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Abstract: This paper presents a novel classification approach for surface electromyogram (sEMG) signals. The proposed

classification approach involves two steps: (1) feature extraction from an sEMG, in which a 7-dimensional feature

vector is extracted from 27 types of features of the sEMG by linear discriminant analysis (LDA), and (2) a novel

classifier, DAGSVMerr, based on a directed acyclic graph (DAG) and support vector machine (SVM), in which a

separability measure function based on erroneous recognition rates (ERRs) is defined to determine the initial operation

list. The proposed approach takes advantage of the feedback idea to improve the performance of the classification. The

experimental results show that the proposed approach has a better performance than traditional methods, and it achieves

an average classification accuracy rate of 99.4% ± 1.3% with an error rate of 0.6%. Correct classification rates of the

proposed approach are very high, and the approach can be utilized to recognize gesture instructions by analyzing sEMG

signals in gesture equipment control studies.
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1. Introduction

A surface electromyogram (sEMG) signal reflects the electrical activity of skeletal muscles that manifest different

parts of body movements, thus providing information about the structure and function of muscles [1]. Due to

the complex nature of the signal and its nonstationary characteristics, detailed analysis and classification of

movements are very difficult [2] and, therefore, it is crucial to build an effective recognition model to accurately

classify body language. The sEMG classification/analysis steps are shown in Figure 1.
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Figure 1. Basic diagram of the recognition procedure.

The classification stage can be briefly defined as the process of recognizing one out of all specific classes for

a given input vector [3]. Many empirical studies have been conducted that investigate different types of classifiers

using various features computed from sEMG signals. For real-time, close-range, and convenient controlling, a

variety of classification approaches, such as the support vector machine (SVM), neural networks (NNs), and

quadratic discriminant analysis (QDA), have been applied to estimate the motion intent from the sEMG signals
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[4–6]. Among the various types of classifiers, however, the SVM is considered to have a better performance

than other approaches such as decision trees, neural networks, and model-based reasoning approaches [7]. For

example, the research in [8] showed that compared to multilayer perceptron neural networks and classification

and regression trees (CARTs) SVMs had a superior generalization capability in their classification performance

with respect to the training sample size, sample variability, and landscape homogeneity. In addition, modified

algorithms based on SVMs have resulted in excellent performances. In [9], a multiple-kernel learning SVM

(MKL-SVM) is proposed as a novel technique for the efficient recognition of hand gestures, and the experimental

results showed promising performance results in offline recognition, with an average recognition accuracy rate

of above 91% and a highest accuracy rate of 97.93%.

However, when performing one-time recognition of all classes, there is a serious problem: one or two

classes are predicted wrongly as belonging to other classes, which severely decreases recognition accuracy. For

example, in [10], the recognition rate of the wrist extension movement was able to reach 99.59%, while the pinch

grip movement obtained only an 84.69% recognition rate, with an 8.68% chance of predicting it inaccurately as

a power grip movement.

Current multiple classifiers based on SVMs are mainly achieved through a series of binary classifiers, in

which there are two common algorithms: one-against-the-rest (one-vs-rest) and one-against-one (one-vs-one).

The one-vs-rest algorithm takes samples from one class as a class and samples from the other classes as another

class and trains the classifiers in turn. The one-vs-one algorithm combines all of the possible classifiers and

trains the classifiers with two of these classes at a time. However, these two algorithms have limitations in their

practical application. For example, any classifier’s errors could lead to the existence of nonseparable regions or,

even worse, the training speed of these multiple classifiers will be slow when there is an increase in the number

of training samples or in the number of categories [11].

In this work, a novel classifier is proposed to solve the confusion problem. This approach combines the

advantages of the directed acyclic graph (DAG) and the SVM and defines an initial operation list function.

The DAG utilizes a coarse-to-fine strategy for classification that includes several binary classifiers. The SVM is

superior in the nonlinearly separable problem because it transforms the problem into a linearly separable one

in a high-dimensional space to find the optimal hyperplane between two classes. The proposed method uses

the SVM as the binary classifier at each node in the DAG. To obtain the initial operation list of the DAG, we

apply the feedback ideas with the erroneous recognition rates (ERRs) and define a new separability measure

function, which means that we obtain feedback information by preclassification. As a result, we can determine

the order of the classes in the list.

2. Methodology

2.1. Data collection

In this study, fifteen subjects from Beijing Forestry University in China with no neurological or muscular

disorders volunteered to participate in the experiments. The average age of the subjects was 23 years (range:

20–27).

