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Abstract: Arrhythmia, also known as dysrhythmia, is a condition involving an irregular heartbeat. A problem in the

heart may cause problems in other organs, and as time passes, this will lead to more severe problems. Arrhythmia

must be detected at an early stage to prevent such a problem occurring in the heart. Detection of arrhythmia from an

electrocardiogram is an easy method that does not need much equipment and does not harm the patient. The purpose

of this research is to find a faster and more accurate system to classify nine classes of arrhythmia. The St. Petersburg

Institute of Cardiological Technics 12-lead arrhythmia database was used for training and testing. Data were compressed

and preprocessed (denoising, trend elimination, baseline correction, and normalization) before being sent to the system

for feature calculation. The wavelet coefficients that displayed the most significant effect on classification were chosen

and used as features. Standard deviation and variance were also added to the feature set. Later, principal component

analysis (PCA) was used to reduce the number of features further. After deciding the features, the performance of the

basic classification methods and spiking neural network was checked to determine whether there was a better classifier

to be used for our research. Tenfold cross-validation was applied to the training dataset. Bagged trees were found to

produce better results. The classifiers’ performance was tested by sensitivity, specificity, and accuracy.
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1. Introduction

The increasing number of deaths due to arrhythmia has required automatic detection of abnormalities for

identifying arrhythmias. Arrhythmias usually go unnoticed until a physician suspects the condition. Such

an automatic detection system would help physicians to identify arrhythmias and reduce the pressure they

experience when attending to such a severe ailment.

The detection of arrhythmia is a pattern recognition problem, and data obtained from electrocardiograms

(ECGs) are of vital importance for detecting arrhythmia. By using electrodes that are placed on the patient, it

is possible to measure and record the electrical activity of the heart. This record is called an ECG. The exact

placement of 10 electrodes on the patient (an electrode for each leg and arm and six placed across the chest) is

necessary for 12-lead ECG recording.
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This research aimed to develop a fast and trustworthy system for the automated diagnosis of arrhythmia.

To accurately extract features from ECG signals, we used the capability of the wavelet transform (WT) to

process signals at different resolutions or scales.

The significance of this research is exhibited in several factors. The first is the usage of wavelet-compressed

data from the St. Petersburg Institute of Cardiological Technics 12-lead arrhythmia database. The second is

the usage of two small windows when calculating wavelet coefficients. The third is the significantly reduced

number of features. This reduction was achieved by determining coefficients that have the most significant effect

on classification and the usage of principal component analysis (PCA), and the fourth is the usage of bagged

trees (ensemble classifier) for classification to compare the performance of the 12-lead ECG recordings. The

usage of bagged trees was chosen after a comparison of the performance of the basic classification methods and

spiking neural network. The data were randomized, and half of the data were used for training. The other half

of the data were used as test data for obtaining classification sensitivity, specificity, and accuracy values.

2. Related works

Dokur et al. [1] investigated wavelet analysis and Fourier analysis as feature extraction methods. Ten different

ECG waveforms were classified using a neural network trained by genetic algorithms. The proposed method

provided performance with 99.4% accuracy using WT and 92.2% accuracy using discrete Fourier transform.

Prasad and Sahambi [2] analyzed ECG arrhythmias using wavelets. All coefficients obtained from discrete

wavelet transform (DWT) were used as features. They preferred artificial neural networks (ANNs) for the

classification of 12 different arrhythmias. An accuracy rate of 96.77% was obtained. This method was found to

be robust against noise.

Shyu et al. [3] developed a method for classifying ventricular premature contraction. QRS detection and

feature extraction were done using WT. Less complexity and less computation were the primary advantages of

this technique. The accuracy of ventricular premature contraction classification using a fuzzy neural network

was 99.79%.

Zhao and Zhang [4] used WT to extract coefficients. Simultaneously, they applied autoregressive modeling

so that temporal structures of ECG waveforms were obtained. Then a support vector machine (SVM) with

Gaussian kernel was used to classify six heart rhythm types. Overall accuracy of 99.68% was achieved.

Jiang et al. [5] proposed a feature extraction method from the combination of WT and independent

component analysis (ICA). The SVM classifier was used to recognize fourteen different heartbeat arrhythmias,

and they obtained overall accuracy of 98.65%.

