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Abstract: Widespread research on activity recognition is becoming an imperative topic for improving the quality of

human health. The fast development of sensing technology has become a fundamental platform for researchers to

implement a system that could fulfill human needs. Due to privacy interests and low cost, wearable sensing technology is

used in numerous physical activity monitoring and recognition systems. While these systems have proved to be successful,

it is crucial to pay attention to the less relevant features to be classified. In such circumstances, it might happen that some

features are less meaningful for describing the activity. Less complex and easy to understand, feature ranking is gaining

a lot of attention in most feature dimension problems such as in bioinformatics and hyperspectral images. However, the

improvement of ranking features in activity recognition has not yet been achieved. On the other hand, an evolutionary

algorithm has proven its effectiveness in searching the best feature subsets. An exhaustive searching process of finding

an optimal parameter value is another challenge. Consequently, this paper proposes a ranking self-adaptive differential

evolution (rsaDE) feature selection algorithm. The proposed algorithm is capable of selecting the optimal feature subsets

while improving the recognition of acceleration activity using a minimum number of features. The experiments employed

real-world physical acceleration data sets: WISDM and PAMAP2. As a result, rsaDE performed better than the current

methods in terms of model performance and its efficiency in the context of random forest ensemble classifiers.
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1. Introduction

Sensing technology has become an imperative topic in security surveillance [1], human/computer interaction [2],

and activity recognition [3]. Activity recognition establishes the relations between machine learning, artificial

intelligence, ubiquitous computing, human/computer interaction, and psychology and sociology . Activity

recognition is successfully applied to a variety of populations, such as patients from weight control programs

and also for rehabilitation programs [5]. Unfortunately, it is problematic to manually self-record daily physical

activity. Thus, use of wearable sensors to monitor physical activity while exercising is receiving great attention.

The increase in healthy lifestyle awareness and physical concerns change the daily human routines. Consequently,

such physical activities are essential to improve the quality of life [6]. The performances of activity recognition

are measured in terms of its effectiveness and efficiency. The selections of features from acceleration sensor

data are considered to be challenging, which is interrelated with recognition accuracy. In such circumstances,
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some of the extracted features may be less relevant or unusable as well as redundant for portraying the activity

[7]. These features are considered less meaningful in the sense that they possibly can increase the incorrect

classification rate [8]. On the other hand, differential evolution (DE) is broadly employed to generate the feature

subsets [9]. However, a thorough process of finding an optimal parameter in traditional DE is exhausting [10].

Hence, self-adaptive parameter initialization is introduced to tackle this matter. Several contributions are

carried out in this paper. Features from the statistical and spectral frequency are introduced to improve the

learning capability of physical activity recognition. The highly ranked features of relief-f are examined and

pruned according to the boundary threshold. Two adaptive parameters, number of generations and population

size, are adaptively defined from the number of high ranking features to minimize the complexity of the search

space. On top of that, a self-adaptive scaling factor and crossover probability are proposed to minimize the time

of finding an optimal parameter value by selecting the optimum feature subsets. We prove that the proposed

ranking self-adaptive differential evolution (rsaDE) algorithm is able to achieve a higher level of accuracy in

activity recognition than several state-of-the-art feature selection methods.

2. Materials and methods

The proposed framework as illustrated in Figure 1 consists of four stages, namely preprocessing, feature

extraction, feature selection, and classification. The proposed method is mainly found in Stages 2 and 3.

Details of each stage are discussed in the following subsections.

STAGE 1 

 Preprocessing  
Accelerometer 

data set  

Butterworth low-

pass filter  

STAGE 2  

Feature extraction  

Window segmentation  

Statistical 

descriptors  

Spectral 

frequency  

STAGE 3  

Feature selection  

Relief-f feature 

ranking 

Self -adaptive DE 

algorithm 

STAGE 4  

Classification  

Ensemble  

classifier  

Figure 1. The proposed framework for activity recognition.

2.1. Physical activity data set

Two real-world physical acceleration data sets are utilized: Wireless Sensor Data Mining (WISDM) [11] and

Physical Activity Monitoring for Aging People (PAMAP2) [12]. WISDM utilizes a 20-Hz sampling rate through

the use of an accelerometer, which is embedded in Android smartphones and attached at the front pocket

of pants. Meanwhile, in PAMAP2, three inertial measurement units (IMUs) are used and attached to three
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different places: the wrist, chest, and ankle. Unlike WISDM, a 100-Hz sampling rate is used in PAMAP2 due

to it covering various types of complex activity.

