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Abstract: This paper explores a novel method to represent face images for facial expression recognition; it is named

compact local Gabor directional number pattern (CLGDNP). By convolving the face images with Gabor filters, we encode

the magnitude and phase response images in each scale, and calculate the histograms in several nonoverlapping regions of

each encoded image. Finally, we obtain two spatial histogram sequences by the aid of the mean pooling technology and

concatenate them to form the facial descriptor. Moreover, for evaluating the performance of the proposed method, we

employ a support vector machine to conduct some extensive classification experiments on the Radboud faces database,

the extended Cohn-Kanade database, and the Japanese Female Facial Expression database. The experimental results

demonstrate that the proposed CLGDNP method achieves better performance in classification.

Key words: Facial expression recognition, compact local Gabor directional number pattern, Gabor filters, feature,

support vector machine

1. Introduction

Over the past two decades, as facial expressions can express human emotions and convey their intentions,

facial expression recognition (FER) has been widely investigated by researchers [1,2]. Recently, automatic FER

has been gradually applied to many fields, such as human–computer interaction (HCI), medical treatment,

automated tutoring systems, and human emotion analysis [3,4]. However, as the facial expression is hard to

describe accurately, achieving an ideal recognition result remains a difficult problem. Hence, it still leaves much

to be desired.

Currently, although deep learning has made great achievements in pattern recognition and artificial

intelligence, it is still significantly dependent on high-performance computer hardware and massive training

samples [5]. Owing to the small number of images available, we could not follow deep learning-based approaches

[6–8]. We intend to pursue a proper and effective facial representation by traditional feature extraction methods

without the limitations mentioned above.

Generally, there are two types of facial expression features: geometric and appearance features [4]. The

former usually indicates the shapes and locations of facial components, which can be mostly extracted from

the geometric relationships between them, such as position, angle, and distance [3]. However, it is hard to
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accurately detect and locate these facial components [9]. On the other hand, the appearance features are

usually extracted from the changes in face image by filters on the whole face or in some specific regions [3].

There are many existing methods based on appearance features, such as Gabor feature [10–12], local binary

pattern (LBP) [9,13], local directional pattern (LDP) [14,15], local directional number pattern (LDN) [16], and

local Gabor binary pattern histogram sequence (LGBPHS) [17]. According to the literature, Gabor filters have

been widely adopted in face image analysis; they extract the local appearance changes in specific facial regions

from different scales and orientations [10]. Moreover, with simple and fast computing capability as well as

robustness to the monotonic illumination variations, LBP has been also applied in FER [13]. However, it fails

in cases of nonmonotonic illumination changes and random noise [15]. LGBPHS combines Gabor and LBP to

extract features and achieves a satisfactory accuracy [17]. Nonetheless, its dimension is so high that it is a

heavy burden of computation. LDN proves to be insensitive to noise and has superior performance over Gabor

and LBP in that it encodes the directional information as well as facial intensity changes [16]. Nevertheless,

the basic length of the LDN code is high, and it fails to consider the relationship between adjacent pixels and

lacks more details of the facial texture.

Inspired by Gabor feature and LDN, we propose a novel facial expression descriptor for FER; it is named

compact local Gabor directional number pattern (CLGDNP). We encode not only the Gabor magnitude response

images (GMRIs) but also Gabor phase response images (GPRIs) in different scales by using a compact LDN.

This mechanism brings much more powerful and discriminative features in less space and makes our method

robust against noise due to LDN and to illumination due to Gabor filters.

The remainder of this paper is organized as follows. Firstly, we briefly introduce the related work in

Section 2. Secondly, we elaborate the proposed CLGDNP method in Section 3. Subsequently, we conduct some

experiments and analyze the results in Section 4. Finally, we draw conclusions in the last section.

2. Related work

2.1. Gabor filters

Gabor filters prove to be a useful tool for FER. They are defined in the spatial domain by the following equations

[10]:

Ψu,v(x, y) =
f2
u

2π
exp

[
− f2

u

2
(x2 + y2)

]
exp[j2πfu(x cos θv + y sin θv)] (1)

fu = (
√
2)−ufmax (2)

θv =
v

8
π, (3)

where fu and θv denote the center frequency and orientation of the complex plane sine wave, respectively. In

our experiments, we employ a filter bank with five scales and eight orientations for extracting features [10], that

is, u= 0, 1, . . . , 4 and v= 0, 1, . . . , 7.