The six hand gestures [12] included fist, finger spread, palm supination, palm pronation, palm lateral

supination, and palm lateral pronation, as presented in Figure 2. These four selected muscles were the palmaris

longus, brachioradialis, extensor digitorum, and extensor carpi ulnaris. The placement positions of surface

electrodes are shown in Figure 3.

A 4-channel sEMG system (Life Science Instrument, Chengdu Instrument Factory, Chengdu, China)
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Figure 2. Six classes of hand gestures: fist, finger spread, palm supination, palm pronation, palm lateral supination,

and palm lateral pronation.

(a) Abdominal positions of palmaris               (b) Abdominal positions of extensor digitorum

Figure 3. Photo of placement positions of surface electrodes: a) abdominal positions of palmaris longus muscle and

brachioradialis muscle; b) abdominal positions of extensor digitorum muscle and extensor carpi ulnaris muscle.

was used to collect the sEMG signals from each subject using disposable AgCl electrodes (Junkang Medical

Equipment Inc., Shanghai, China) placed on the surface of four muscles as mentioned above. The sampling

frequency of the acquisition system was 1000 Hz.

Fifteen subjects with no neurological or muscular disorders volunteered to participate in the experiments.

All of the subjects signed informed consent documents. Every gesture was repeated 10 times, and the interval

between two adjacent movements was approximately 5 s.

2.2. Feature set computation and reduction

To comprehensively reflect the information of the sEMG signals, features that were used in previous research

studies were collected in this study. Twenty-seven features of four types (time-domain, frequency-domain,

time- and frequency-domain, and nonlinear dynamic features) were calculated. The ten time-domain features

included mean absolute value, mean absolute value slope, Willison amplitude, variance (VAR), zero crossing,

slope sign change, waveform length (WL), root mean square, autoregressive coefficients (AR), and autoregressive

coefficients from the first difference of EMG (FDAR) [6,13–15]. The two frequency-domain features were

median frequency and mean power frequency [16–18]. The twelve time- and frequency-domain features included

maximum, singular value, average energy, VAR, standard deviation, and WL of wavelet coefficients and wavelet

packet coefficients [19–26]. The three nonlinear dynamic features were entropy of wavelet coefficients, entropy

of wavelet packet coefficients, and maximum of Lyapunov exponent [27–29]. We made use of wavelet base sym3

to decompose the sEMG signal into three layers by wavelet decomposition and wavelet packet decomposition.

Therefore, we obtained 252-dimensional vectors for the final feature set.

In this study, linear discriminant analysis (LDA) [30] was employed to reduce the feature dimensionality.

The basic idea of LDA is to attempt to project the class samples onto a finely orientated line in such a way

that the scatter within the class is as small as possible and the scatter between classes is as large as possible.

Therefore, to separate the classes, the LDA algorithm must seek a projection matrix that projects the original
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p -dimensional observation space into a c -dimensional feature space. The linear transformation matrix T can

be obtained by

J (T ) =

∣∣TTSBT
∣∣

|TTSwT |
, (1)

where SB is the between-class scatter and SW is the within-class scatter.

2.3. Recognition algorithms

2.3.1. Directed acyclic graph

Platt et al. [31] proposed a DAG that was a new learning architecture used to combine several binary classifiers

into a multiclass classifier based on the one-vs-one algorithm. With regard to the m-motion classification, there

are m(m − 1)/2 decision nodes in the DAG method corresponding to m(m − 1)/2 binary classifiers that are

distributed in the m-layer structure. As in Figure 4, there is only one node called the root node in the top

layer, two nodes in the second layer and, similarly, j nodes in the j th layer and m nodes in the bottom layer,

with the ith node in the j th layer pointing to the ith node and (i+1)th node in the (j + 1)th layer.
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Figure 4. Structure chart of a DAG.

For a given input sample, the corresponding decision function value of each node will be calculated from

the root node. If the value is 1, which indicates that this sample does not belong to the first class in the class

ordering for this node, we enter the next node from the left. If it is −1, which indicates that this sample does

not belong to the last class in the order, we enter the next node from the right. We then calculate the decision

function value of the next node and so on. The output of the nodes in the bottom layer represents the class of

this sample.

