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Abstract: With the advancement of sophisticated cameras and image editing software tools, digital image tampering

techniques are frequently used without leaving visual cues behind. Digital image copy-move forgery is a kind of image

manipulation that involves copying and pasting of a certain section (or sections) within the same digital image. Generally,

this is done with false intentions of hiding important information or providing false information in an image. In view of

this, the focus of the present paper is to propose a discrete fractional wavelet transform-based scheme for identification

of duplicated regions in the image. The test image is split into overlapping image blocks with fixed dimensions. Then, on

each image block, discrete fractional wavelet transform is employed for the extraction of their features. All the feature

vectors are systematized in lexicographical manner followed by the block matching and block filtering steps to obtain the

replicated blocks, if any. The proposed method can detect single and multiple duplicated regions successfully. The results

are compared to existing techniques based on precision and recall parameters. Simulation results show that the proposed

forgery detection scheme can detect tampering areas even in the presence of distortions due to Gaussian blurring and

JPEG compression.
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1. Introduction

Generally, an image is considered as evidence of the occurrence of any significant event. However, due to the

evolution of powerful image manipulating tools like Photoshop, digital images can be easily tampered with to

such an extent that these techniques hardly leave any trace [1]. Image forgery or image tampering is used

in various areas such as surveillance systems, multimedia security, journalism, and scientific publications [2].

Hence, there is a dire necessity to develop a reliable and effective image manipulation detection system to

investigate the integrity as well as the authenticity of digital images.

Broadly, the classification of digital image tampering detection schemes is done in two categories, namely

active techniques and passive techniques [3]. In active schemes, prior information about an image is absolutely

necessary for authentication, which limits their application. It involves the preprocessing of images like signature

generation and watermark embedding. On the contrary, there is no need for such preprocessing methods or

prior information in the case of passive methods like copy-move forgery (CMF) and image splicing. This paper

presents the reliable detection of CMF using discrete fractional wavelet transform (DFrWT).

CMF, also known as region duplication, is one of the most widely used manipulation methods. It

includes copying a section of the digital image and pasting it onto another section belonging to the same image
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as shown in Figure 1. This is usually done with an objective of providing false information or to conceal some

important data in an image. After region duplication, certain postprocessing operations may be applied to the

image for concealing tampering clues like blurring, smoothing, and/or compression. This makes blind detection

more typical, but still replicated regions have some identifiable characteristics that can be used for the forgery

detection.

a     b     c  

Figure 1. Example of CMF [4]: (a) original image; (b) forged image; (c) red-circled region is copied and pasted over

yellow-circled region.

Many copy-move forgery detection (CMFD) methods in the literature have been cast in a common

pipeline, i.e. creating overlapping blocks by division of the test image, extraction of features from each block,

matching of blocks on the basis of similar feature vectors, and, at the end, postprocessing operations to discard

outliers [4]. All these steps highlight the necessity of verifying the image integrity and authenticity. It was

observed that for the effectiveness of CMFD algorithms, feature vectors play a critical role. Discrete cosine

transform (DCT) [5,6] was used for all the image patches and its coefficients were used as feature vectors. This

method was advantageous as compared to JPEG compression and AWGN distortion, but this algorithm might

find too many matching blocks and many of them may not be really forged. In another approach, transformation-

based features [7] like log polar transform, affine transform, principal component analysis (PCA), or SVD were

used for CMFD. These methods can detect forgery with minimum false matches for images with high resolution.

However, a few small copied regions were not successfully detected.

In 2012 [8], discrete wavelet transform coefficients were used to get featured vectors. Unlike other existing

algorithms, this algorithm works even when the doctored image is truncated. A disadvantage of the method

was that it cannot detect duplicated regions with arbitrary rotations. PCA [9] and Fourier Mellin transform

[10] were used for obtaining features. These methods reduced the complexity by utilizing feature vectors of

small size. It was again needed to detect rotational and multiple forgeries in the image, so the researchers

employed multiorientation and multiresolution curvelet transform to find similar areas [11]. This technique was

reasonably robust to copy-move and rotate forgery detection. However, the performance of this method relies

on the location of copy-move regions. Some authors used moment-based features like blur invariant moments

[12], Zernike moments [13], and invariant moments [14] to detect the CMF in the presence of blur or noise in

the copied regions. However, no method has been able to achieve 100% robustness against CMF detection.

Basically, CMFD is a burgeoning research field as there is a never-ending competition between image forgery

creators and image forgery detectors.

