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Abstract: It has been observed that allowing source code changes to be made only after source code reviews has a

positive impact on the quality and lifetime of the resulting software. In some cases, code review processes take quite a

long time and this negatively affects software development costs and employee job satisfaction. Establishing mechanisms

that predict what kind of feedback reviewers will provide and what revisions they will ask for can reduce the number

of times this problem occurs. Thanks to such mechanisms, developers can improve the maturity of their code change

requests before the review process starts. In this way, when they start the review, the process may advance quickly and

more smoothly. In this study, as a first step towards this goal, we developed a mechanism to identify whether a change

proposal would require any revisions or not for approval.
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1. Introduction

Source code reviews are one of the important software development activities. They help with the early

discovery of bugs, improve the readability and maintenance of source code, and have a positive impact on

the quality and lifetime of software systems [1–4]. Today, it is widely common that in an open or closed source

software project, any software change request (CR) is required to go through a code review process before

being merged into the source code repository. In terms of how the team members collaborate, there are two

ways of conducting code reviews [4]. The first one is called a synchronous review, which requires the author

and inspectors to gather in a room and go through a more formal review process. The second one is called

an asynchronous or “meetingless” inspection, and it does not require reviewers and inspectors to participate

in the review process at the same time. As shown by Perpich et al. [5], in the past, asynchronous reviews

were more cost-effective and at least as quality-effective as synchronous reviews. Today, when we examine

popular open source software (OSS) code repository hosting sites such as github.com, bitbucket.com, and

gitlab.com, we see that this is the only review model supported. This is not surprising, because OSS projects

consist of temporally and geographically distributed contributors, and the asynchronous model allows them to

collaborate more effectively. The OSS community has incorporated peer code review for quality assurance, and

developers utilize dedicated code review tools such as Gerrit (https://www.gerritcodereview.com/), Codestriker

(http://codestriker.sourceforge.net), and ReviewBoard (http://www.reviewboard.org) [6]. Similar observations

have been reported in the literature for not only OSS but also closed source commercial software [7].

Despite the benefits of peer code reviews, when asynchronous reviews take a long time, they increase
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the software development time and can lead developers to become disgruntled. According to a study on the

Linux kernel, which is an OSS project with more than 1000 contributors, only 30% of submitted patches (i.e.

CRs) were accepted and a typical patch review can take weeks [8]. Especially for OSS projects, developers are

physically far away from each other and often live in different time zones. In such situations, receiving even

the first feedback can take several days. Anticipating how reviewers react to a CR, improving the CR based

on this anticipation, and starting the official review process afterwards can shorten the duration of the review

process. One simple strategy would be breaking up a big change into smaller consecutive proposals so that

reviewers have less information to process. However, developers can only effectively apply such strategies after

gaining considerable job experience and working on a project for a reasonable amount of time because a good

knowledge of the team and project culture is important beforehand. As a result, having a tool that predicts how

reviewers will react to a CR can help developers to improve their proposals so that they have a higher chance

of going through a successful review process. The duration of the review processes can therefore be shortened,

and the costs they add to the software development process can be reduced. In addition, being able to receive

approvals with a lower number of review iterations can help developers to accomplish the same amount of work

in less time, which can have a positive effect on developers’ job satisfaction.

In this study, as a first step towards building a tool to help developers pass a code review, we seek answers

to the following research question: can we identify whether a CR requires revisions or not to be approved?

If we can answer this question, we can stop a premature CR and allow the owner to revise the change. In

order to be practically useful, in addition to providing the author with a simple yes/no answer, it is necessary

to provide an explanation of why a CR would need revisions. This study does not yet reach the end goal of

providing actionable feedback, but it does contribute to the state of the art in this direction.

2. Background and related work

2.1. Modern code review

In recent years, a more lightweight and less formal code review process has been adopted by many open source

(e.g., Android, LibreOffice, and Eclipse) and proprietary (Google, Cisco, and Microsoft) projects [7]. Next we

describe the Gerrit tool, a web-based standalone code review tool, and the typical review process driven by

it. Figure 1 shows the Gerrit interface of a CR. The interface shows many properties of the CR such as the

developer proposing the change (the owner), the developers reviewing the proposal (the reviewers), the name

of the modified files, the bug that caused the change, the project and the branch of the repository the modified

files belong to, the date, and a short summary of the modifications.