2.2. Local directional number (LDN) pattern

LDN encodes the directional information and the intensity variations of face images [16]. To obtain the LDN

code, firstly we use Kirsch masks to compute the eight edge response values Gi of each pixel by the following
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equation:

Gi = I ∗ Mi, i = 0, 1, . . . , 7, (4)

where I is a face image, Mi means the ith Kirsch mask, as shown in Figure 1, and ∗ denotes the convolution

operation.

Figure 1. Kirsch masks in eight directions.

Then we sort the values Gi to calculate two directional numbers D1 and D2 , which are followed by

D1(x, y) = argmax
i

{Gi | 0 ≤ i ≤ 7} (5)

D2(x, y) = argmin
i
{Gi | 0 ≤ i ≤ 7}, (6)

where (x , y) is the pixel position, and D1(x , y) and D2(x , y) are the directional numbers of the maximum

positive and minimum negative responses, respectively.

Finally, the LDN code is computed as

LDN(x, y) = 8 × D1(x, y) + D2(x, y) (7)

3. Facial description based on CLGDNP

The framework of the proposed CLGDNP method is shown in Figure 2. In general, we firstly use Gabor filters

to filter the face images to obtain 40 GMRIs and 40 GPRIs. Secondly, we encode the GMRIs and GPRIs in

each scale to generate CLGDNP Mag and CLGDNP Pha maps, respectively. Then we divide each map into

small nonoverlapping regions to calculate their local histograms, and employ the mean pooling technology to

build the CLGDNP Mag and CLGDNP Pha histogram sequences. Finally, we concatenate these two histogram

sequences to form the facial descriptor.

3.1. Compact local Gabor directional number pattern (CLGDNP)

For a long time, the Gabor magnitude response has been used as a more useful facial description than the phase

response, owing to its stability and slower changes [11]. However, many studies indicate that the Gabor phase

response is a powerful discriminative feature and very robust to illumination changes [11,12]. Consequently, we

intend to employ the Gabor magnitude and phase information for facial description.

To obtain the CLGDNP code, we employ Gabor filters instead of Kirsch masks to convolve the face

images, which extracts much more detailed features in different scales. Given a face image, the Gabor response

image Fu,v(x , y) is calculated by

Fu,v(x, y) = I(x, y) ∗ Ψu,v(x, y) = Au,v(x, y)e
iΦu,v(x,y) (8)
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Figure 2. The framework of the proposed CLGDNP method.

Au,v(x, y) =
√
Re2[Fu,v(x, y)] + Im2[Fu,v(x, y)] (9)

Φu,v(x, y) = arctan(
Im[Fu,v(x, y)]

Re[Fu,v(x, y)]
), (10)

where I(x , y) represents a face image, Au,v(x , y) and Φu,v(x , y) denote the GMRI and GPRI, and ∗ is the

convolution operation.

Then we separately calculate the maximum and minimum directional numbers of the GMRIs and GPRIs

in each scale, which are followed by

D1
A,u(x, y) = argmax

v
{Au,v(x, y) | 0 ≤ v ≤ 7} (11)

D2
A,u(x, y) = argmin

v
{Au,v(x, y) | 0 ≤ v ≤ 7} (12)

D1
Φ,u(x, y) = argmax

v
{Φu,v(x, y) | 0 ≤ v ≤ 7} (13)

D2
Φ,u(x, y) = argmin

v
{Φu,v(x, y) | 0 ≤ v ≤ 7}, (14)
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where (x , y) is the pixel coordinate, D1
A,u(x, y) and D2

A,u(x, y) denote the maximum and minimum directional

numbers in the uth scale of GMRIs, and D1
Φ,u(x, y) and D2

Φ,u(x, y) represent the maximum and minimum

directional numbers in the uth scale of GPRIs.