The proposed algorithm focuses attention on increasing the robustness (precision and recall) using

DFrWT. Along with inheriting excellent mathematical properties of both wavelet transform and FrFT, DFrWT

1262



LAMBA et al./Turk J Elec Eng & Comp Sci

provides better representations of details. These properties make the proposed algorithm capable of providing

more accurate duplicate detection results even in the presence of Gaussian blur as well as lossy compression.

The remaining paper is structured as follows. Section 2 presents the background of the DFrWT. The proposed

scheme is explained in Section 3. Section 4 gives the experimental results while Section 5 presents the conclusion

of the paper.

1.1. State of the Art

As mentioned, despite the several efficient methods available for CMF detection, this field is still growing to

face challenges given by hackers every new day. The major challenges that have not been overcome yet are

availability of benchmark datasets for CMFD [15]. These standardized benchmark datasets should be produced

for performance comparison of algorithms. It has been also observed from the state of the art that geometric

transformation (rotation, scaling, and compression)-related CMFD is less available.

In block-based approaches, the image is divided into overlapping blocks. The idea is to detect connected

blocks that are copied and moved. The selection of block size poses a great challenge. If it is taken as too small,

false forgery detection appears, and if it is taken too large, some forged areas go undetected [16].

In many realistic forensic scenarios, large-sized images are inherently more challenging, since an overall

higher number of feature vectors exist, and thus there is a considerably higher probability of matching wrong

blocks. Hence, a sufficient number of feature vectors should be selected to achieve high accuracy, as suggested

by Dixit et al. in 2017 [17]. The proposed algorithm has selected 14 sufficient features and appropriate block

size of 8 × 8. The efficacy of the proposed algorithm is compared with existing algorithms in Table 1 using

performance parameters of precision and recall and proved to be better.

Table 1. Feature vectors used in the proposed algorithm.

Sr. no.
Feature

Mathematical form Sr. no.
Feature

Mathematical form
vector vector

1. Mean Mn = 1
N

N∑
i=1

|Ci| 8. Mode Mode = eµ−σ2

2.
Standard Std =

(
1

N−1

N∑
i=1

(Ci−Mn)
2

) 1
2

9. RMS RMS =

√
N∑

i=1
x2
i

n

deviation

3. Median Me = 1
2 (CN/2 + C(N + 1)/2) 10. Variance var = E[C−Mn]2

Std2

4 Skewness Skw = E[C−Mn]3

Std3

11. Average
Avgres =

n∑
i=1

|xi − x̄|
residual

5 Kurtosis Kur = E[C−Mn]4

Std4 12
Mean

MnS =
N∑
i=1

|Ci|2
square

6. Norm1 norm1 =
n∑

i=1

|xi| 13. Energy Energy =
∑
i,j

C(i, j)
2

7. Norm2 norm2 =

(
n∑

i=1

|xi|2
)1/2

14. Covariance COV =
N∑
i=1

xix
T
i
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2. Discrete fractional wavelet transform

Fractional wavelet transform is a helpful mathematical transformation that generalizes the prominent tool in

signal processing known as the wavelet transform by rotation of the signals in the time-frequency plane. The

continuous fractional wavelet transform (FrWT) [18] is said to be the actualization of wavelet transform in the

fractional Fourier domain. The FrWT of a one-dimensional g(t) function can be written as:

WTα(s, τ) =

∞∫
−∞

∞∫
−∞

g(t)Kα(x, t)ϕs, τ(x)dtdx, (1)

where ϕs, τ(x) = 1√
s
ϕ
(
x−τ
s

)
represents the mother wavelet with parameters s and τ as scale (dilation) and

translation (position), respectively. Further, Kα(x, t) represents the kernel of FrWT as given in Eq. (2).

Kα(x, t) = Cαkα(x, t)e−jtx csc α̃ (2)

Here Cα = e
− j

2 (π
2

sgn(sin α̃)−α̃)√
2π|sin α̃|

. For construction of the actual signal from the transformed signal, inverse FrWT

can be defined as in Eq. (3).

g(t) =
1

Cϕ

∞∫
−∞

∞∫
−∞

∞∫
−∞

WTα(s, τ)K−α(x, t)ϕs, τ(x)
dsdτdx

s2
(3)

Here, Cϕ =
∞∫

−∞

|ϕ̂(u)|2
|u| du with ϕ̂(u) being the Fourier transform of ϕ(t).