Figure 2 shows how Gerrit presents the modifications in each file in the CR as edit operations. To improve

the comprehension of the changes proposed, the original and the updated text are displayed side by side using

the result of a text edit distance algorithm [9,10]. Some visual effects are also applied to the side-by-side view to

facilitate comprehension. For example, newly added lines are displayed with a green background. The message

thread between the owner and the reviewers regarding a code block is shown on top of the related code block

with a yellow background. The use of a diff-marked code listing, the use of visual effects, and the annotated

source code blocks were first proposed in 1990s [5], and they are common among the available code review tools

used today. A CR goes through three main states.

1) Open state: the owner creates a change, adds some reviewers to it, and sends it for review. In this state,

the CR is accessible to any reviewer.
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Figure 1. Screenshot from Gerrit (source: https://goo.gl/Qh7wuc).

2) Review state: reviewers begin to annotate proposed modifications with revision requests (see Figure 2).

The owner then responds to each request with objections or with an updated CR with appropriate new

code modifications. The CR stays in this state, while a back-and-forth communication continues between

the owner and the reviewers until the reviewers give approval.

3) Decision state: once all requests from the reviewers are incorporated, the reviewers approve the CR. The

CR is then merged into the code base. If a reviewer rejects a CR, then the CR is labeled as “abandoned”.

The verification and testing of the CR is also performed in this state and the positive outcome is a

precondition to the approval.

2.2. Related work

Compared to all the related studies we describe in this section, we focus on a new problem, which is predicting

whether or not a CR would be subjected to a revision request by any of its reviewers. The closest related body

of work to this problem is predicting patch acceptance (see below). However, there is an important difference.

For our problem, we need to differentiate between a patch that is accepted after one or more revisions and a

patch that is accepted without any revisions.
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Figure 2. Screenshot from Gerrit showing how original and proposed versions of a single file are displayed side by side

(source: https://goo.gl/3MGPKs).

2.2.1. Mining review histories

As the code review datasets became publicly available via OSS projects, several studies were conducted to extract

and analyze these datasets. Mukadam et al. [11] examined the general structure of the Android project’s code

review data hosted on Gerrit. Yang et al. [12] extended this work and brought together all of the data from

five open source projects under the same representation, which allowed the analysis of data from three different

aspects: people-related, process-related, and product-related. Hamasaki et al. [2] proposed an approach for

downloading and processing such datasets in addition to publishing the data they collected from three projects

(see http://sdlab.naist.jp/reviewmining/).

2.2.2. Exploratory studies

Several qualitative and quantitative exploratory studies were carried out to analyze various metrics to achieve

more insights into code review processes. Rigby et al. [3,13] explored more than 10 projects’ code review data

and looked for answers to process related questions such as how long reviews take, how many people are involved

in reviews, and how effective reviews are. In a follow-up study, Rigby et al. examined review policies of 25

OSS projects to understand how OSS peer review is different than traditional inspection. In order to better

understand reviewers’ behaviors during code reviews, Kitagawa et al. [14] attempted to define the code review

process using a game theoretical model. Bird et al. [1] developed a system that computed key metrics about

review processes so that development teams could improve their code review practices. Land et al. [15] studied

the effects of inspector training on inspection performance and showed that when developers were trained with

practice and working examples, their review performance improved the most. Gousios et al. [16] investigated

the effects of the acceptance of pull requests in the pull-based development model and found developers’ track

record and test coverage as the main influencers.
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2.2.3. Reviewer recommendations

In order to guide the reviewer selection process, Cunha et al. [17] investigated if there was a specific personality

type that correlated with someone’s ability to perform better code reviews. Ouni et al. [6] proposed a genetic

algorithm-driven approach to identify the most appropriate peer reviewers, and they achieved 59% precision

and 74% recall for accurately recommending reviewers. Kerzazi et al. [18] used social network analysis to map

developers’ editing, commenting, and reviewing activities into social networks by investigating if a sociotechnical

analysis could help identify reviewers. Thongtanunam et al. [19] proposed a file location-based code-reviewer

recommendation approach, leveraging the file path similarity of a previously reviewed file path to recommend

an appropriate code reviewer.

2.2.4. Helping reviewers

There are also related studies focusing on improving reviewers’ experience during code reviews. Zhang et al.

