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Abstract: Analysis of gene expression data is essential in microarray gene expression in order to retrieve the required

information. Gene expression data generally contain a large number of genes but a small number of samples. The

complicated relations among the different genes make analysis more difficult, and removing irrelevant genes improves the

quality of results. This paper presents two fuzzy preprocessing techniques, using a fuzzy set (FS) and intuitionistic fuzzy

set (IFS), to normalize datasets. In the feature selection part, four statistical methods were used. Using three publicly

available gene expression datasets, the fuzzy normalization techniques were compared with two standard normalization

techniques (min-max and Z-score) as well as raw gene expression. The classifiers of support vector machine, k-nearest-

neighbor, and random forest were used to identify the accuracy of selected features. The experimental results show that

the genes selected using FS- and IFS-normalized datasets give high classification accuracy; in addition, IFS outperforms

FS normalization.
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1. Introduction

1.1. Gene expression data

A microarray dataset is a repository containing microarray gene expression data. The raw microarray data are

images that are transformed into gene expression data matrices, where rows represent genes, columns represent

various samples such as tissues or experimental conditions, and numbers in each cell characterize the expression

level of the particular gene in the particular sample [1].

1.2. Data normalization and feature selection

One of the most essential stages of preprocessing is normalization. Normalization is a method used to standardize

the range of independent features of data. In many applications, the available features are continuous values,

where each feature is measured on a different scale and has a different range of possible values. Microarray

datasets contain continuous gene expression values. Therefore, an effective normalization technique should be

applied to preprocess the expression data [2]. In this paper, two fuzzy normalization techniques were tested.

These results were compared with two popular normalization techniques, min-max and Z-score, abbreviated as

MM and ZS, respectively.

After the preprocessing of the data, a feature selection approach is used to select the most significant
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features. There are many feature selection approaches to assist in classification of samples [3–7]. They are

classified into four categories, namely as filter approach, wrapper approach, embedded approach, and hybrid

approach. A filter approach applies a statistical measure to assign a score to each feature without using a

learning algorithm [8]. A wrapper approach uses learning techniques to evaluate the accuracy produced by the

use of the selected features in the classification [9]. An embedded approach combines the feature selection step

and classifier construction. A hybrid approach is a combination of both filter and wrapper-based methods [10].

A gene expression dataset contains thousands of gene expression values, many of which may be redundant

or irrelevant for classification [11]. Leaving out relevant attributes or keeping irrelevant attributes may affect

the performance of the classification algorithm. Therefore, statistical methods are required to find the most

important genes before classification. In this paper, four different filter selection methods were used for gene

selection.

2. FS and IFS normalization

Fuzzy sets were introduced by Lotfi Zadeh in 1965 as an extension of the classical notion of sets [12]. Fuzzy

set theory can be used in a wide range of domains in which information is incomplete or imprecise, such as

bioinformatics.

A fuzzy set A of a nonempty set X is defined as a set of ordered pairs, ⟨x, µA(x)⟩ , where x ∈ X and

µA (x) is the membership function of the fuzzy set A . A membership function is a curve that defines how each

point in the input space (X) is mapped to a membership value between 0 and 1. A fuzzy set is a collection of

objects with graded membership, i.e. having degrees of membership [12].

In this study, datasets were transformed by exploitation of a fuzzy membership function rather than by

using their absolute expression values. A fuzzy membership function that is used to represent vague, linguistic

terms is the Gaussian function, which is given in Eq. (1):

µA (x) = exp

(
− (x−m)

2

2(k)
2

)
, (1)

where m and k are the center and width of the fuzzy set A , respectively.

Here, all the sample values for each gene were considered as a set. To find the membership function of

this nonempty set, all gene values with respect to all the samples were fuzzified with three fuzzy qualifiers, low,

medium, and high. The maximum and minimum values of each gene were used to define these three fuzzy sets.

The center and width of each fuzzy set was calculated. Then the Gaussian membership function (Eq. (1)) was

applied to all the genes in each fuzzy set. The raw gene values were replaced with these FS-normalized values.

Thus, each gene value was normalized to a scale of 0 to 1, where 1 is the highest expression level and 0 is the

lowest. Figure 1 shows the membership values of four random genes.

Fuzzification determines the degree of membership. The term “intuitionistic fuzzification” refers to

formulating the membership and nonmembership functions of IFS. In practice, due to the insufficiency of

the information available, the evaluation of membership and nonmembership values is not always possible.

Therefore, an indeterministic part remains, known as hesitation [13].

Let A be an IFS of nonempty set X defined as {< x, µA (x) , γA(x) > |xϵX} where µA(x) : X → [0, 1]

andγA(x) : X → [0, 1] such that 0 ≤ µA(x)+γA(x) ≤ 1 and µA(x) and γA(x) denote the degree of membership

and nonmembership, respectively.
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Figure 1. Membership functions of four random genes.