The procedure of a DAG is equivalent to operating on a list, and each node eliminates one class from the

list. In the initial state, all of the classes are included in the table, and during the classification, a test sample

is evaluated at the decision node that corresponds to the first and last elements of the list. If the node prefers
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one of the two classes, this means that there is a higher possibility that the sample belongs to this class, and

the other class is eliminated from the list.

Different decisions on the nodes could contribute to different paths of several samples, which could directly

impact classification performance. In other words, the classification results of the DAG are highly dependent

on class ordering.

2.3.2. Support vector machine

The SVM was originally designed for two-class classification. It aims to find the optimal hyperplane between two

classes by mapping the sample space into a high-dimensional feature space, called the Hilbert space, to change

the nonlinearly separable problem in the primary space to a linearly separable problem in the feature space.

The classification problem in this paper is specifically a nonlinearly separable problem for which the SVM has a

great advantage. The SVM can be extended to multiclass classification [32]. The nonlinear transformation that

transforms the input space into a high-dimensional space is realized by defining an appropriate inner product

function.

In the SVM, a kernel function K maps a sample x to a feature space ϕ given by a feature map

K (xi, xj) ⟨ϕ(xi), ϕ(xj)⟩ . Currently, the most commonly used inner product functions are the polynomial kernel

function, the radial basis function, and the linear kernel function. In this paper, the radial basis function

was selected. Except for types of inner product functions, the most important parameters that influence the

properties of the SVM are the error penalty factor c and the kernel function parameter g . The major influence

of the kernel function parameter g on the SVM performance is through the complexity distribution of the

sample data in the high-dimensional feature space, while the role of the error penalty factor c is exploited

through the ratio of the fiducial range and empirical risk in the determined feature space. This study utilizes

the grid search method [33] to acquire the best combination for (c, g).

2.3.3. Modified classifier based on a DAG and SVM

To determine the initial operation list, the separability measure (SM) is computed, usually by the Euclidean

distance [34] called DAGSVMeuc1. The authors in [35] proposed a classification measure based on the distri-

bution of multiclass data and the Euclidean distance called DAGSVMeuc2. However, with regard to gesture

classification based on a sEMG signal, the feature set is multidimensional, which gives the SM based on the

Euclidean distance no practical significance. In this study, the ERRs were provided from the preclassification

that was done through cross-validation (CV) methods, from which we can get the ERRs through training data.

The classification of each fold in CV was done through a one-vs-one SVM. ERRs are utilized to calculate the

SM to determine the initial operation list, which means that the higher the number of times that class i is

misrecognized as class j and that class j is misrecognized as class i , the larger the value of the SM between

class i and class j .

Consider the training data X = {X1, X2, · · · , Xm} , which has m classes; the SM value smij(ij =

1, 2, · · · ,m) is defined as

smij =
ERR (i, j) + ERR(j, i)∑m

p=1

∑m
q=1 ERR(p, q)

, (2)

where ERR (i, j) is the number of erroneous recognition times in which class i is misrecognized as class j .

A between-class SM matrix can be obtained by calculating smij(ij = 1, 2, · · · ,m). Thus, the initial

operation list can be constructed with the following steps: the first step is to seek the maximum of the SM
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values among class k and other classes, k = 1, . . . ,m , the second step is to compare the maximum values that

indicate the similarity between this class and other categories and sort these classes, and the last step is to

construct the initial operation list.

First, for every class, there are (m− 1) SM values with other classes. These values are first arranged in

a large-to-small order and they are renumbered. For example, the renumbered order of the SM values between

class k and the other classes is re smk1 ≫ re smk2 ≫ · · · re smkt · · · ≫ re smk(m−1) , t = 1, 2, · · · ,m− 1.

Second, according to the large-to-small order of re smk1(k = 1, 2, · · · ,m), sort the corresponding classes.

When there are two or more classes that have the same value for re smk1 , compare their values for re smk2

and continue in the same manner; in addition, if the values of re smk1 , re smk2 , · · · , re smk(m−1) are equal,

then put the class that has the smaller label in front. For example, while comparing class i and class j , if

re smi1 < re smj1 , then place class i in front of class j and, conversely, if re smi1 > re smj1 , then place class

j in front of class i . If re smi1 = re smj1 , then re smi2 and re smj2 will be compared and, successively, if

re smit = re smjt (t = 1, 2, · · · ,m − 1), then place the one that has the smaller label of i and j in front of

the other.

