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Abstract: This study introduces seven topological features that characterize attractor dynamic of nonlinear and chaotic

trajectories in a phase space. These features quantify volume, occupied space, nonuniformity, and curvature of trajectory.

The features are evaluated as initial point invariant measures by a practical approach, which means that a feature is only

sensitive to dynamic changes. The Lorenz and Rossler system trajectories are employed in this evaluation. Moreover, the

proposed features are used in a real world application, i.e. epileptic seizure electroencephalogram signal classification.

As the result shows, these features are efficient in this task in comparison with others studies that used the same dataset

and evaluation method.

Key words: Nonlinear attractor, feature extraction, topological feature, electroencephalogram, invariant measure,

classification

1. Introduction

Signal analysis in time domain and trajectory analysis in a phase space can lead to a better understanding of

the dynamic of systems. Trajectory analysis can give us valuable information about an attractor and so on

about systems and their behavior. Many studies propose some quantifiers that try to describe and characterize

the dynamic and behavior of signals and systems. For example, approximate [1] and sample [2] entropies try

to quantify the complexity of trajectory in a phase space. In many application of nonlinear analysis, the phase

space of a system is not simply achievable. Therefore, trajectory is embedded from time series into estimated

phase space. There are many features and much information that can be extracted from trajectory.

In real world applications, these features help to classify or identify systems and trace their changes.

For example, fractal dimensions focus on occupying space capacity in detail [3] and measure the space-filling

capacity of patterns that illustrate how a fractal scales differently from the space it is embedded in [4], such

as box counting dimension [5], information dimension [6], correlation dimension [7], and Higuchi dimension

[8]. Lyapunov exponent quantifies the rate of separation of infinitesimally close trajectories [9]. Volumetric

behavior features try to characterize stretch, folding, and occupied space of trajectory [10]. Recurrence plot

[11] and its quantification, named recurrence quantification analysis (RQA) [12], quantify some features that
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are related to recurrent behavior of trajectory. Katz feature [13] characterizes the topology of trajectory in a

phase space by comparing the relationship between the length of trajectory and diagonals. All of these features

quantify characteristic properties of trajectories and their attractors in a phase space and can be used in many

applications in engineering, physics, and finance [14–18].

This study proposes some topological quantifiers to describe an attractor from trajectory behavior in a

phase space. All of these quantifiers are evaluated as initial point invariant measures and are used in a real

world application. The rest of the paper is organized as follows. The proposed method is described in Section

2. Section 3 is devoted to evaluating and discussing the proposed method by comparing two nonlinear systems

with different parameters and a real world application. Finally, our conclusions are stated in Section 4.

2. Materials and methods

The proposed topological quantifiers could be extracted from trajectory x⃗(t) in d-dimensional phase space

(Eq. (1)). In practice, all of the d states of the phase space are not accessible and just a single discrete time

measurement x(t) is available [19].

x⃗(t) = [x1(t), x2(t), ... , xd(t)] (1)

Takens’ method [20] is the most frequently used for embedding time series x(t), into d-dimensional phase space

by using Eq. (2).

x⃗ (t) = [x (t) , x (t− τ) , ... , x (t− (d− 1) τ)] (2)

where d is embedding dimension and τ is delay, estimated by using the false nearest-neighbors algorithm [21]

and the mutual information [22], respectively.

By considering access to trajectory x⃗(t) in the phase space, the proposed quantifiers are introduced in

the next section.

2.1. Topological quantifiers

In this section we introduce seven features that describe attractor topology using trajectory vector states. Figure

1 shows Lorenz trajectory (Eq. (3)) in a 3-dimensional phase space. This trajectory is bounded by a convex

hull volume and the first feature is the volume of convex hull V (x⃗(t)) (Eq. (4)).

Lorenz system :


dX
dt = σ(Y − Z)

dY
dt = rX − Y −XZ

dZ
dt = XY − βZ

(3)

V (x⃗ (t)) = V ol (Conv (x⃗ (t))) , (4)

where Conv (x) is convex hull of all points in x and V ol (v) is the volume that is occupied by v .

The next four features quantify occupied space and changes in occupied space by considering distance

of all vector states in x⃗ (t) to a reference point C . These four features quantify shape and complexity of the

attractor using Eqs. (5) to (10).

Occupied space1 : OC1 =
1

N

N∑
n=1

∥ x⃗ (n)− C1∥ (5)
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Figure 1. Trajectory of Lorenz system in σ = 16, r = 50, and β = 4 (left). Convex hull of the Lorenz trajectory

(center) and global recurrence plot (right). Center of gravity of convex hull (right).