Yu and Chen [6] proposed a system to classify six ECG beat types. This system used DWT to decompose

the ECG signals in different subbands. They used a probabilistic neural network for the classification. An

accuracy rate of 99.65% was obtained with 11 features. This feature set was significantly smaller in quantity

than the feature sets of other methods.

İşler and Kuntalp [7] used a genetic algorithm to select the best features from heart rate variability

measures and wavelet entropy measures. The MIT-BIH database was preferred. The K-nearest neighbor

classifier was used to classify two groups (congestive heart failure and healthy). The best accuracy was 96.39%.

An extremely accurate ECG beat detection system was proposed by Zellmer et al. [8]. Three separate

feature vectors for each beat were formed. Continuous wavelet transformation (CWT) in addition to time

domain morphology information was necessary to create these feature vectors. Three different SVM classifiers
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were trained by these feature vectors for six types of beats. They obtained an accuracy rate of 99.72% using

multiclassifier-based classification by voting between the three independent classifiers.

Emanet [9] classified the five types of beats using DWT. The random forest algorithm was used for

classification. Twenty-three records from the MIT-BIH arrhythmia database were randomly chosen. Moreover,

five heartbeat types were classified with a 99.8% success rate.

Llamedo and Mart́ınez [10] used features from the RR signals and different scales of the WT. The best

model was trained in a partition of the MIT-BIH arrhythmia database. The classification was done by a linear

classifier, and global accuracy of 93% was obtained.

Rai et al. [11] conducted a study on ECG arrhythmia classification using a multilayer perceptron and

radial basis function neural network with Daubechies wavelets. ECG beats were characterized by 21 points for

five types of beats. The simulation resulted in an average accuracy rate of 99.84% with an error rate of 0.16%.

Rai and Trivedi [12] classified ECG signals into two classes using DWT-based features and morphological

features. They used a backpropagation neural network for classification and obtained an accuracy rate of 97.8%.

Li et al. [13] utilized ECG signals from the Research Resource for Complex Physiologic Signals for

detecting ventricular fibrillation. CWT was used for feature extraction. This method could detect ventricular

fibrillation without interrupting the ongoing chest compression. Morphology consistency evaluation obtained

results with an accuracy of 93%, sensitivity of 92%, and specificity of 93%.

Ye et al. [14] proposed an approach for classification based on a combination of dynamic and morpho-

logical features. The MIT-BIH arrhythmia database was used. WT and also ICA were applied to signals to

obtain morphological features. Exact locations of RR intervals were computed to provide dynamic features.

These features were concatenated and classified using SVM. The overall accuracy was 99.3%.

Llamedo and Mart́ınez [15] developed a patient-adaptable algorithm. Morphology descriptors computed

from the WT and RR interval features were used. The American Heart Association database and databases
available from PhysioNet were used to classify normal, supraventricular, and ventricular heartbeats. An

automatic classifier performed cluster and centroid identification. MITBIH-SUP and the subset of MITBIH-AR

were used for the final performance evaluation, and 96% accuracy was achieved.

Faziludeen and Sabiq [16] implemented an automatic classification method for three beat types. Twenty-

five features were extracted from wavelet analysis for each beat. Three SVMs were designed for classification.

Final grouping was done by maximum voting. Accuracy of 99.92%, 98.47%, and 98.46% was obtained for

premature ventricular contraction, normal, and left bundle branch block beats, respectively.

Chen et al. [17] developed a system for classification of ECG signals based on linear discriminant analysis.

Linear discriminant analysis was preferred for its simplicity. Spectral energy of ECG signals was used as

features by obtaining the DWT of the PQRST complex. The Haar wavelet was used as the basis function.

The PTB database and samples from the Southampton General Hospital Cardiology Department were used for

classification, and 85.57% accuracy was achieved.

Dima et al. [18] developed a system for detection of the presence of a myocardial scar from ECGs and

vector cardiograms. Four distinct methods were implemented. One of them was the usage of a template ECG

heartbeat, coupled with wavelet coherence analysis. They used the SVM for classification. They also employed

feature selection to remove redundant features. A total of 260 records from 3 different databases were used from
the Cardiology Department of the University Hospital Southampton, and 89.22% accuracy was achieved.