Finally, according to the orderings of all of the classes obtained from step 2, construct the initial

operation list, which is [s1s2, · · · , sm ], sk ∈ {1, 2, · · · ,m} , k = 1, 2, · · ·m , in which k indicates the class

labels. Accordingly, the two classes of the leading and trailing order are the least likely to be confused and,

hence, by arranging the ordering of the nodes, DAG topology is generated.

3. Results

There were fifteen subjects in total, and each subject performed 10 experimental trials for each of the six designed

hand gestures; thus, there were a total of 900 active segments. Then 90% of the feature data were considered

as training data based on the separate individual trials, which were the training data of the classifiers, and

the others were considered to be testing data. For the characteristic data for each subject, ten sets of training

and test data were randomly obtained, such that each set formed different initial operation lists for the three

algorithms based on the DAG. The final recognition rates were the average of the ten tests’ results.

Table 1 shows the ten tests’ results of five different classifiers, including one-vs-rest, one-vs-one,

DAGSVMeuc1, DAGSVMeuc2, and the proposed DAGSVMerr method. The recognition accuracies are as fol-

lows: one-vs-one 95.5%±4.2%, one-vs-rest 97.3%±2.8%, DAGSVMeuc1 98.1%±2.8%, DAGSVMeuc2 98.7%±
2.2%, and DAGSVMerr 99.4% ± 1.7%. It is clear that DAGSVMerr has the highest accuracies, with a rate of

100% for the twelve subjects.

From the confusion matrices in Figure 5, we can see that, comparatively, the recognition accuracies for

the six gestures and the overall average accuracies of DAGSVMerr are quite satisfying, except that class 1 was

misrecognized as class 2 three times.

The execution time, which was computed as the average of ten sets, is presented in Table 2. Since the

classifiers based on a DAG must form the initial operation list, their execution time consists of two parts, the

time for forming the initial operation list and the time for classification. Although the total time of a DAG

method could be longer than that of one-vs-rest or one-vs-one, the time of the second part is more significant

in a practical application because the step of forming the initial operation list is completed when training the

classifiers.

Compared with one-vs-rest and one-vs-one, DAGmethods can solve the unclassifiable region problems and

achieve higher prediction accuracies and, because they use fewer binary sub-classifiers, DAG methods execute
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Table 1. Overall classification accuracies (%) for each subject when employing different classifiers.

Subject no. One-vs-rest One-vs-one DAGSVMeuc1 DAGSVMeuc2 DAGSVMerr

1 100.0 100.0 100.0 100.0 100.0

2 93.3 100.0 100.0 100.0 100.0

3 95.0 95.0 100.0 95.0 95.0

4 96.7 96.7 100.0 100.0 100.0

5 90.0 90.0 93.3 93.3 100.0

6 83.3 95.0 100.0 100.0 100.0

7 100.0 98.3 98.3 98.3 98.3

8 98.3 100.0 96.7 100.0 100.0

9 98.3 100.0 100.0 100.0 100.0

10 95.0 95.0 93.3 100.0 100.0

11 98.3 98.3 98.3 98.3 98.3

12 95.0 100.0 91.7 100.0 100.0

13 98.3 98.3 100.0 100.0 100.0

14 93.3 95.0 100.0 95.0 100.0

15 98.3 98.3 100.0 100.0 100.0

Average (mean± SD) 95.5± 4.2 97.3± 2.8 98.1± 2.8 98.7± 2.2 99.4± 1.3

Table 2. Execution time of the five algorithms.

Algorithm based on SVM
Time for forming the

Time for classification/(s)
initial operation list/(s)

One-vs-rest - 0.2934

One-vs-one - 0.1508

DAGSVMeuc1 0.0087 0.1249

DAGSVMeuc2 0.4947 0.1278

DAGSVMerr 0.2529 0.1187

the classification faster. When applied to the analysis of the sEMG data obtained in this study, the proposed

DAGSVMerr method, which initializes the operation lists by introducing the SM based on ERRs, rearranges

the node sequence and constructs the topology structure, improving the effectiveness of the prediction for the

six gestures.