Eq. (1) can be rearranged as:

WTα(s, τ) =

∞∫
−∞

G(x)ϕs, τ(x)dx, (4)

where G(x) =
∞∫

−∞
g(t)Kα(x, t)dt .

To get the DFrWT, it is required to give a discrete form of Eq. (4), which further requires the discrete

form of the mother wavelet ϕs, τ(x). To achieve this, scale and translation parameters are considered as s = s0a

and τ = bτ0s0a , respectively. Now the discrete mother wavelet can be described as:

ϕa, b(x) =
1√
s0a

ϕ

(
x− bτ0s0a

s0a

)
, (5)

where a and b are integers that represent the controlling factors for the scale and position, respectively. s0

is the fixed dilation step with the value being greater than 1, while τ0 is the position parameter with value

greater than zero. The discrete mother wavelet given in Eq. (5) is reduced to get the FrWT of Eq. (4), given
as:

WTαa, b =

∞∫
−∞

G(x)
1√
s0a

ϕ

(
x− bτ0s0a

s0a

)
dx. (6)
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The relation in Eq. (6) is the inner product between signal G and wavelet ϕa, b as represented in Eq. (7).

WTαa, b = ⟨G,ϕa, b⟩ (7)

Thus, WTαa, b represents the α -order DFrWT coefficients on a dilation-position grid given by a , b . Usually,

the values of s0 and τ0 are chosen as 2 and 1, respectively, giving the simplest yet effective discrete form, called

a dyadic grid arrangement. The dyadic grid wavelet can be described as:

ϕa, b(x) =
1√
2a

ϕ

(
x− b2a

2a

)
⇒ ϕa, b(x) = 2−a/2ϕ(2−ax− b). (8)

Now the forward and the inverse DFrWT are represented in Eqs. (9) and (10), respectively.

WTαa, b =

∞∫
−∞

G(x)2−a/2ϕ(2−ax− b)dx ⇒
∞∫

−∞

G(x)ϕa, b(x)dx (9)

G(x) =
∞∑

a=−∞

∞∑
b=−∞

WTαa, bϕa, b(x) ⇒ G(x) =
∞∑

a=−∞

∞∑
b=−∞

⟨G,ϕa, b⟩ϕa, b(x) (10)

Figure 2 shows the decomposition and reconstruction process for DFrWT for an image.

Original Image 

- order DFrFT 

l – level DWT 

l – level inverse DWT 

 

- order inverse  

DFrFT 

 

Reconstructed 

Image 

l – level -

order DFrWT

Decomposition Reconstruction 

Figure 2. Decomposition and reconstruction process for DFrWT.

Thus, we can say that to obtain l -level α -order DFrWT coefficients of an image, α -order discrete fractional

wavelet transform (DFrFT) is followed by l -level discrete wavelet decomposition. However, to obtain the original

image, l -level discrete wavelet reconstruction and then α -order inverse DFrFT are carried out.

3. Proposed scheme

The proposed CMFD scheme relies on the assumption that replicated areas in an image have the same

underlying statistical characteristics, which other areas of the image do not possess. Thus, we have extracted

1265



LAMBA et al./Turk J Elec Eng & Comp Sci

the discriminating attributes from the DFrWT coefficients of different regions of the image for region replication

detection. The proposed scheme can be mainly divided into six steps, namely RGB to grayscale conversion,

overlapping block creation, feature extraction, lexicographical sorting, block matching, and block filtering, as

given in Figure 3.

RGB to Gray-scale Conversion 

Overlapping Blocks Creation 

Feature Extraction 

Lexicographical Sorting 

Block Matching 

Block Filtering 

Test Image 

Detection Result

Figure 3. Outline of the proposed CMFD scheme.

3.1. RGB to grayscale conversion

If a test image is an RGB image, it is desired to convert it into a grayscale format. This is done by computing a

weighted average of each color component, namely red (Rc), green (Gc), and blue (Bc).The pixel values of the

corresponding grayscale image are the intensities of the respective pixels of the RGB image. RGB to grayscale

conversion is done by using Eq. (11):

I(Rc,Gc,Bc) = 0.2989 ·Rc+ 0.5870 ·Gc+ 0.1140 ·Bc, (11)

where Rc , Gc , and Bc represent the 8-bit grayscale red, green, and blue intensities, respectively. I(Rc, Gc, Bc)

represents the pixel value in the converted gray-scale image.