In order to reduce the dimension while still contain the structural information of the facial features,

we encode the GMRIs and GPRIs in each scale by using the two neighboring pixels with the maximum and

minimum values but ignore their sequences. Therefore, the CLGDNP code is defined as

CLGDNP Magu(x, y) = min
{
8 × D1

A,u(x, y) + D2
A,u(x, y), D

1
A,u(x, y) + 8 × D2

A,u(x, y)
}

(15)

CLGDNP Phau(x, y) = min
{
8 × D1

Φ,u(x, y) + D2
Φ,u(x, y), D

1
Φ,u(x, y) + 8 × D2

Φ,u(x, y)
}
, (16)

where CLGDNP Magu(x , y) denotes the encoded image in the uth scale of GMRIs, and CLGDNP Phau(x ,

y) is the encoded image in the uth scale of GPRIs.

As can be seen from Eqs. (15) and (16), the basic length of the CLGDNP code is only 28, which is much

shorter than that of other similar approaches. For instance, the basic length of uniform LBP [9] is 59, of LDP

[14] is 56, and of LDN [16] is 56. Moreover, we encode the responses rather than directly use their values, which

makes the feature much more stable.

3.2. Facial description

Considering that facial expression variations usually appear in some specific regions of the face, we use a

histogram sequence to represent each face, which makes the description contain fine to coarse facial information.

We divide CLGDNP Mag and CLGDNP Pha maps in each scale into K regions, {R1 , R2 , . . . , RK} . We

employ each code as a bin to extract the histograms from the k th region in each scale, which are calculated by

hk
M,u =

28∪
i=1

hk
M,u,i =

{
hk
M,u,1, h

k
M,u,2, . . . , hk

M,u,28

}
(17)

hk
P,u =

28∪
i=1

hk
P,u,i =

{
hk
P,u,1, h

k
P,u,2, . . . , hk

P,u,28

}
(18)

Here

hk
M,u,i =

∑
(x,y)∈Rk

δ (CLGDNP Magu(x, y), Ci), i = 1, 2, · · · , 28 (19)

hk
P,u,i =

∑
(x,y)∈Rk

δ (CLGDNP Phau(x, y), Ci), i = 1, 2, · · · , 28 (20)

δ(s, Ci) =

{
1, s = Ci

0, otherwise
, (21)

where hk
M,u and hk

P,u denote the histograms from the k th region in the uth scale on CLGDNP Mag and

CLGDNP Pha maps, respectively,
∪

is the concatenation operation, (x , y) is the pixel coordinate in the

k th region,Ci represents a code value, and δ (•) is an accumulation function.
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For further reducing the dimensions of the final facial descriptor and retaining the detailed information,

we adopt the mean pooling technology to build the CLGDNP Mag and CLGDNP Pha histogram sequences.

Specifically, we calculate the average values of the histograms in the corresponding regions on five scales, and

concatenate them to form the histogram sequences of the CLGDNP Mag and CLGDNP Pha maps as follows:

ℏM =
K∪

k=1

(
1

5

4∑
u=0

hk
M,u

)
=

{
1

5

4∑
u=0

h1
M,u,

1

5

4∑
u=0

h2
M,u , · · · , 1

5

4∑
u=0

hK
M,u

}
(22)

ℏP =
K∪

k=1

(
1

5

4∑
u=0

hk
P,u

)
=

{
1

5

4∑
u=0

h1
P,u,

1

5

4∑
u=0

h2
P,u , · · · , 1

5

4∑
u=0

hK
P,u

}
, (23)

where ℏM and ℏP denote the histogram sequences of CLGDNP Mag and CLGDNP Pha maps, respectively,∪
is the concatenation operation, and K is the number of the regions.

Finally, we concatenate the two histogram sequences, ℏM and ℏP , to form the feature vectors H as

the facial descriptor:

H = ℏM
∪

ℏP (24)

4. Experiments and results

4.1. Experimental setup

To evaluate the performance of the proposed method, we conduct some extensive classification experiments

by LIBSVM [18] on three facial expression databases, namely the Radboud faces database (Rafd) [19], the

extended Cohn-Kanade (CK+) database [20], and the Japanese Female Facial Expression (JAFFE) database

[21]. We adopt a 10-fold cross-validation testing mechanism in a person-independent way [22]. To be specific,

we partition the database into ten groups, and simultaneously ensure one subject’s expressions belong to the

same group. Each group serves as the test set once by turns.