4. Discussion and conclusions

In this paper, we introduced and evaluated the proposed classifier DAGSVMerr for sEMG classification. The

performance of this novel classifier was discussed with regard to three aspects. First, the classification accuracies

for each subject show that DAGSVMerr has a better generalization ability than other classifiers (one-vs-rest,

one-vs-one, DAGSVMeuc1, and DAGSVMeuc2). Second, the confusion matrices suggest that for each gesture

motion, the accuracies of DAGSVMerr are satisfactory. Through comprehensive consideration of Table 1 and

Figure 5, the order of the classification performances in terms of their accuracies is the following: DAGSVMerr

> DAGSVMeuc2 > DAGSVMeuc1 > one-vs-one > one-vs-rest. Third, the execution time for the classification
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One-vs-rest 

 1 2 3 4 5 6 Acc/% 

1 140 5 0 1 1 3 93.33 

2 3 141 1 2 1 2 94.00 

3 0 2 144 0 1 3 96.00 

4 0 0 0 148 0 2 98.67 

5 0 5 0 1 144 0 96.00 

6 2 2 0 3 0 143 95.33 

Overall accuracy (Mean± SD): (95.56± 1.7087)% 

(a)  

 
 

One-vs-one 

 1 2 3 4 5 6 Acc/% 

1 142 4 0 0 4 0 94.67 

2 3 143 3 0 1 0 95.33 

3 0 2 148 0 0 0 98.67 

4 0 0 0 147 0 3 98.00 

5 0 0 0 0 150 0 100.00 

6 3 0 0 1 0 146 97.33 

Overall accuracy (Mean± SD): (97.33± 1.8461)% 

(b)  

DAGSVMeuc1 

 1 2 3 4 5 6 Acc/% 

1 147 2 0 0 1 0 98.00 

2 0 145 3 0 2 0 96.67 

3 0 3 147 0 0 0 98.00 

4 0 0 0 150 0 0 100.00 

5 0 0 3 0 147 0 98.00 

6 2 0 0 1 0 147 98.00 

Overall accuracy (Mean± SD): (98.11± 0.9742)% 

(c)  

DAGSVMeuc2 

 1 2 3 4 5 6 Acc/% 

1 147 2 0 0 1 0 98.00 

2 3 147 0 0 0 0 98.00 

3 0 2 148 0 0 0 98.67 

4 0 0 0 147 0 3 98.00 

5 0 0 0 0 150 0 100.00 

6 0 0 0 1 0 149 99.33 

Overall accuracy (Mean± SD): (98.67± 0.7693)% 

(d)  

 

DAGSVMerr 

 1 2 3 4 5 6 Acc/% 

1 149 0 0 0 1 0 99.33 

2 3 147 0 0 0 0 98.00 

3 0 0 150 0 0 0 100.00 

4 0 0 0 150 0 0 100.00 

5 0 0 0 0 150 0 100.00 

6 0 0 0 1 0 149 99.33 

Overall accuracy (Mean± SD): (99.44± 0.7116)% 

(e)   

Figure 5. Confusion matrices of the five algorithms: a) One-vs-rest; b) One-vs-one; c) DAGSVMeuc1; d) DAGSVMeuc2;

e) DAGSVMerr.

of the modified method is shorter than that of the others. Moreover, the difference between the three classifiers

based on DAGs is the initial operation list. This finding suggests that the initial operation list plays an important

role in classification performance.

By studying the existing literature, we also noted that the recognition results in our case are comparable

to, or even better than, the rates in similar-gesture cases. Chen et al. [36] utilized a discriminant bispectrum

feature extraction approach and AR model to attain features from the collected six-channel sEMG signals and

classifying gestures by using SVM, with an average classification accuracy rate of 98.46%. They claim that the
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recognition rate was as high as 99.4%, but this was only for a particular subject. Second, in [21], for eight

sEMG channels, the discrete wavelet transform and SVM were used to classify the same gestures as those in

this study, and the reported misclassification rate was 4.7% ± 3.7%. Third, Liu [37] employed a combination

of AR model coefficients and the time domain feature set from the eight-channel sEMG signals as features,

and the average recognition rate of the adaptive unsupervised classifier based on SVM was 96.6% ± 1.5%.

In terms of classification accuracy, the recognition method of this paper is superior to those in the above-

mentioned articles, and this paper only collected the signals of the four channels, indicating that our gesture

recognition system extracted effective features from the original signals with less information. Furthermore, the

DAGSVMerr method made full use of these features, successfully solved the confusion problem, and eventually

made a significant recognition performance.

In conclusion, our experiment demonstrates that DAGSVMerr, which considers ERRs as feedback infor-

mation, is superior to other traditional SVM classifiers. This study has established a proper basis for further

research, and the findings can be applied in many EMG applications, including myoelectric control; thus, they

can be applied in practical applications such as human–computer interaction.
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