2.2. Signal filtering

The acceleration data are recorded in each direction to capture the sum of gravitational and body acceleration.

The acceleration signal is recorded continuously and preprocessed in order to isolate the gravitational and

body acceleration [13]. Each acceleration signal consists of two different signal components: low-frequency

components and high-frequency components. Low-frequency components are captured by gravity according to

the orientation of the sensor with respect to ground data. Meanwhile, high-frequency components are generated

due to the noise presented from gravitational forces. The gravitational acceleration signal generated in low-

frequency components needs to be removed in order to produce a decent signal presentation for classification

purposes [14]. In such states, a Butterworth low-pass filter is applied to eliminate high-frequency components

by retaining the low-frequency components [7].

2.3. Feature extraction

It is necessary to extract the original signal for further computational efficiency. The extracted information

is referred to as feature vectors and later will be used for classification [15]. The acceleration signal in each

dimension is divided into several predetermined windows sizes [16]. A sliding window is extensively applied to

solve various time series application problems [17–19]. In order to transform the acceleration signal in a more

meaningful way, feature extraction has taken place. In this work, we propose 12 features, where 9 features

are extracted from statistical features while 3 features are extracted from frequency features. The list of the

extracted features is given in Table 1.

Table 1. List of extracted features.

Statistical features Frequency features

Minimum and maximum, mean, variance, standard deviation,
skewness, kurtosis, correlation coefficient, harmonic mean

Band power,
power bandwidth,
occupied bandwidth

3. The proposed rsaDE feature selection algorithm

The proposed rsaDE encompasses two stages. The highly relevant features are ranked using relief-f according

to the score in the first stage. Afterward, the highly ranked features are evaluated by using the self-adaptive

differential evolution algorithm. Simple but capable of generalizing noisy and incomplete data, relief-f is broadly

applied in various feature dimension problems. Nearest hits (data points from the same class) and nearest misses

(data points from a different class) of each instance are calculated using Eq. (1).

wi=
N∑
j=1

(xj
i−nearmiss(xi)j)

2
−(xj

i−nearhit(xi)j)
2

(1)

Here, w is the weight of the ith feature, xj
i is the value of the ith feature for point xj , and N is the total

number of data points. Near hit xj and near miss xj are the nearest data points to xj in the same and different
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classes, respectively. In order to prune the less relevant features, selected features considered as highly ranking

are selected using the following equation.

fi =

{ ∑
fi+1 if wi ≥ 0.01

prune otherwise
(2)

Here, f is the selected ith features, w is the weight of the ith features, and if w is greater than or equal to

0.01, the ith features are selected. If otherwise, the ith features are pruned.

The DE algorithm is introduced based on the differential reproduction that occurs within a population

from environmental pressures that lead to natural selection (survival of the fittest). This algorithm is easy and

effective in convergence, capable of handling nondifferentiable, nonlinear, and multimodal cost functions [20],

as well as able to perform a parallel search with fast implementation properties. This condition makes DE ideal

to be extensively applied to select the best feature subsets. DE is capable of manipulating a target vector using

a different vector to generate a trial vector. The population is generated from each D -dimensional real-valued

parameter where NP represents population size and D represents the number of parameters to be optimized.

A trial vector is generated based on the weight from different vectors between two population members xr1

and xr2 , which are added to the third member, xr0 . For each target vector, a mutant vector vj,i,g is generated

according to Eq. (3).

vj,i,g=xj,r0,g+F (xj,r1,g−xj,r2,g) (3)

Here, r0r1r2 ∈ {0, 2, . . . , NP − 1}are randomly chosen integers, g = NP = fi , and population members must

be different from each other, which is r0 ̸= r1 ̸= r2 . Index g indicates the generation to which a vector belongs.

Index i indicates the population index that runs from to NP − 1. Parameters within the vectors are indexed

with j , which runs from 0to D − 1. The value of F in Eq. (4) is a scaling factor that controls the rate at

which the population evolves.