In our experiments, we crop the face portion detected by the Viola–Jones algorithm [23], normalize all the

cropped images to 100 × 100 pixels, and divide each image into 9 × 10 nonoverlapping regions. Additionally,

we use PCA [24] with 99% of variance retained to decrease the dimension of the feature vectors and employ a

support vector machine (SVM) with RBF kernels to classify the facial expressions, where the parameter C of

RBF kernel is 100.

4.2. Experiments on Rafd database

The Rafd [19] includes 8040 face images of 67 models. Each model shows eight expressions with three gaze

directions, as shown in Figures 3a and 3b. Moreover, each image in the database has five camera angles (0◦ , 45◦ ,

90◦ , 135◦ , and 180◦), as shown in Figure 3c. In our experiments, we selected the 45◦ -camera, 90◦ -camera, and

135◦ -camera images as three subdatabases, described as Rafd (45◦), Rafd (90◦), and Rafd (135◦). Accordingly,

each subdatabase contains 1608 facial expression images.

For testing the effect of the combination of magnitude and phase information, we separately use

CLGDNP Mag and CLGDNP Pha histogram sequences as the facial descriptor for classification and report

the results in Table 1. It is clear that the magnitude information and phase information are complementary

and their combination effectively improves the recognition rates.
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(c)

(b)

(a)  

Figure 3. Examples from the Rafd. (a) Examples of the eight expressions. From the top left: surprise, anger, sadness,

disgust, fear, happiness, neutral, and contempt. (b) Examples of three gaze directions. From the left: looking left,

looking frontal, looking right. (c) Examples of five camera angels in the order: 0◦ , 45◦ , 90◦ , 135◦ , and 180◦ .

Table 1. Recognition rates (%) of CLGDNP Mag, CLGDNP Pha, and CLGDNP on the three subdatabases of Rafd.

Method
Rafd (45◦) Rafd (90◦) Rafd (135◦)

6-class 8-class 6-class 8-class 6-class 8-class

CLGDNP Mag 93.25 87.30 97.05 93.75 94.23 88.58

CLGDNP Pha 92.95 84.78 98.33 94.53 94.07 86.73

CLGDNP 96.10 91.39 99.09 97.01 96.27 92.53

Moreover, we compare the classification performance with several other approaches, as listed in Table 2.

The local descriptor, such as LBP, LDP, and LDN, extracts the facial feature from a single resolution. Gabor

feature and LGBPHS consider the Gabor magnitude information but ignore the phase information. However,

by a compact LDN, the proposed CLGDNP method extracts the features in different scales, which are not only

from the Gabor magnitude but also from the Gabor phase. Thus, the proposed CLGDNP method gives much

more structural information of the facial texture and achieves the highest recognition rates both in 6-class and

8-class classification problems. Moreover, we observe that the recognition rates of Rafd (90◦) are higher than

those of Rafd (45◦) and Rafd (135◦). One of the reasons is that the face images in Rafd (90◦) are frontal and

have much more facial details.

Additionally, it can be observed that the recognition rate in the 8-class classification problem is lower

than that in the 6-class classification problem owing to the addition of neutral and contempt expressions. For

example, we present the confusion matrices of the 6-class and 8-class classification problems on Rafd (90◦) in

Figure 4. It is clear that the recognition rates of some basic expressions (such as anger, disgust, happiness, and

sadness) decline in that these expressions are confused with the neutral and contempt expressions.

Furthermore, we conduct some dedicated experiments on three subdatabases to investigate the effect of

PCA on the recognition rates, and the results are depicted in Figure 5. We intend to retain a different number

of variance in PCA, varying from 85% to 99%. It can be obviously seen from Figure 5 that the proposed method

outperforms the other approaches both in 6-class and 8-class problems on three subdatabases.
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Table 2. Comparison of recognition rates (%) on the three subdatabases of Rafd.