[20] developed a patch inspection tool to help reviewers more easily understand the impact of a code change.

Bosu et al. [21] studied the characteristics of useful reviews given by reviewers and developed a classification

model that can distinguish whether certain reviewer feedback would be helpful to the review process.

2.2.5. Predicting patch acceptance

Helping developers with the code review process by providing feedback about the review outcome has been

examined in a number of other studies. Jeong et al. [22] studied code review data from the Bugzilla system

(https://www.bugzilla.org/) and attempted to predict the review outcome. Hellendoorn et al. [23] used language

models to compute how similar a CR is to previous CRs. They then predicted whether the CR would be approved

based on the review outcomes of similar CRs. Weißgerber et al. [24] analyzed how frequently patches sent via

emails were accepted. A patch corresponds to a single revision in our study. They observed that only 40% of

the patches were accepted and that a smaller patch had a higher chance of being accepted. Jiang et al. [8]

conducted a study on the Linux kernel and examined the relationship between patch characteristics and patch

reviewing/integration time. They were able to build prediction models for patch acceptance with 73% precision

and recall.

3. Predicting patch revision

3.1. Dataset

We used the code review data produced during the development of the open source Android operating sys-

tem. The Android project uses the Gerrit tool for code reviews, and the review history is available online

(https://android-review.googlesource.com). The same data are also accessible via a REST-based (Representa-

tional State Transfer) API (application programming interface). The documentation for Gerrit’s REST API is

available online (https://gerrit-review.googlesource.com/Documentation/rest-api.html). The server responses

are in JavaScript Object Notation format.

Using this REST API, Hamasaki et al. [2] collected the Android code review data for 11,633 code CRs

made between 21 October 2008 and 27 January 2012. After applying basic transformations (e.g., the names of

the reviewers are removed from the data while a column showing the number of reviewers per review is added),

they made this dataset public to enable further research studies (https://goo.gl/jWJ5CA). We benefited from
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this dataset in our study. In the Hamasaki dataset, there are 35 features for each review instance. The relevant

features for our study can be categorized as follows:

1. Owner’s track record: the number of the owner’s CRs in the open/abandoned/merged/approved state;

the number of proposals for which this user acted as a reviewer; the total number of messages the user

produced during reviews.

2. Reviewers: the number of reviewers assigned to the review; the number of people that need to verify and

validate the review process.

3. Context: the project name the change belongs to; the repository branch the change is being made on.

4. Change summary: the number of added/removed/changed lines and the number of added/deleted/modified

files in the CR.

5. Result: whether the CR was approved or abandoned (CRs that were still open after a year were assumed

to be implicitly abandoned).

6. Revision count: the number of revisions that took place (note that we use the feature named “#PatchSets”

from the dataset for this and by the revision count we actually mean #PatchSets minus 1).

7. Methodology

In light of the terminology introduced above, we can formulate the problem needing to be worked on as follows:

when a CR is given, how successfully can we predict whether the revision count is zero or more?

For an abandoned CR, we treat its revision count as infinite. To help the discussion, we define two target

classes: RevNone (no revisions) and RevSome (some revisions). As a solution to this problem, we employ

three different strategies. Each approach uses a different set of features to predict whether a CR belongs to

RevNone or RevSome.

• STRAGETY ALL. The first strategy uses all of the features except Result and Revision count to build

a prediction model.

• STRATEGY CHANGE SUMMARY. In OSS projects, it is very common to have new contributors

who do not have much of a track record (category 1). Therefore, there are cases where it is necessary to use

a model that requires the owner to have a long history in the project. In addition, the change complexity

is perceived as the main influencer of how long a review takes [25]. Based on these two observations,

we wanted to examine how accurately we could make predictions if we only used Change summary (it

does not include any information other than the modifications to the code and it is likely to have some

correlation with change complexity.)

• STRATEGY CHANGE LABELS. The previous strategy uses very coarse-granular data to evalu-

ate the change complexity such as number of lines added and number of files modified. In this strat-

egy, we wanted to use finer-granular data to characterize the change complexity. We can say that

not all of the changes are equivalent in perceived complexity. For instance, a proposal adding a one-

line comment is more likely to be approved than a proposal adding a new parameter to a function.