3.2. Overlapping block creation

The grayscale image of dimensions u × v is separated into overlapping square blocks with dimensions d × d.

This is done by sliding a square-shaped block of d × dsize over the grayscale image starting from the top-left
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pixel to the bottom-right pixel. The sliding step is taken as one pixel. This will create a total (u– d+ 1) ×
(v– d+ 1) overlapping blocks.

3.3. Feature extraction

The α -order l -level DFrWT is applied to each of the obtained blocks. Therefore, in total (u– d+ 1) × (v–

d+ 1) feature vectors are generated. For each block, we have extracted a total of 14 features from the DFrWT

coefficients. Table 1 gives a list of all these features.

In Table 1, C represents the DFrWT wavelet coefficients; N is the total DFrWT coefficients obtained from

a block, and E [t ] signifies the expected value of the quantity t . In statistics, skewness is the measurement

of statistical data distribution, direction, and degree [19]. It is also a numerical feature of the statistical data

asymmetry degree. Kurtosis, also called the coefficients of kurtosis, indicates the feature number of peak values

for the probability density distribution curve at the average value. Simply speaking, kurtosis reflects the tail

thickness.

3.4. Lexicographical sorting

It is desired to compare all the feature vectors to detect similar ones. However, this process leads to compu-

tational overhead due to the large number of feature vectors. A feasible solution to this problem is to sort the

vectors lexicographically followed by their comparison with their close neighbors. It is presumed that the repli-

cated regions would have similar features, and thus there is a high possibility of having corresponding feature

vectors be very close. Therefore, in our proposed scheme, we have applied lexicographical sorting.

3.5. Block matching

This step involves the matching of feature vectors to find the similar blocks. For this, Euclidean distance (Ed)

is calculated between each possible feature vector pair using Eq. (12).

Ed =

√√√√ n∑
i=1

(ai− bi)2 (12)

Here, a and b represent the two feature vectors that are to be compared and n (=14 in our implementation)

is the length of a feature vector. The vectors a and b are assumed to be similar if their corresponding absolute

value of Ed is less than a threshold T . T is the threshold value used in the block matching step of the CMFD

algorithm. Nanda et al. [20] found that it is a great challenge to select the most appropriate threshold value

in the block feature matching in the forgery detection step. The choice of the threshold value also varies with

characteristics of the input stage such as its size.

The proposed algorithm selected threshold values (T ) ranging between 0 and 1, which changes with

image size. The idea to take this range was taken from Lynch et al. [21] for CMFD. It was stated in [22] that

the choice of threshold also depends on the block size, minimum Euclidean distance, and individual feature

parameters.

3.6. Block filtering

The block filtering step plays a significant role in removing false positives, if any, from the matched blocks

obtained from the block matching step. These false positives usually result from the smooth regions present in
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the test image. For this, a shift vector (Sv) is calculated between two matched blocks using Eq. (13):

Sv = (du, dv) = (ui− uj, vi− vj), (13)

where (ui , vi) and (uj , vj) represent the upper left corner pixels of the matched block pair. Now the

normalization of shift vector Sv is done. If du < 0, then Sv = −Sv ; if du = 0 and dv < 0, then Sv = −Sv .

Then the shift vector length (SL) is calculated. If SL is less than a threshold, NS , then the corresponding

matched block pair is removed. It was also considered in wavelet-based CMF detection in 2012 [23] that a shift

vector whose lengths are less than the threshold will be removed. The value of the threshold will be adapted

for image size. It was suggested in 2014 [24] that in block-based CMFD, the adaptive threshold can be adjusted

proportional to the standard deviation (SD) of the pair block’s intensity.

Based on these two facts, the proposed algorithm also used the SD as a feature vector (see Table 1) and

hence the threshold for each image is calculated from the SD. In the proposed algorithm, the NS range is 20–30

for the CASIA database with differently sized images.

Further, grouping of the rest of the block pairs is done on the basis of their respective shift vector

lengths. A group containing fewer than Ng matched blocks is removed. This is done to remove very small

detected similar regions, which are meaningless.

The output of this step gives the detected replicated regions. A detection map is created to mark all the

similar regions. Figure 4 gives the detailed flowchart of the proposed CMFD scheme.