Non uniformity 1 : NU1 =

√√√√ 1

N

N∑
n=1

∥∥ x⃗ (n)− C1∥ − OC1∥2 (6)

Center of trajectory1 : C1 =
1

N

N∑
n=1

x⃗ (n) (7)

Occupied space2 : OC2 =
1

N

N∑
n=1

∥ x⃗ (n)− C2∥ (8)

Non uniformity 2 : NU2 =

√√√√ 1

N

N∑
n=1

∥∥ x⃗ (n)− C2∥ − OC2∥2 (9)

Center of gravity : C1 =

∑
l(

1
d+1

d∑
i=0

x∗l
i vl

V
(10)

where N is the number of state vectors, C1 is center of state vectors, d is dimension of phase space, x∗ is the

set of simplices forming the Delaunay triangulation of convex hull, l is the number of triangles in the set of

Delaunay triangulation, and v is volume of each triangle.

OC1 and OC2 quantify the occupying space feature of trajectory by averaging distances between all of

the state vectors and a reference point. OC1 uses center of trajectory (Eq. (7)) as the reference point C1 .

OC2 uses center of gravity (center of mass) of the convex hull as the reference point C2 . To calculate center of

gravity the convex hull must be divided into a set of Delaunay triangulation. Figure 2 shows a simple example

of steps of calculating center of gravity using Delaunay triangulation. After dividing the convex hull into set of

Delaunay triangulation, the volume (or surface or hyper-volume) and center of each subset must be calculated.

Center of gravity is the average of the center of all subsets with the weight of their volume.

1331



LASHKARI et al./Turk J Elec Eng & Comp Sci

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
a)

0 0 .5 1

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4
b)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
c)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
d)

C

S=0.35

c1

S=0. 4

c2

c3

S=0.56

Figure 2. Simple 2-D example of calculating center of gravity. a) A 2-D convex hull. b) Delaunay triangulation of

convex hull. c) Center and surface of Delaunay triangulation. d) Center of gravity by weighted average of center of

Delaunay triangulation.

Nonuniformity quantifiers NU1 and NU2 quantify the nonspherical feature of the attractor. These

quantifiers characterize variation of distance of state vectors to a reference point.

To quantify the complexity of behavior of trajectory and topology of its attractor, we focus on the

curvature of trajectory (Eq. (11)).

⃗Curv (x⃗ (t)) = x⃗ (t+ 1)− 2x⃗ (t) + x⃗ (t− 1) (11)

The curvature vector Curv (x⃗ (t)) represents how mush trajectory in specified state vector x⃗ (t) is straight or

curved and is curved in which direction. Figure 3 shows the curvature vector of the Lorenz trajectory in 3-D

phase space. Thus, two other quantifiers are defined by using curvature values of trajectory as Eqs. (12) and

(13).

Average of curvaturemagnitude : AC =
1

N − 2

N−1∑
n=2

∥∥∥ ⃗Curv (x⃗ (t))
∥∥∥ (12)
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Figure 3. The sample of Lorenz trajectory in 3-dimension phase space (left) and its curvature vectors (right).

non uniformity3 : NU3 =

√√√√ 1

N − 2

N−1∑
n=2

∥∥∥∥∥∥ ⃗Curv (x⃗ (t))
∥∥∥− AC

∥∥∥2 (13)

AC value shows the average curvature magnitude and NU3 shows variation of curvature magnitude. A small

value of AC represents that the attractor has small complexity and is flat. On the other hand, a large value of

NU3 represents that the attractor has more twisting and is more complex.

A quantifier measure in nonlinear and chaotic dynamic analysis should have at least two important

properties as follows:

a) The quantifier measure must be sensitive to dynamic changes.

b) The quantifier measure must be invariant to initial point changes.

Hence, in the next section these seven quantifier measures are evaluated by trajectories of two nonlinear systems,

Lorenz and Rossler, in chaotic parameters to testing these two properties. In addition, to present the potential
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ability of the proposed features, these features are employed in a real world application, electroencephalogram

(EEG) signal classification.