Fi,G+1 =

{
Fl + rand2 ∗ Fu if rand1 < τ1
Fi,G otherwise

(4)

Here, randjj ∈ {1, 2, 3, 4} lies between [0, 1] and τ1 = 0.1. Fl and Fu are set to 0.1 and 0.9, respectively. In

order to increase the diversity of perturbed parameter vectors, a crossover is introduced. Trial vector uj,i,g is

obtained from an element of mutant vector vj,i,g and target vector xj,i,g ; uj,i,g is written as shown in Eq. (5).

uj,i,g =

{
vj,i,g
xj,i,g

if rand (0, 1) ≤ CR
otherwise

}
(5)

Here, j = 0, 2, . . . D − 1 and crossover probabilityCR is self-adapted by using Eq. (6). uj,i,g is the j th

dimension from the j th trial vector along with the current population g .

CRi,G+1 =

{
rand4
CRi,G

if rand3 < τ2
otherwise

(6)

Here, randjj ∈ {1, 2, 3, 4} lies between [0, 1] and τ2 = 0.1. Fl and Fu are set to 0.1 and 0.9, respectively.

Selection as shown in Eq. (7) is a step to choose the vector between the target vector and trial vector for

creating an individual population for the next generation.

xj,i,g+1=

{
uj,i,g

xj,i,g

if f (ui,G+1)≥f (xi,G)
otherwise

}
(7)
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If the generated vector has a lower objective function value (better fitness) than a predetermined population

member, the resulting vector replaces the vector with which it was compared. Otherwise, the predetermined

population member remains for the next generation.

4. Evaluation of proposed rsaDE feature selection

In this work, a 5th order Butterworth low-pass filter with 0.3-Hz cut-off frequency is chosen. This amount

is considered sufficient to separate high- and low-frequency components [22,23]. A total of 36 features (12

× 3 dimensions) with an additional one feature are added to the activity label accordingly, which serves the

classification stage later. The experimental results are measured using several performance indicators: overall

accuracy, precision, recall, and training build time. A random forest ensemble classifier is utilized as a classifier

model and validation is conducted in a 10-fold cross-validation classification strategy.

4.1. Analysis of relief-f feature ranking

In this section, the evaluation of the relief-f feature ranking method is described. We conduct the experiment to

rank the features (original 36 features) using relief-f for WISDM. Since both data sets, WISDM and PAMAP2,

utilize the same features (as explained in Section 2.3), the evaluation has only been conducted with WISDM.

For comparison, the experimental result is compared with three different feature ranking methods: gain ratio,

information gain, and principal component analysis (PCA).

Table 2. Classification performance using different feature ranking methods.

Indicators Gain Ratio Info Gain PCA Relief-f

Accuracy 0.997 0.997 0.913 0.997

Precision 0.997 0.997 0.913 0.997

Recall 0.997 0.997 0.913 0.997

Time (in seconds) 13.71 13.76 18.08 13.32

As demonstrated in Table 2, accuracies of gain ratio, information gain, and relief-f reveal the same result

of 97%. PCA contributes the lowest accuracy and precision at 91%. PCA has the longest time taken to build

the training model at 18.08 s. Even though there is no large difference between times taken to build the training

model compared to other feature ranking methods, relief-f has the shortest time recorded at 13.32 s. Figure 2

shows the ranking score of each feature, according to relevant criteria.

The weight scored within the range of [8e−5 , 6e−2 ] is considered as the heaviest weight and the most

significant features. The result clearly shows that 70% of features have a score above 0.02, and very few features

have a score lower than 0.01. In order to evaluate the classification performance within the selected features

range, a few numbers with selected thresholds have been investigated.

As visualized in Figure 3, the average accuracy within the boundary of 0.001 to 0.01 is recorded as

stagnant at 99.7%. However, accuracy decreased about 0.1% when the features weight of 0.03 was selected. In

such circumstances, it is likely that the number of features might be inadequate or it might possibly be that

highly relevant features have been removed. The accuracy drastically drops when features with weights above

0.05 are selected. Consequently, features weights above 0.01 will be selected and applied in the next stage. As

a result, 30 features are produced and we believe that these features are the most influential features to portray

the class.
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Figure 2. Ranking features according to the relevance
score.

Figure 3. Classification accuracy of the different thresh-

olds.

4.2. Analysis of rsaDE algorithm

In this section, experimental analysis of the rsaDE is assessed. GEN and NP are initialized to 30 and these

parameters are kept constant during each run. On the other hand, F and CR have been self-adaptively initialized

according to Eqs. (1) and (6), respectively. In contrast with the previous two parameters (GEN and NP), F and

CR are dynamically changed within each generation. Random numbers [0.1, 1.0] are used to initialize F and

CR in first generation. In order to measure the subset performance, there are some criteria to be considered.

