Frequency (Hz)

In
d

u
ct

an
ce

 (
µ

H
)

 

 
Simulated

"eoretical
At I

b
=40 µA

10
2

10
4

10
6

10
8

10
10-0.5

0

0.5

1

1.5

2

2.5
x 10

6

Frequency (Hz)

R
es

is
ta

n
ce

 (
O

h
m

)

 

 

Simulated

"eoretical
At I

b
=40 µA

Figure 5. Frequency response of simulated lossless grounded inductor: a) variation of inductance value with frequency;

b) variation of parasitic resistance with frequency.
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An input current with a triangular waveform (20 µA amplitude and 1 kHz frequency) was applied to the

proposed inductor (46.45 µH). The output voltage, a square wave (22 µV at 1 KHz) as shown in Figure 7, was

obtained, which further confirmed the workability of the electronically tunable grounded inductor.

The second-order band-pass filter shown in Figure 8 was used to verify the tunability of the pole frequency

with bias current. The pole frequency and the bandwidth of the filter are given by pole frequency fo = 1
2π

√
LC1

and bandwidth BW = 1
2πRC1

.

The band-pass filter was designed with the following component values: R = 3 kΩ, C = 1 nF, C1 = 10

pF, and bias current varied from 35 µA to 70 µA to vary the pole frequency without affecting the bandwidth.
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Figure 8. Tunable second-order RLC band-pass filter.

Figure 9 shows the frequency response of the band-pass filter with different values for the pole frequency. These

results are in close agreement with the theoretical values (f0 ∝
√
Ib ) with the maximum error in the pole

frequency being less than 10%. The maximum error in bandwidth has been found to be about 2%. The THD

in the output was also measured and found to lie within 0.3%–2.4% when the input amplitude was varied in

the range of 10–150 mV.

The frequency response of the floating inductor was determined through PSPICE simulations to find its

usable frequency range. Figure 10 shows the frequency response of the short-circuit admittance parameters. We

have also superimposed the frequency response as computed from Eqs. (7)–(9). There is a very close agreement

between these three plots. Independent simulations have indicated that the floating inductor can be used up to

a frequency of 2.94 MHz (at Ib = 40 µA); the simulated inductance was within 10% of the designed value of

350 µH while the associated resistance was varying between less than 142 mΩ to –579.20 Ω up to a frequency

of 2.94 MHz.
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Figure 10. Frequency response of the y parameters of the

simulated floating inductor.

We have used the proposed floating inductor to implement a fourth-order Butterworth low-pass filter as

shown in Figure 11. Starting from the nominal values of the components for the normalized low-pass filter at

1 Hz as Rs = RL = 1 Ω, L1 = 0.7654 H, L2 = 1.8478 H, C1 = 1.8478 F, and C2 = 0.7654 F [30], after

appropriate frequency and impedance scaling we get the following values of passive components for the filter

cut-off frequency of 500 kHz: RS= RL = 1 KΩ, L1 = 0.2437 mH (C =1 nF, Ib= 51.46 µA), and L2 =

0.5884 mH (C = 1 nF, Ib = 28.37 µA). This finally resulted in a fourth-order active filter structure using

all grounded capacitors, as preferred for IC implementation. Frequency response of the resulting fourth-order

low-pass Butterworth filter is shown in Figure 12. The value of the cut-off frequency found from the simulation

was 500.50 kHz, showing a very close agreement with the theoretical value of 500 kHz. The THD in the output
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Figure 12. Frequency response of the fourth-order low-

pass Butterworth filter.
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was also measured when the amplitude of the input voltage was varied between 10 mV and 150 mV and found

to vary between 0.2% and 7%.

To study the effect of mismatches in the component values within the floating inductors on the perfor-

mance of the circuit of the fourth-order low-pass Butterworth filter, Monte Carlo simulations have been carried

out by allocating 1% tolerances to the component values (capacitors C = 1 nF) within both of the floating

inductors and performing 100 runs. The results for the 1% tolerance are shown in Figure 13. The value of the

simulated cut-off frequency was found to be 500.50 kHz and Monte Carlo analysis shows that the median value
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of cut-off frequency is f0 = 500.41 kHz, which indicates that the mismatch in the component values within the

proposed floating inductors does not have a large effect on the realized cut-off frequency.

PSPICE noise analysis has also been performed on the fourth-order low-pass Butterworth filter and

variations in the output noise are shown in Figure 14.

The PSPICE simulation results presented in this section thus establish the workability and applications

of the proposed new inductance simulators using ZC-CFCCC.

5. Comparison with previously published circuits

A comparison of the various salient features of the proposed configurations as compared to other previously

known lossless grounded and FI simulators realized with synthetic active building blocks is now in order,

presented in Table 3. It is observed from the table that the proposed circuits, with the exceptions of the

circuits given in [18,19,28], are the only circuits that realize an electronically tunable lossless grounded inductor

employing a single active building block, no passive resistors, and a single grounded capacitor and do not require

any passive component matching constraint. It may be mentioned here that because of the terminal equations

of the ZC-CFCCC, CC-CDTA, and CC-CCTA being somewhat similar, the proposed inductance simulation

circuits may appear to be somewhat similar to the circuits proposed in [23,25], where CC-CCTA and CC-

CDTA were used as ABBs. On the other hand, yet another building block proposed in [1], namely the CDCC

[31–33], can also be configured as a ZC-CFCCC if we do not use one of its input current terminals and use a

current-controlled conveyor (instead of CCII) in the second stage. The grounded inductance simulators used

here can directly be used in the simulation of LC ladders in contrast to the lossy inductance simulators realized

with other active building blocks of recent origin [34–44].