For each intuitionistic fuzzy set in X , there exists an indeterministic part (or hesitation margin) πA(x).

Then the degree of nonmembership can be given as:

γA(x) = 1− µA(x)− πA(x). (2)

Let D = [dij ]M×N be the IFS matrix, where dij = {µij , γij , πij} . The following matrix shows the representation

of IFS gene expression data:

D =

∣∣∣∣∣∣∣∣∣
µ1(g1), γ1(g1), π1(g1) µ1(g2), γ1(g2), π1(g2) · · · µ1(gN ), γ1(gN ), π1(gN )
µ2(g1), γ2(g1), π2(g1) µ2(g2), γ2(g2), π2(g2) · · · µ2(gN ), γ2(gN ), π2(gN )
...

... · · ·
...

µM (g1), γM (g1), πM (g1) µM (g2), γM (g2), πM (g2) · · · µM (gN ), γM (gN ), πM (gN )

∣∣∣∣∣∣∣∣∣ .

Using these triplets, the IFS-normalized value can be described by using the following implications:

dij = µij , if µij ≥ γij ,

dij = −γij , if µij < γij .

The raw values were replaced with these IFS-normalized values. These FS- and IFS-normalized datasets

were given as the input for feature selection.

3. Results

The normalization techniques were examined with three different gene expression datasets: Leukemia, Colon,

and DLBCL. The Leukemia dataset contains 72 samples, with 47 acute lymphoblastic leukemia (ALL) samples

and 25 acute myeloid leukemia (AML) samples [14]. The Colon dataset contains 62 samples in two classes.

Among them, 40 samples are tumor and 22 normal [15]. There are 77 samples in the DLBCL dataset, among

which 58 samples belong to diffuse large B-cell lymphoma (DLBCL) and 19 to follicular lymphoma (FL) [16].

The statistical analysis was performed with R packages.

The raw gene expression datasets were preprocessed with each of the four methods: MM, ZS, FS, and IFS.

The top 15% of genes were selected with maximum variance in each method and principal component analysis

(PCA) transformation was applied to them. A scatter plot of the coordinates corresponding to the first two

1143



RAMASAMY and KANDHASAMY/Turk J Elec Eng & Comp Sci

principal components (PC1 and PC2) of each sample was visualized. A good preprocessing method is expected

to show a clear clustering of samples of the same class and separation between samples of different classes.

Figures 2, 3, and 4 show the PCA scatter plots of the Leukemia, Colon, and DLBCL datasets, respectively,

using all normalization methods. From these figures, it can be observed that samples from different classes were

clearly separated using IFS normalization. It showed the best clustering of samples among all preprocessing

techniques. MM did not perform well on any of the datasets. ZS normalization showed good performance only

on the Leukemia dataset, and both FS and IFS normalization performed well on all the datasets.
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Figure 2. PCA scatter plots for Leukemia data: (a) NN; (b) MM; (c) ZS; (d) FS; (e) IFS.
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Figure 3. PCA scatter plots for Colon data: (a) NN; (b) MM; (c) ZS; (d) FS; (e) IFS.
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Figure 4. PCA scatter plots for DLBCL data: (a) NN; (b) MM; (c) ZS; (d) FS; (e) IFS.
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To demonstrate the performance of the fuzzy normalization techniques, the top 25 and 50 genes were

selected using the T-statistic [17], SNR [18], F-statistic, and mRMR [19] feature selection methods from the

Leukemia, Colon, and DLBCL datasets. To determine the accuracy of these features, the well-known classifiers

of support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF) were employed. The

selected genes were utilized for training the classifiers. The performance was evaluated using 10-fold cross-

validation. The radial basis kernel function was used for SVM classifier. The number of instances considered for
determination of similarity with classes was three for kNN. In RF, the number of trees used was 500. A large

number of trees are used because RF does not overfit when the number of trees is increased. Figures 5a–5f,

6a–6f, and 7a–7f show the classification accuracy of the top 25 and 50 for the Leukemia, Colon, and DLBCL

datasets, respectively.

From Figures 5a and 5b, it can be observed that SVM was not more affected by MM or ZS normalization.

Using the top 25 genes, MM and ZS normalization produced the same accuracy of 89.29%, 89.46%, and 93.81%

as NN for SNR, F-statistic, and mRMR respectively. However, both FN and IFS outperformed MM and ZS

for all the feature selection methods. mRMR with IF normalization had the best accuracy of 97.14% for the

SVM classifier. The kNN classifier had different accuracies for different normalization techniques, as shown in

Figures 5c and 5d. This classifier depends on distance calculations and is affected by normalization since after

normalization all the dimensions have the same weight and no one dominates the others. It shows statistical

improvement after using a normalization technique. It can be inferred that ZS normalization performed better

than MM normalization for the kNN classifier. Both fuzzy normalization methods outperformed the other two

techniques. With the top 25 genes, mRMR and F-statistic with IF normalization had the best accuracy of

97.14% for the kNN classifier. In Figures 5e and 5f, MM and ZS normalization show no difference with the RF

classifier. However, the accuracy performance was improved after applying normalization. The RF classifier

had the highest accuracy of 98.57% in the Leukemia dataset using mRMR with IF normalization.