This kind of finer-granular data is not available in the dataset we used. In order to compensate for

this, we benefited from a tool called ChangeDistiller, which was developed by Fluri et al. [26]. This
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tool is an OSS (https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home) and works with Java

programming language source code files. It runs a differencing algorithm on ‘before’ and ‘after’ ver-

sions of a file and summarizes each differing code block with one of 48 edit operation classes such as

COMMENT INSERT and PARAMETER INSERT. The complete list of all operation classes is available

online at https://goo.gl/KeCxce. For each CR, we downloaded all of the original and modified versions

of the files inside the CR and ran ChangeDistiller to produce operation labels to describe the change. We

then only used these labels to train our prediction model.

In our investigation, we used Weka (http://www.cs.waikato.ac.nz/ml/weka/), data mining software that sup-

ports many machine-learning algorithms. For all strategies, we first ran an automatic feature selection algorithm

and then employed several machine-learning algorithms on the selected features to train our prediction mod-

els. We measured the prediction success of various trained models with 10-fold cross-validation. We used the

following metrics for reporting the outcome performance:

• Accuracy: the number of CRs correctly categorized as RevNone or RevSome, divided by the total number

of CRs;

• Precision: the number of CRs correctly categorized as RevNone, divided by the number of all CRs

categorized as RevNone;

• Recall: the number of CRs correctly categorized as RevNone, divided by the number of all RevNone CRs.

When reporting our results in the next section, we use a ZeroR classifier as a baseline, which maps every CR to

the majority class. In our dataset, 60% of the CRs are in the RevSome class. Therefore, the baseline accuracy

for the first two strategies is 60%. For the last strategy, since ChangeDistiller only works on Java files, we had

to eliminate the CRs without any Java files. This eliminated more CRs that are in the RevSome class, and the

RevNone became the majority class at 65%. Therefore, the baseline accuracy rate for the third strategy was

around 65%.

4. Results and discussion

4.1. STRATEGY ALL

For this approach, the feature selection algorithms picked the following features as the most influential features

determining the target classes (we give the actual feature name in parentheses):

• The number of CRs submitted by the owner so far (Dev #submitted)

• The number of CRs merged by the owner so far (Dev #merges)

• The number of CRs verified by the owner so far (Dev #verified)

• The branch name the CR developed on (Branch)

• The number of reviewers (AssignedReviewers)

• The number of reviewers who are approvers (Approvers)

• The number of reviewers who are verifiers (Verifiers)
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We next experimented with several machine-learning algorithms to train prediction models including a Bayesian

network, SVM, AdaBoost, Bagging, and Random Forest. Among them, Random Forest performed the best.

Table 1 shows the prediction performance. We see that the prediction performance is much higher than the

ZeroR performance in all metrics. When we examined the classifications in detail, we concluded that the trained

model correlates with the target class, mainly based on two categories of features:

Table 1. STRATEGY ALL vs. ZeroR prediction performance.

Method Accuracy Precision Recall Class

Random Forest 94.59% 0.94/0.94 0.92/0.96 RevSome/RevNone

ZeroR 60% 0.60/0 1/0 RevSome/RevNone

1. The past code review statistics of the owner (the number of changes she made, the number of reviews she

conducted, etc.), i.e. owner experience: as the values of the experience-related features increase, a “no

revision” review is predicted (i.e. when the developer is more experienced, it is more likely for the change

to be approved without any feedback).

2. The number of people involved in the code review process (reviewers, verifiers, etc.): as the number of

people involved decreases, a “no revision” review is predicted (i.e. when a lower number of people is

involved, it is more likely for the change to be approved without any revisions).

According to the above, when an inexperienced developer proposes a CR that requires many reviewers’ partic-

ipation, the model is likely to predict that the CR needs to be subjected to a revision.

4.2. STRATEGY CHANGE SUMMARY

For this strategy, there are six features available in the dataset we can leverage, which are the number of

added/deleted/renamed files and the number of inserted/removed/modified lines. Similar to the previous

approach, we achieved the best performance with the Random Forest algorithm. Table 2 shows the prediction

success rate. The success rate can still be considered high, but it is nevertheless lower than what we achieved in

the previous section. This is expected since we use a lower number of features for prediction. When we examine

the results in detail, we observe that the prediction this time is correlated by the amount of the updated content.

In other words, when there are many updated files and lines in a CR, the CR is likely to be categorized as

RevSome.