6. Concluding remarks

In this paper, new electronically tunable, lossless grounded and floating inductance simulation circuits using

the ZC-CFCCC as an active element were proposed. The proposed circuits employ only a single ZC-CFCCC

for grounded inductance simulation and two ZC-CFCCCs for floating inductance simulation along with a single

grounded capacitor as preferred for IC implementation. Thus, the new circuits provide a number of advantageous

features simultaneously, such as use of a canonic number of active and passive elements, electronic tunability

by means of external bias currents, complete absence of passive component matching, and employment of a

single grounded capacitor, as preferred for IC implementation. For simulation of floating inductance, the only

constraint required is the equality of the two bias currents, which can be easily met by using current copier cells.

The workability of the new propositions as well as their two typical application circuits has been verified through

PSPICE simulations using 0.18-µm TSMC CMOS technology parameters. It is believed that the proposed ZC-

CFCCC-based electronically tunable inductance simulators add new alternatives to the existing repertoire of

synthetic ABB-based inductance simulators, as shown in Table 3. This table also contains modified CFOAs

and modified inverting second-generation current conveyor-based inductance simulators [45–48] but does not

include circuits based upon traditional current conveyors (see those in [49–52] and the references cited therein).

References

[1] Biolek D, Senani R, Biolkova V, Kolka Z. Active elements for analog signal processing: classification, review, and

new proposals. Radioengineering 2008; 17: 15-32.

[2] Acar C, Ozoguz S. A new versatile building block: current differencing buffered amplifier suitable for analog signal

processing filters. Microelectr J 1999; 30: 157-160.

1052



SINGH et al./Turk J Elec Eng & Comp Sci

[3] Jaikla W, Siripruchyanun M, Lahiri A. Resistorless dual-mode quadrature sinusoidal oscillator using a single active

building block. Microelectr J 2011; 42: 135-146.

[4] Channumsin O, Pukkalanun T, Tangsritat W. Voltage-mode universal filter with one input and five outputs using

DDCCTA and all grounded passive components. Microelectr J 2012; 43: 555-561.

[5] Tangsritat W, Channumsin O, Pukkalanun T. Resistorless realization of electronically tunable voltage-mode SIFO-

type universal filter. Microelectr J 2013; 44: 210-215.

[6] Chen HC, Wang JM. Dual mode resistorless sinusoidal oscillator using single CCCDTA. Microelectr J 2013; 44:

216-224.

[7] Nie XZ. Multiple-input-single-output and high output impedance current mode biquadratic filter employing five

modified CFTAs and two grounded capacitors. Microelectr J 2013; 44: 802-806.

[8] Channumsin O, Tangsritat W. Single input four output voltage mode universal filter using DDCCTA. Microelectr

J 2013; 44: 1084-1091.

[9] Biolek D, Lahiri A, Jaikla W, Bajer J. Realization of electronically tunable voltage-mode/current-mode quadrature

sinusoidal oscillator using ZC-CG-CDBA. Microelectr J 2011; 42: 1116-1123.

[10] Chien HC, Chen YC. CMOS realization of single resistance controlled and variable frequency dual mode sinusoidal

oscillators employing a single DVCCTA with all grounded passive elements. Microelectr J 2014; 45: 226-238.

[11] Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A. Two OTRA-based grounded immittance simulator

topologies. Analog Integr Circ S 2004; 39: 169-175.

[12] Pandey R, Pandey N, Paul SK, Singh A, Sriram B, Trivedi K. Novel grounded inductance simulator using single

OTRA. Int J Circ Theor App 2014; 42: 1069-1079.

[13] Horng J. Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five

outputs using DVCCs. Analog Integr Circ S 2010; 62: 407-413.

[14] Keskin AÜ, Hancioglu E. CDBA-based synthetic floating inductance circuits with electronic tuning properties.

ETRI J 2005; 27: 239-242.

[15] Prasad D, Bhaskar DR, Singh AK. New grounded and floating simulated inductance circuits using current differ-

encing transconductance amplifiers. Radioengineering 2010; 19: 194-198.

[16] Prasad D, Bhaskar DR, Pushkar KL. Realization of new electronically controllable grounded and floating simulated

inductance circuits using voltage differencing differential input buffered amplifiers. Act Passiv Electron Components

2011; 2011: 101432.

[17] Bhaskar DR, Prasad D, Pushkar KL. Electronically-controllable grounded-capacitor-based grounded and floating

inductance simulated circuits using VD-DIBAs. Circuits and Systems 2013; 4: 422-430.

[18] Prasad D, Bhaskar DR. Grounded and floating inductance simulation circuits using VDTAs. Circuits and Systems

2012; 3: 342-347.

[19] Guney A, Kuntman H. New floating inductance simulator employing a single ZC-VDTA and one grounded capacitor.

In: 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era; 2014:

Santorini, Greece. New York, NY, USA: IEEE. pp. 9-10.
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