4. Experimental results and discussion

4.1. Experimental method and procedure

To observe the performance of the proposed algorithm, the Columbia Image Splicing Detection Evaluation

Dataset [25] has been used. It contains the natural grayscale images of dimensions 128 × 128 pixels in the

BMP format. The parameters in the proposed implementation were set as l = 2,NS =24, and Ng= 12. The

100 images from the dataset were tampered with in a random manner and used for training to get the threshold

T .

The performance characteristics used for the examination and analysis of the proposed method are

precision and recall which are determined as in Eqs. (14) and (15), respectively.

precision =
FR ∩DR

DR
(14)

recall =
FR ∩DR

FR
(15)

Here, FR is the forged region and DR is the detected region.

4.2. Effect of variation in block size

The effect of changes in the values of block size, d × d , has been studied. For this, the parameters used are

hit rate (Hr) and false alarm rate (Fr). Hr is defined as the ratio of forged images that are detected as forged

with respect to total number of forged images. Fr is defined as the ratio of original images that are detected as

forged to the total number of original images. A total of 100 images were taken from the dataset, which were

1268



LAMBA et al./Turk J Elec Eng & Comp Sci

 

Test Image  

Is S L< NS? 

RGB to Gray-scale conversion 

Feature Extraction using DFrWT 

Lexicographical Sorting 

Compute Euclidean distance (Ed) between 

each feature vector 

Is |Ed| <T? 

Compute shift vector length (SL) 

Is Image Gray-

Scale? 

Group block pairs based on similar shift 

vector length 

Is no. of blocks in a 

group< NS 

Detection Result 

Ignore these feature vectors 

Y 

N

N 

Y 

Y 

N 

Y 

Figure 4. Flowchart of the proposed CMFD scheme.

tampered with in a randomized manner. Figure 5 shows the ROC curve with four block sizes, 4 × 4, 8 × 8,

16 × 16, and 32 × 32, on Hr and Fr.
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Figure 5. ROC curve for variation in block size.

The graph clearly indicates that there is a trade-off among the parameters and 16 × 16 block size provides

satisfactory performance. For all the proposed experiments, we thus set d= 16.

4.3. Visual results

To test the efficiency and effectiveness of our technique, we have carried out four types of experiments.

Experiment 1 A random square region was copied from one section and pasted over some other section in the

image. Four images are used for each of the four potential locations in replicated areas: vertical, horizontal,

antidiagonal, and diagonal. Corresponding detection results are presented in Figure 6.

The topmost row shows the original images, the manipulated images are represented in the middle row,

and the result images are shown in the bottom-most row. The proposed technique is evaluated against the

methods in [16,21,26–29] in Table 2. For this, a total of 50 images were used from the dataset to compute

average precision and average recall. The results clearly depict that the proposed system has better detection

accuracy than existing systems.

Table 2. Comparison of proposed and existing CMFD algorithms.

Methods Precision (%) Recall (%)

Huang et al. (2011) [26] 99 99

Singh and Tripathi (2011) [27] 80 75

Lynch et al. (2013) [21] 97 95

Fadl et al. (2014) [28] 99 98

Mangat and Kaur (2016) [29] 95 74

Zhong et al. (2017) [16] 90.1 90.8

Proposed scheme 99 100

State-of-the-art methods used for comparison in Table 2 have the following settings: all the methods

used the block-based approach for CMFD. Performance parameters evaluated by all algorithms are same, i.e.

precision and recall. Most of the methods used the same dataset for CMFD. From the state-of-the-art methods

today in the CMFD field, it is a great challenge to find algorithms with the same approach using the same

benchmark dataset [15] and same performance parameters [17]. Therefore, the authors have tried to select

comparison methods with the proposed one.
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a  

b  

c  

Figure 6. CMFD results for vertical, horizontal, antidiagonal, and diagonal positions of replicated areas: (a) original

images, (b) manipulated images, (c) detection results.

Experiment 2 A certain section is copied from an image and pasted multiple times over the nonoverlapping

space of the same image. Figure 7 gives the detection results of the proposed system. The first row depicts the

original images, the middle row represents the forged images, and the corresponding detection results of our

algorithm are indicated in the last row.

Experiment 3 We cloned an irregular region and pasted it within the image. This experiment is used to

examine the performance of our method in the case of irregular similar regions. The detection results of this

experiment are shown in Figure 8. The first column indicates original images, the second column shows the

forged images, and the third column represents the detection results by our technique.