The algorithm is terminated when the difference between fitness values of two consecutive generations of the

best subsets is negligible (<0.001). The same scenarios prevail for a certain number of generations. However,

in our case, GEN is equal to the number of dimensions, D. According to [24], the desired number of features

(DNF) is suggested within the range of 10 to 20.

Figure 4 illustrates the classification accuracy for different numbers of DNF. The accuracy increases to

99.5% when 12 and 13 features are chosen. However, the accuracy declines when features are selected within the

range of 14 to 20. Lowest accuracy of 99.4% is recorded when 17 random features are chosen. The classification

accuracy of rsaDE has also been compared with traditional DE. For verification purposes, an experiment is

conducted with an average of 10 runs.

Figure 5 illustrates the average accuracy between the rsaDE and traditional DE. It is clearly shown that

the classification accuracy of rsaDE is acceptable compared to traditional DE. On average, rsaDE has recorded

accuracy of 99.6%, which is a bit superior to traditional DE by 0.1%. There is no large difference between

the methods, but rsaDE is more capable of minimizing the complexity of finding an optimal parameter than

traditional approaches.

The performance of rsaDE has also been compared with several state-of-the-art subset generation methods

such as particle swarm optimization (PSO), reduced scatter search (RSS), the evolutionary algorithm (EA),

and tabu search. For fair comparison, the same value of NP is applied to PSO, RSS, and EA. Besides that,

GEN = 30 is applied for both PSO and EA. Crossover probabilities and mutation probabilities are initialized

as 0.5 and 0.01, respectively, for EA. Meanwhile, number of neighbors = 1 is chosen for the tabu search.

Figure 6 shows the average classification accuracy of various subset generation methods. It is clearly

shown that rsaDE performs better as compared to other methods. PSO, RSS, and tabu search have the same

percentage for accuracy while EA performs better with an increase of 0.1% than traditional DE, RSS, and tabu

search. In terms of number of selected features, 13 and 11 features are selected for EA and PSO, respectively.
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Meanwhile, RSS and tabu search have selected an equal number of features, 11. Even though the result from

traditional DE is acceptable, 17 features is still considered as a higher value than that for rsaDE.
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Figure 6. Classification accuracy for different types of subset generation methods.

5. Experimental results and analysis

In this section, we conduct an experiment for both data sets, WISDM and PAMAP2. We also compare our

performance with several benchmark works that utilize both data sets. However, different sizes in segmentation

and different validations in classification have been applied according to the benchmark work accordingly.

5.1. WISDM

WISDM applies sliding window sizes of 10 s with overlapping 2.5 s between two consecutive window segments.

Hence, it will produce about 200 samples per second with 25 samples overlapping with the next following window

segment. For validation purposes, 80% of randomly selected samples are used for training and the remaining

20% of subsets are applied for testing.

Table 3 shows the comparison accuracy of rsaDE with traditional DE, EA, and RSS as reported by the

authors [22]. The authors also reported the most difficult activities to be those involving the stairs (down

stairs and up stairs) and walking, even though data collection was conducted in a different space. They also

applied Decremental Reduction Optimization Procedure 2 (DROP2) to reduce the complexity of the search

space. However, going down stairs and up stairs are reported to have the worst performances, with about 81%

and 88%. Meanwhile, our experiment shows that rsaDE achieved the highest accuracy, even though traditional

DE performed somewhat better than EA and RSS. Up stairs, down stairs, and walking could be effectively

differentiated with precision of 99.7%, 100%, and 99.9%, accordingly. EA was also slightly better, except for

going down stairs, although EA is able to produce the same number of features as rsaDE. In comparison with

a number of features, almost 40% of features could be reduced using rsaDE, which is considered as better than

RSS and traditional DE.
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Table 3. Comparison accuracy of rsaDE, traditional DE, EA, and RSS.

Activity EA (13) RSS (30) DE (17) rsaDE (13)

Down stairs 0.988 0.816 0.993 0.997

Up stairs 0.996 0.888 0.999 1.000

Walking 0.991 0.963 0.998 0.999

Jogging 0.994 0.986 1.000 1.000

Sitting 1.000 0.996 1.000 1.000

Standing 1.000 0.989 1.000 1.000

Average 0.993 0.953 0.998 1.000

Table 4. Confusion matrix of rsaDE.