Table 2. STRATEGY CHANGE SUMMARY vs. ZeroR prediction performance.

Method Accuracy Precision Recall Class

Random Forest 83% 0.78/0.86 0.79/0.85 RevSome/RevNone

ZeroR 60% 0.60/0 1/0 RevSome/RevNone

4.3. STRATEGY CHANGE LABELS

For this strategy, the following features were selected by the feature selection algorithm (in parentheses, we

provide the actual change-type name as defined by ChangeDistiller):
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• A statement is deleted (STATEMENT DELETE )

• A statement is inserted (STATEMENT INSERT )

• A statement is updated (STATEMENT UPDATE )

• A statement’s order is updated (STATEMENT ORDERING CHANGE )

• A statement’s parent changed (STATEMENT PARENT CHANGE )

• A condition inside an expression, such as an if-statement, for-statement, while-statement, do-statement,

changed (CONDITION EXPRESSION CHANGE )

• A comment is deleted (COMMENT DELETE )

• A comment is inserted (COMMENT INSERT )

• An else statement is added for an if statement (ALTERNATIVE PART INSERT )

• A field is added (ADDITIONAL OBJECT STATE )

• A method is added (ADDITIONAL FUNCTIONALITY ).

Table 3 shows the best performing prediction algorithm, AdaBoost, for this case. Unfortunately, it does

not perform any better than the ZeroR model. Based on our analysis, we think that there are several

reasons for this negative outcome. First, ChangeDistiller failed to assign any operation labels to many CRs.

This could be because of bugs in the ChangeDistiller implementation or because of its categorization being

limited. The ChangeDistiller source code is available as a GitHub repository, but we have not had the chance

to extensively debug it yet. Second, we suspect that ChangeDistiller’s edit operation labels do not have

enough context to characterize and summarize the changes at an appropriate granularity. For example, the

STATEMENT INSERT edit operation class does not reflect where in the code the statement is added, how

complex the statement itself is, what other code blocks depend on this statement, and what statements this

statement affects. Even though our attempt to benefit from ChangeDistiller failed, we still believe that our

intuition of utilizing the change complexity of a CR for revision prediction is promising. In the next section,

we discuss potential avenues for further exploration.

Table 3. STRATEGY CHANGE LABEL vs. ZeroR prediction performance.

Method Accuracy Precision Recall Class

Ada Boost 64.84% 0.53/0.65 0.04/0.98 RevSome/RevNone

ZeroR 64.61% 0/0.64 0/1 RevSome/RevNone

5. Conclusion and future work

Enforcing code reviews has a positive impact on the quality and lifetime of software systems. In some cases, code

reviews take a long amount of time to finish. This negatively affects developers’ job satisfaction and increases

software development costs. Predicting how reviewers react to a CR before the review process starts can help

developers to further develop the CR and help them to go through review processes more smoothly. As a first
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step towards this goal, we developed techniques to predict whether a CR would progress under revisions. The

first prediction techniques we developed were guided by how experienced the author of the proposal was and

the number of people involved in the review process. When we predicted using only the features related to the

changed content, we observed that the prediction was correlated mostly by how big the changed content was.

To make our prediction more sensitive to the changed content complexity, we labeled each CR with categories

of edit operations identified by a tool called ChangeDistiller and used these labels for prediction. However,

this approach did not perform as well as the first two. One potential avenue for future work is to improve

ChangeDistiller implementation so that it is able to label all CRs with change types. Another avenue that

can be explored is to incorporate ChangeDistiller’s change-type significance categorizations into the prediction

process. There are six “significance levels” as defined by ChangeDistiller: None, Low, Medium, High, and

Crucial. Each change type is associated with a single significance level, and significance levels seem to be

correlated with change complexity. For example, the deletion of a documentation code is considered to have no

significance (None), while updating where a class inherits from is considered to have Crucial significance. For

another direction, in order to represent change complexity, new features can be extracted from the proposed

code modifications using the results from the literature on software complexity metrics. For instance, if a

CR contains a new code block that has a high cyclomatic complexity, it may have a higher chance of being

subjected to a revision. Finally, accompanying revision predictions with mechanisms that can provide actionable

feedback to the proposal owner on the problematic code blocks that have a high probability of causing revisions

is important to improve the code review process from a contributor’s perspective.
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