Experiment 4 The manipulated images along with the corresponding original images were distorted by Gaus-

sian blurring and lossy compression. For this experiment, 100 original images were forged by copying a certain
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a

b  

c  

Figure 7. CMFD results in the case of multiple replicated regions: (a) original images, (b) manipulated images, (c)

detection results.

irregular region and pasting it over some other area in a random manner. Different postprocessing operations

used for distortion are JPEG compression with different quality factors, Qf (Qf = 70, 90), and Gaussian blur-

ring with 3 × 3 window size and standard deviation σ = 1. In Table 3, the average precision for each of the

above mentioned postprocessing operations is depicted. For this experiment, the proposed scheme is compared to

the existing method in [20].

The comparison results indicate that our scheme performs better than the existing method even when

images are maligned with the Gaussian blurring and JPEG compression.

Table 3. Precision for various postprocessing operations.

Methods JPEG (Qf =90) JPEG (Qf =70) Gaussian blurring

Fadl et al. [28] 70% 60% 95%

Proposed scheme 76% 62% 99%
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a  

b  

c  

Figure 8. CMFD results in the case of irregular replicated region: (a) original images, (b) manipulated images, (c)

detection results.

Experiment 5 The proposed algorithm is also implemented on the CASIA v1. 0 and the CASIA 2 datasets.

The CASIA v1. 0 dataset contains 800 authentic and 921 spliced color images of size 384 × 256 pixels with

JPEG format. Compared to CASIA v1. 0, CASIA v2. 0 is larger in size and has more realistic and challenging

fake images by using postprocessing of tampered regions. It contains 7491 authentic and 5123 tampered color

images. The images in CASIA v2. 0 are different in size, varying from 240 × 160 to 900 × 600 pixels. Figure 9

shows the simulation results of the proposed algorithm. Analysis of the simulation results and Table 4 (accuracy

comparison of the proposed algorithm with the existing) shows that the proposed algorithm gives better results in

comparison with existing methods [30,31].

The execution time to detect the CMF depends on the size of the image as well as the RAM memory of

the system. The proposed algorithm takes 141.23 s (for one image) with MATLAB 2014a on a system having

an Intel Xeon 64-bit processor and 8 GB RAM.
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Figure 9. CMFD results with CASIA v1. 0 and v2. 0 datasets: (a) original images, (b) manipulated images,

(c) detection results.

Table 4. Accuracy comparison of the proposed method with existing methods.

Methods CASIA v1. 0 CASIA v2. 0

Proposed 99.65 99.01

Rao and Ni [30] 98.04 97.83

Muhammad et al. [31] 94.89 97.33

4.4. Computational complexity

It has been observed from the state-of-the-art methods that wavelet transform-based algorithms for CMFD

reduced the time complexity [32,33]. The proposed algorithm is based on discrete fractional wavelet transform

for CMFD.

Basically, in CMFD, computational complexity depends on selection of the block size (small block size

will increase computational complexity and large block size will decrease the complexity) and the number of

feature vectors. The proposed algorithm has used 16 × 16 block size and 14 feature vectors and its comparison

with existing methods [34–36] is given in Table 5.

5. Conclusion and future work

In this paper, an efficient and effective CMFD algorithm using discrete fractional wavelet transform has been

presented. The proposed technique is capable of detecting similar regions without any prior information about

the images as compared to the prior approaches. The method can successfully detect multiple copies of

duplicated regions. Experimental results demonstrate that our scheme can identify irregular, similar sections

of an image and performs considerably better even under the effects of Gaussian blurring as well as JPEG

compression. Under Gaussian blurring, the proposed method can achieve 99% precision. In case of JPEG

compression with Qf = 70 and 90, 62% and 76% precision have been attained, respectively. However, DFrWT

coefficients do not exhibit the rotational invariance property. Hence, this method has a limitation in that it is

unsuitable for rotational attacks. The performance parameters with 99% precision and 100% recall proved that
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Table 5. Comparison of computational complexity.

Method
Feature

Block size
Computation

length complexity

Zernike moments
12 24 × 24

Approx. 50 s to

(2010) [34] process one image

Circular block with
4 8 × 8 1.5 s to 2.9 min

DCT (2012) [35]

Exemplar-based

- 5 × 5

112 s to 191 s

inpainting method depending on

(2013) [36] image size

Proposed method 14 16 × 16

140 to 0 s

depending on

image size

the proposed algorithm will be very helpful for researchers to detect blind copy-move forgery. In the future, the

efficacy of the proposed algorithm will be checked for other forgery detection techniques like splicing (in which

the forged part belongs to another image).
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