2.2. Evaluation and application

The attractor topology of a nonlinear or chaotic system is dependent on the dynamic of the system. Therefore,

a topological quantifier must be sensitive to dynamic and not sensitive to trajectory detailed behavior. We

use two nonlinear systems, Lorenz (Eq. (3)) and Rossler [23] (Eq. (14)), to evaluate the proposed topological

quantifiers as initial point invariant measures. An efficient quantifier with this evaluation must have a few

changes by changing initial point in the same system parameters and significant changes by changing system

parameters.

ossler system :


dX
dt = −Y − Z

dY
dt = X + aY

dZ
dt = b+ Z(X − c)

(14)

Figure 4 shows Lorenz trajectory in the phase space in σ = 16, β = 4, and different r parameter and Figure

5 shows Rossler trajectory in a = 0.2, b = 0.4, and different c parameter. Ten trajectories for each system in

random initial points and different parameters are generated for evaluation. For each generated trajectory all

of the seven quantifiers are extracted. The t-test method is used to evaluate the proposed quantifiers as initial

point invariant measures and the results are presented in section 3.

2.2.1. EEG signal classification

Based on some studies by the community of neurophysiology researchers an electroencephalogram (EEG) signal

is a multivariate time series that stems from a highly nonlinear and multidimensional system [24]. On the other

hand, since epilepsy, which is among the most common neurological disturbances, is a condition related to the

electrical activity of the brain, it can be studied by analyzing EEG signals [25]. In order to evaluate the proposed

method, seven topological quantifiers are employed to classify EEG signals in epileptic seizure analysis as a real

world application. EEG signals used in this study are single channel. Thus, these signals must be embedded to

the phase space by using Takens’ method (Eq. (2)). Takens’ method parameters d and τ are estimated with

the false nearest-neighbors algorithm [21] and the mutual information [22], respectively. After embedding EEG

signals to the phase space, seven proposed features are extracted and these features are used to train and test a

multiclass model for support vector machines (SVMs) [26] with Gaussian kernel function and ?? = 0.5, where

?? is a parameter for one-class learning. In the test procedure, 10-fold cross validation routine and prediction

accuracy of the trained models are evaluated.

2.2.2. Dataset

The EEG dataset used in this study is publicly available from the University of Bonn, Germany [27]. The

complete database contained five sets denoted as A–E (Table 1), with 100 samples of 23.6-s duration. The

signals were recorded with the same 128-channel amplifier system and digitized at 173.61 samples per second.

Sets C and D denoted as interictal data are recorded during the patients in pre-ictal. Set E, which is called

ictal data, contains signals recorded during the epileptic seizure.

In different studies some combinations of classification are considered. Three cases of these combinations
are focused on in this study as shown in Table 2.
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Figure 4. Trajectories of the Lorenz system in different parameters.

Table 1. Description of five data sets.

Subjects
Five healthy volunteers Five epileptic patients

Set A Set B Set C Set D Set E

Patient state Eyes open Eyes closed Preictal Preictal Ictal

Electrode types Surface Surface Intracranial Intracranial Intracranial

Table 2. Description of three considered cases.

Cases Sets Description

Cases 1 Set A, B versus Set C, D versus Set E Healthy, interictal and ictal

Cases 2 Set A, B, C, D versus Set E Nonseizure and seizure

Cases 3 Set D versus Set E Interictal and ictal

There are 100 samples for each class and we use 10-fold cross validation. Thus, in cases 1 and 2 there
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Figure 5. Trajectories of the Rossler system in different parameters.

are 450 samples for training and 50 samples for testing in each repetition. In case 3 there are 180 samples for

training and 20 samples for testing in each repetition.

3. Results and discussion

A practical evaluation is used to test the proposed quantifiers as initial point invariant measures. Figures 6 and

7 show box-plots of extracted features from Lorenz and Rossler trajectories, respectively. Each box describes

the distribution of specified quantifier values for the mentioned parameters and ten times random initial points.

With this representation, a quantifier is an invariant measure if the boxes in related the subfigure are significantly

separable from each other. This significant separability is tested by two-sample t-test method. The two-sample

t-test returns a test decision for the null hypothesis that two distributions come from independent random

samples from normal distributions with equal means and equal but unknown variances. This test needs two

distributions to come from normal distribution. Hence, firstly the normality of two distributions must be tested.

Table 3 shows the result of the Jarque–Bera test, which is a test for the null hypothesis that the data comes from

a normal distribution with an unknown mean and variance [28]. Table 3 show the P-values of the Jarque–Bera

test for each feature value in each parameter. A P-value > 0.05 shows that the feature values come from normal
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distribution. As it can be seen in most cases P-values are larger than 0.05 and so the t-test can be applied

to features values. Figures 8 and 9 present results of the two-sample t-test at the 5% significance level. Each

black pixel shows feature values that cause pixels to be independent. This means two concerned boxes are

significantly separated. V and OC1 in both Lorenz an Rossler systems are efficiently sensitive to parameters

changes and not sensitive to initial points changes. The other five quantifiers are mostly successful in detecting

parameter changes. The whole results in this practical evaluation show that the proposed features can be used

as invariant measures to quantify dynamical behavior of nonlinear systems. Therefore, it can be used in real

world application of nonlinear signal analysis.
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Figure 6. Box plot of the seven proposed feature values for ten time random initial points and different parameters

extracted from Lorenz trajectories.