Method
Rafd (45◦) Rafd (90◦) Rafd (135◦)

6-class 8-class 6-class 8-class 6-class 8-class

Gabor 87.92 79.06 95.57 89.78 85.61 80.17

LBP 91.96 84.18 93.15 88.24 91.67 84.71

LDP 88.10 80.43 95.15 86.27 90.69 82.14

LDN 92.33 85.24 96.26 93.02 91.81 84.03

LGBPHS 95.69 91.26 98.55 94.84 94.13 90.19

CLGDNP 96.10 91.39 99.09 97.01 96.27 92.53

Anger

Disg
ust

Fear

Happiness

Sadness

Surpris
e

Neutra
l

Contempt

(b) 8-class problem

Anger(%)

Disgust(%)

Fear(%)

Happiness(%)

Sadness(%)

Surprise(%)

Neutral(%)

Contempt(%)

0

0

0

1.49

0

2.49

1

0.5

0

0

0

0

0

0

0

0

0

0.5

0.5

0

0

0

0

0

0

0

0

0

1.49

0

0

0

0

0.5

0.5

0

0

1.49

0

0

0

0

1.49

0

0

0

1.99

0

4.48

0

0.5

0

0.5

0.5

0

3.98

96.52

99.5

98.51

99.5

95.52

99.5

93.03

94.03

Anger

Disg
ust

Fear

Happiness

Sadness

Surpris
e

(a) 6-class problem

Anger(%)

Disgust(%)

Fear(%)

Happiness(%)

Sadness(%)

Surprise(%)

0

0

0

1.99

0

0.5

0

0

0

0

0

0

0

0

0.5

0

0

0

0

0

1

0

0

0

0

0

0

1.49

0

0

98.51

100

98.51

100

98.01

99.5

Figure 4. Confusion matrices of the 6-class and 8-class problems on the Rafd (90◦) .

In addition, we also report the average results of these fifteen recognition rates in Table 3. It clearly

indicates that the CLDGNP method achieves the highest average recognition rate. Especially, compared with

LGBPHS, the proposed CLDGNP method improves the average recognition rate by approximately 3% in the

6-class problem and 5% in the 8-class problem. Moreover, we compare the execution time for extracting features

of each image between them by using an Intel i3 CPU with 3.4 GHz in that they are both based on Gabor filters.

The proposed method takes roughly 0.21 s on average while the LGBPHS takes about 0.53 s. Consequently,

our proposed method has high performance and low computation cost.

4.3. Experiments on the CK+ database

The CK+ database [20] consists of 593 sequences from 123 persons. There are six basic facial expressions (anger,

disgust, fear, happiness, sadness, surprise) and one contempt expression in the database. The facial expressions

in each sequence are from the neutral to the peak expression [20]. There are only 325 of 593 sequences with

correct labels from 118 subjects in the CK+ database, and thus we choose the most expressive images of them,

which resulted in 1482 face images in our experiment.

According to the recognition rates listed in Table 4, the proposed method performs better in both the

6-class and 7-class classification problems. Moreover, we present the confusion matrix of the 7-class expression
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Figure 5. Recognition rates using PCA with a different number of variance retained.

Table 3. The average recognition results (%) using PCA with a different number of variance retained on the three

subdatabases of Rafd.

Method
Rafd (45◦) Rafd (90◦) Rafd (135◦)

6-class 8-class 6-class 8-class 6-class 8-class

Gabor 88.04 ± 0.42 77.98 ± 0.90 94.96 ± 0.65 88.80 ± 0.91 85.74 ± 1.07 78.07 ± 1.45

LBP 91.27 ± 0.48 84.10 ± 0.58 93.89 ± 0.62 88.92 ± 0.38 92.12 ± 0.55 86.40 ± 0.90

LDP 92.59 ± 0.47 85.90 ± 0.89 96.09 ± 0.34 92.02 ± 0.41 91.00 ± 0.73 83.35 ± 1.10

LDN 89.39 ± 0.67 80.79 ± 0.55 95.52 ± 0.46 87.68 ± 0.86 90.97 ± 0.52 83.48 ± 0.82

LGBPHS 92.28 ± 1.91 86.32 ± 2.53 96.81 ± 1.67 92.56 ± 1.25 91.68 ± 1.66 85.69 ± 2.82

CLGDNP 95.09 ± 0.37 91.23 ± 0.45 98.64 ± 0.23 96.61 ± 0.32 96.39 ± 0.33 91.97 ± 0.56

classification problem in Figure 6. It can be seen that the recognition rates of sadness and contempt expressions

are slightly below 80%.
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Table 4. Recognition rates (%) on the CK+ and JAFFE database.