For the Colon dataset, SVM was affected by all the normalization methods, as shown in Figures 6a and

6b, and the IFS normalization method outperformed all other methods. It can also be observed that MM

reported better accuracy than ZS for both SVM and kNN. Figure 6e shows that RF was the least affected with

the top 25 genes. With the top 25 genes, kNN and RF had the maximum accuracy of 93.81% and 93.57%,

respectively, using mRMR with IFN. SVM achieved the highest accuracy of 96.91% with SNR and mRMR in

the Colon dataset.

Like the Leukemia dataset, DLBCL was not affected by normalization for both SVM and RF. For SVM,

MM and ZS normalization produced the same accuracy of 71.79%, 83.04%, 81.96%, and 83.21% as NN for

T-statistic, SNR, F-statistic, and mRMR, respectively. It was also found that ZS performed better than MM

for kNN classification (Figures 7a–7d). Classifiers kNN and RF had the maximum accuracy of 93.57% using

F-statistic and mRMR. For the DLBCL dataset, SVM showed the highest accuracy of 97.51% with F-statistic

using IF normalized data.

As a general conclusion, from Figures 5, 6, and 7, it can be inferred that the mRMR feature selection

method gave higher accuracy than the other methods. In most cases, SVM performed better than the other

classification methods due to its suitability for high-dimensional data. Both FS and IFS produced higher

accuracy compared to the other two normalization techniques, and IFS gave significant improvement over the

FS normalization method. Thus, the fuzzy normalization methods improved the quality of the feature selection

methods. It can also be observed that the datasets with FS and IFS normalization showed the best performance

for all feature selection methods.

A heat-map is a two-dimensional representation of data in which values are represented by colors. Heat-

1147



RAMASAMY and KANDHASAMY/Turk J Elec Eng & Comp Sci

(a)                                                                                                             (b) 

(c)                                                                 (d)  

 
(e)                                                                        (f)  

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
u

ra
cy

 i
n

 %

Feature Selection Methods

SVM Accuracy for the Top -25 Genes

NN

MM

ZS

FS

IFS

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 i

n
 %

Feature Selection Methods

SVM Accuracy for the Top -50 Genes

NN

MM

ZS

FS

IFS

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 i

n
 %

Feature Selection Methods

kNN Accuracy for the Top-25 Genes

NN

MM

ZS

FS

IFS
0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 i

n
 %

Feature Selection Methods

kNN Accuracy for the Top-50 Genes

NN

MM

ZS

FS

IFS

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy
 i

n
 %

Feature Selection Methods

RF Accuracy for the Top -25 Genes

NN

MM

ZS

FS

IFS

Figure 5. Classification for Leukemia dataset: a, b) SVM; c, d) kNN; e, f) RF.

maps originate from 2D displays of the values in a data matrix. Larger values are represented by small dark

squares (pixels) and smaller values by lighter squares. Each row shows the expression levels of one selected
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Figure 6. Classification for Colon dataset: a, b) SVM; c, d) kNN; e, f) RF.

feature, and each column is a sample. Figure 8 shows the heat-maps depicting the predictive performance of

the top 50 ranked features selected by mRMR using IFS normalization for the datasets Leukemia, Colon, and

DLBCL. From Figure 8a, it can be observed that there is a visible border between the 47 observations of the

ALL group and the remaining 25, representing the AML samples. Figure 8b depicts a cut between two classes

(tumors, healthy). The good performance of the selected features for the DLBCL dataset is also shown in

Figure 8c.
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Figure 7. Classification for DLBCL dataset: a, b) SVM; c, d) kNN; e, f) RF.

4. Conclusion

This paper provides information on the performance of different preprocessing techniques for microarray

datasets. Two novel fuzzy normalization techniques were used to normalize three datasets and compared with
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(a) (b)

(c)

Figure 8. Heat-maps: a) Leukemia dataset; b) Colon dataset; c) DLBCL dataset.

two other popular preprocessing methods with respect to two important criteria. First, PCA transformation

was applied on the datasets and visualized with scatter plots. The plots showed that samples from different

classes were clearly separated using IFS normalization. Secondly, the state-of-the-art feature selection methods

T-statistics, SNR, F-statistic, and mRMR were used to select the top 50 genes for all the normalized datasets

as well as the raw datasets. To analyze the performance of the selected genes, SVM, kNN, and RF classifiers

were used. The experimental results demonstrate that the classification accuracy was improved with the genes

selected with IFS-normalized datasets. The heat-maps were also visualized. The results illustrate that FS

and IFS normalization techniques can be used to increase the quality of gene selection. In addition, it was

demonstrated that IFS can yield significant improvement compared to the FS normalization method.
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