3.1. Results of EEG signal classification

The EEG signals in the dataset used are single channel. Thus, to use the proposed method Takens’ method with

help of the false nearest-neighbors algorithm and the mutual information is used for EEG signal embedding.

The false nearest-neighbors algorithm estimates the dimension of d = 6 and the mutual information method

estimates delay of τ = 5. After extracting all proposed features from embedded signals and using multiclass

SVM classifier for all three cases, the results of 10-fold cross-validation are presented. Table 4 shows the results

of the proposed method in comparison with some other studies that use the same dataset, same cases, and same

validation method. The best result in each case is bolded and it can be seen that in two cases, cases 2 and 3,

the proposed method has the best accuracy. Case 1 is epileptic seizure prediction. In this case, the proposed
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Figure 7. Box plot of the seven proposed feature values for ten time random initial points and different parameters

extracted from Rossler trajectories.

Table 3. The P-values of features values for normality test. The bold values are greater than 0.05, which means feature

values come from normal distribution.

Lorenz Rossler

V 0.50 0.50 0.01 0.30 0.13 0.11 0.28 0.04 0.08 0.02

OC1 0.27 0.50 0.50 0.18 0.20 0.42 0.46 0.50 0.50 0.14

NU1 0.42 0.21 0.07 0.005 0.50 0.50 0.50 0.22 0.36 0.06

OC2 0.24 0.50 0.21 0.39 0.50 0.15 0.42 0.12 0.39 0.02

NU2 0.003 0.50 0.01 0.37 0.50 0.50 0.50 0.40 0.15 0.50

AC 0.23 0.50 0.27 0.41 0.50 0.14 0.40 0.10 0.28 0.01

NU3 0.50 0.07 0.35 0.05 0.50 0.33 0.50 0.22 0.33 0.26

method archives accuracy of 93%, which is greater than that of two of the three other studies. In two other

cases that are epileptic seizure detection, the accuracy of the proposed method is greater than that of other

studies. However, these evaluations are performed to show the potential applicability of the proposed features

in a real world application, but also it can be seen how these features with help of an efficient classifier can

achieve a good result.
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The black color shows that the feature values for pair parameter are independent.
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Figure 9. The result of t-test between all pair of parameters for each of the features extracted from Rossler trajectories.

The black color shows that the feature values for pair parameter are independent.
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Table 4. Performance comparison with some existing methods that use the same data sets.

Authors/method Year Accuracy (%)

Case 1 AB/CD/E

Alam et al. [29] 2013 80.0

Riaz et al. [30] 2016 82.5

Niknazar et al. [31] 2013 98.67

Acharya et al. [32] 2012 99.0

Das et al. [33] 2016 96.28

The proposed method 93

Case 2 ABCD/E

Zhu et al. [34] 2014 95.4

Riaz et al. [30] 2016 95.4

Kumar et al. [35] 2014 97.38

The proposed method 98.2

Case 3 D/E

Zhu et al. [36] 2014 95.4

Riaz et al. [30] 2016 95.6

Kumar et al. [35] 2013 97.38

Alam et al. [29] 2013 100

The proposed method 100

4. Conclusion

This study introduces a topological features extraction method for nonlinear trajectories and attractors analysis.

The proposed features quantify the topological dynamic of trajectories in a phase space and can be used in

studies about changing dynamic of an attractor. Moreover, these features can be used in signal classification

applications that would be applied on nonlinear and chaotic signals. The seven proposed features are evaluated

with two approaches of a practical and real world application. The result shows the ability of the features as

initial point quantifiers and a feature extraction method. These quantifiers consider some topological properties

of trajectories in a phase space that are new in the literature. As the results show, the proposed features can

significantly trace changes in dynamic. On the other hand, each of the proposed features is not enough to trace

the changes in dynamic and should be considered alongside other quantifiers to increase efficiency.

In future studies, the method can be applied to some other types of signals in different classification

tasks in electrical engineering, financial time series, biological signals, and any others concerning nonlinear and

chaotic signals.
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