Method
CK+ database JAFFE database

6-class 7-class 6-class 7-class

Gabor 89.87 88.86 72.42 71.62

LBP 90.36 89.79 76.15 72.11

LDN 91.76 89.90 77.41 74.22

LDP 91.25 90.66 74.97 72.34

LGBPHS 95.07 93.42 78.97 75.40

CLGDNP 95.27 94.27 79.04 77.88

An
ge
r

Di
sgu
st

Fe
ar

Ha
pp
ine
ss

Sa
dn
ess

Su
rpr
ise

Co
nte
mp
t

Anger(%)

Disgust(%)

Fear(%)

Happiness(%)

Sadness(%)

Surprise(%)

Contempt(%)

0

5.93

0

13.77

0

10.11

0

0

1.2

2.17

0

0

0

0

0

0

0

4.49

0

0

0.85

0

0

0

2.45

0

4.24

0

0

3.37

0.98

0

5.08

0

6.52

3.37

0

0

0

0

0

0

96.57

100

83.9

98.8

77.54

100

78.65

Figure 6. Confusion matrix of the 7-class problem on the CK+ database.

Additionally, the comparison between our proposed method and several other state-of-the-art methods

on the CK+ database is shown in Table 5. We choose these methods owing to their similar testing protocols

(e.g., person-independent classification). It can be observed that the proposed method has a comparable or

even better performance compared to the state-of-the-art methods.

Table 5. Comparison of recognition rate with the state-of-the-art methods on the CK+ database.

Year Method Cross validation 6-class 7-class

2014 3DCNN+DAP [6] 15-fold – 92.4%

2014 STM-ExpLet [24] 10-fold – 94.19%

2016 deep neural networks [7] 5-fold 93.2% –

2017 Intra-class variation reduction [25] 10-fold – 89.6%

2017 3D Inception-ResNet+landmarks [8] 5-fold – 93.21%

CLGDNP 10-fold 95.27% 94.27%
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4.4. Experiments on the JAFFE database

The JAFFE database [21] includes 213 images from ten different Japanese women, which are labeled by six

basic expressions and one neutral expression. For exposing the expressive zones on the face, everyone’s head is

frontal and the hair is tied back [21].

It can be seen from Table 4 that the proposed method still has better performance than the others.

Moreover, we observe that the recognition rate on the CK+ database is higher than that on the JAFFE

database. One of the reasons is that the expression images selected from the CK+ database are all correctly

labeled, while some expression images from the JAFFE database are probably labeled by mistake, as shown in

Figure 7.

(b)  (a)  

Figure 7. Examples of original expression images from the JAFFE database. (a) and (b) are titled ”KR.HA1.74.tiff”

and ”KR.SA3.79.tiff” respectively. The expressions in the two images are so similar that there is almost no obvious

difference between them. However, they belong to different types. (a) is labeled happiness while (d) is labeled sadness.

5. Conclusion

In this work, we propose a novel facial representation, CLGDNP, that encodes not only the GMRIs but also

the GPRIs in different scales to extract the structural information of the facial texture. In order to reduce the
dimension of the features, we use the mean pooling technology to concatenate the feature vectors. Thereby, it is

nonsusceptible to noise and illumination change. The experimental results on three public databases manifest

that our proposed method achieves higher classification accuracy.

In our method, we simply concatenate the CLGDNP Mag and CLGDNP Pha histogram sequences to

form the facial descriptor. A better combination method might improve the classification performance. In the

future, we will dedicate further study to the data fusion methods and improve the recognition accuracy and

efficiency, especially in the nonfrontal facial expression condition.
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