Activity Down stairs Up stairs Walking Jogging Sitting Standing

Down stairs 398 0 0 0 0 0

Up stairs 1 481 1 0 0 0

Walking 0 0 1659 0 0 0

Jogging 0 0 0 1329 0 0

Sitting 0 0 0 0 223 0

Standing 0 0 0 0 0 181

Table 4 presents the confusion matrix of rsaDE. As illustrated, 1% of “up stairs” instances have been

recognized as going down stairs and walking. Obviously, rsaDE tends to increase the classification accuracy by

using a minimum number of features. In this sense, 13 features are considered as adequate to recognize various

types of physical activities and have good performance in reducing the feature subsets compared to the previous

work (n = 30).

5.2. PAMAP2

In a previous work [5], the authors utilized only twelve types of activities in their experiment. A sliding window

of 5 s with overlapping 1 s between two consecutive window segments was applied and 70% of randomly selected

instances were used for training while the remaining instances were applied for testing. In order to minimize

the number of features to be classified, RSS subset generation has been proposed. Unlike WISDM, PAMAP2

is evaluated according to individual and combinational sensor placements.

Table 5 shows the classification accuracy for each placement (wrist, chest, and ankle). The average

accuracy of rsaDE for each placement is 99%. Surprisingly, ascending and descending walk achieves an

outstanding accuracy above 99% for all placements. The ankle has the lowest accuracy among all other

placements. However, there is a slight drop in ascending walk when the sensor is worn on the wrist. The

wrist has a better performance in recognizing Nordic walk and walking. Hence, the wrist and chest have good

performance for hand motion activity as compared with the ankle. The ankle is considered as the worst for

recognizing activity that involves hand motion activity. In previous work, poor performance was also reported,

below 94% for each placement. Standing has been reported to have the worst accuracy for the chest and ankle,

while the wrist and ankle are thought the worst to describe ironing activity.

In this experiment, feature subsets from each sensor placement are combined to form the new feature
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Table 5. Classification accuracy of each placement using rsaDE.

Activity
Wrist Chest Ankle

RSS (30) rsaDE (13) RSS (30) rsaDE (13) RSS (30) rsaDE (13)

A1-Ascending 0.907 0.986 0.942 1.000 0.951 0.992

A2-Cycling 0.987 0.998 0.958 0.998 0.949 0.994

A3-Descending 0.954 1.000 0.976 0.994 0.965 1.000

A4-Ironing 0.845 1.000 0.902 1.000 0.787 0.990

A5-Jumping 0.963 1.000 0.993 1.000 1.000 1.000

A6-Lying down 0.974 0.995 0.985 1.000 0.995 1.000

A7-Nordic walk 0.989 0.996 0.974 0.989 0.962 0.984

A8-Running 0.996 1.000 0.996 0.993 0.981 1.000

A9-Sitting 0.922 1.000 0.917 1.000 0.963 0.996

A10-Standing 0.855 0.998 0.838 0.998 0.838 0.995

A11-Vacuuming 0.961 0.994 0.928 0.992 0.853 0.987

A12-Walking 0.984 1.000 0.952 0.997 0.968 0.983

Average 0.941 0.997 0.940 0.997 0.925 0.992

Table 6. Classification accuracy of rsaDE, traditional DE, EA, and RSS for sensor combination.

Label Activity EA (39) RSS (46) DE (51) rsaDE (39)

A1 Ascending 0.997 0.974 1.000 1.000

A2 Cycling 1.000 1.000 1.000 1.000

A3 Descending 0.994 0.966 1.000 1.000

A4 Ironing 1.000 0.964 1.000 1.000

A5 Jumping 1.000 1.000 1.000 1.000

A6 Lying down 1.000 0.995 1.000 1.000

A7 Nordic walk 0.998 0.996 1.000 1.000

A8 Running 1.000 1.000 1.000 1.000

A9 Sitting 1.000 0.975 1.000 1.000

A10 Standing 1.000 0.949 1.000 1.000

A11 Vacuuming 1.000 0.983 0.996 1.000

A12 Walking 0.999 0.975 1.000 1.000

Average 0.999 0.980 1.000 1.000

subsets. Hence, the new feature subset produced had 39 features (13 features × 3 placements). Table 6

shows the classification accuracy of the combination from all placements (wrist, chest, and ankle). Referring to

previous studies, RSS is able to reduce about 60% (46 features) compared to the original features (117 features).

Previously, k-nearest neighbors was chosen as the evaluation model and average accuracy produced was 98%.

Running, cycling, and jumping had the highest accuracy, while standing had the poorest. In our work, rsaDE

has clearly outperformed the average accuracy of the previous work. All activities had 100% precision when

the reduced feature subsets were combined. Meanwhile, DE had similar performance to rsaDE, followed by
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EA. Unfortunately, 51 features is still considered higher than rsaDE, which leads to increased learning model

complexity. Also, there is slightly decreased accuracy in recognizing the stride activities by EA. Furthermore,

it can be observed that at the cost of fractional loss of classification accuracy the number of features would

reduce dramatically to 39, which is about 64% size reduction in feature subsets.

Table 7. Confusion matrix of rsaDE for all placements.

Act A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 353 0 0 0 0 0 0 0 0 0 0 0

A2 0 493 0 0 0 0 0 0 0 0 0 0

A3 0 0 316 0 0 0 0 0 0 0 0 0

A4 0 0 0 720 0 0 0 0 0 0 0 0

A5 0 0 0 0 145 0 0 0 0 0 0 0

A6 0 0 0 0 0 581 0 0 0 0 0 0

A7 0 0 0 0 0 0 562 0 0 0 0 0

A8 0 0 0 0 0 0 0 291 0 0 0 0

A9 0 0 0 0 0 0 0 0 558 0 0 0

A10 0 0 0 0 0 0 0 0 0 572 0 0

A11 0 0 0 0 0 0 0 0 0 0 529 0

A12 0 0 0 0 0 0 0 0 0 0 0 702

It is clearly seen that the confusion matrix in Table 7 produces an excellent recognition performance for

all types of physical activities. All instances are classified exactly according to their categories. Even though

stairs activities (ascending and descending) are considered as somewhat similar and are always confused with

walking, these activities can also be effectively differentiated using our feature subsets.

6. Conclusion

This paper discusses the experimental evaluation of enhancing the previous activity recognition for two different

acceleration physical activity data sets: WISDM and PAMAP2. Several features from statistics and frequency

are introduced to increase the diversity in differentiating between stationary and locomotion activity. The

correlations between statistical and frequency features are also measured and evaluated. The boundary threshold

of 0.01 is introduced to select the relevant features, which were previously ranked by relief-f. Afterwards,

irrelevant features are pruned and eliminated before the selected feature subset is fed as input to rsaDE. In this

work, GEN and NP parameters are adaptively initialized from the numbers of input features. The experimental

result verifies that adaptive parameter setting tends to produce an optimum accuracy in reducing the searching

space complexity. Furthermore, self-adaptive F and CR are applied to minimize the thoroughness of finding the

optimal parameter value. This parameter mechanism is to avoid defining different parameters in each algorithm

run. Therefore, rsaDE proves better in reducing the number of features and is able to produce a high level of

accuracy as compared with other methods. As another way to verify the effectiveness of rsaDE, all possible

sensor placements are combined into one collection of feature subsets. This assessment also shows that rsaDE

has decent accuracy of 100% in distinguishing 12 physical types effectively compared to previously reported

work. For future work, we plan to investigate the effectiveness of rsaDE in other domain areas such as in

bioinformatics and text mining to evaluate its applicability and consistency.

1387



ZAINUDIN et al./Turk J Elec Eng & Comp Sci

References

[1] Lara OD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tut

2013; 15: 1192-1209.

[2] Murthy GRS, Jadon RS. Hand gesture recognition using neural networks. In: IEEE 2nd International Advance

Computing Conference; 1 March 2010; Patiala, India. New York, NY, USA: IEEE. pp. 134-138.

[3] Guiry JJ, van De Ven P, Nelson J, Warmerdam L, Riper H. Activity recognition with smartphone support. Med

Eng Phys 2014; 36: 670-675.

[4] Khan AM. Human activity recognition using a single tri-axial accelerometer. PhD, Kyung Hee University, Seoul,

Korea, 2011.

[5] Arif M, Kattan A. Physical activities monitoring using wearable acceleration sensors attached to the body. PLoS

One 2015; 10: e0130851.

[6] Dobbins C, Rawassizadeh R, Momeni E. Detecting physical activity within lifelogs towards preventing obesity and

aiding ambient assisted living. Neurocomputing 2013; 230: 110-132.

[7] Machado IP, Gomes AL, Gamboa H, Paixao V, Costa RM. Human activity data discovery from triaxial accelerometer

sensor: non-supervised learning sensitivity to feature extraction parametrization. Inf Process Manag 2015; 51: 201-

214.
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