Saminu et al. [19] calculated the DWT of the R-T interval and the statistical parameters were used as

time-frequency domain features. Three types of ECG beats were classified using a neural network backpropaga-
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tion algorithm. They obtained an accuracy rate of 98.22%. This technique is a robust ECG feature extraction

method that is suitable for mobile devices.

Banerjee and Mitra [20] used cross-wavelet transform (XWT) for classification of ECG signals. They

analyzed ECG signals utilizing XWT and explored the resulting spectral differences. They also obtained the

wavelet coherence (WCOH) and wavelet cross-spectrum (WCS) by applying XWT to signals. The WCOH and

WCS of ECG signals showed different characteristics over two specific parts (QRS complex and T wave part).

The classifier was preferred as being threshold-based. The overall accuracy, specificity, and sensitivity were

obtained as 97.6%, 98.8%, and 97.3%, respectively, for classification of abnormal and normal cardiac patterns.

Sahoo et al. [21] planned to detect cardiac arrhythmia from ECG signals by using WT. The first 23 files

from the MIT-BIH arrhythmia database were used. In this work, five abnormal and five normal ECG signals

were chosen for analysis. A least squares SVM was used for classification. They obtained 98.11% accuracy.

Jacob and Joseph [22] performed classification using XWT and SVMs for two classes. The simulation

resulted in an accuracy rate of 94.8% for the SVM and 96.2% for the two-dimensional SVM.

Saini et al. [23] classified ten heart diseases using the K-nearest neighbors (KNN) classifier. The

classification was done using wavelet-transformed ECG signals and the original ECG signals. An accuracy

rate of 87.5% was obtained.

Sharma et al. [24] used eigenvalues of multiscale covariance matrices and multiscale wavelet energies as

features. They used SVMs with both linear and radial basis function kernels and KNN as classifiers. The PTB

diagnostic ECG database was used for classification. Datasets included various types of myocardial infarctions.

The accuracy, the specificity, and the sensitivity values were 96%, 99%, and 93%, respectively.

Dewangan and Shukla [25] analyzed ECG signals using DWT for feature extraction and preprocessing.

An ANN was used for the classification of five types of arrhythmias. They determined that the utilization of

both wavelet coefficients and morphological features together for classification could increase the accuracy rate.

The proposed method provided an enhanced performance with 87% accuracy.

Sayilgan et al. [26] used clustering algorithms to determine seven types of arrhythmia. They examined

data from the MIT-BIH arrhythmia database. K-means, fuzzy C-means, an extreme learning machine, and naive

Bayes were used as classifiers. Naive Bayes was detected as the most successful classifier with 92% accuracy.

Rad et al. [27] developed algorithms for automatic classification of ventricular tachycardia, ventricular

fibrillation, pulseless electrical activity, asystole, and pulse generating rhythm. They used a database with 1631

three-second ECG signals. These signals were collected from 298 cardiac arrest patients (OHCA database).

They computed 47 wavelet and time domain-based features. A wrapper-based feature selection architecture

was used for selecting 14 features. An ANN classifier with Bayesian regularization was used. The overall

accuracy was 78.5%.

3. Wavelet theory

Wavelet theory is used as a powerful mathematical tool. Signals are decomposed over translated and dilated

wavelets by WT.

3.1. Wavelet families

The mother wavelet (analyzing wavelet) is the prototype function adapted to wavelet analysis [28]. The known

wavelet families are as follows: Haar, Daubechies, Dymlets, Coiflets, biorthogonal, Fejer–Korovkin filters, reverse
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biorthogonal, Meyer, discrete approximation of Meyer, Gaussian, Mexican hat, Morlet, complex Gaussian,

Shannon, frequency B-spline, and complex Morlet. These are the wavelets available within the wavelet toolbox.

Daubechies wavelets are found to be the most useful for analyzing ECG signals after checking these

wavelets. The Daubechies wavelet transforms produce differences and averages using a few more values from

the ECG signal. Moreover, this change provides vast improvement in the capabilities of these transforms.

Powerful tools for signal recognition are provided [29]. Its shape is similar to the ECG signal.

3.2. Wavelet transform

Wavelet function ΨγL2(R) is zero-averaged, normalized, and centered on t = 0 where f is the signal that is

transformed [30].

We can write WT of fγL2(R) at time u and scale s as a convolution product:

W f (u s) =

∫ +∞

−∞
f (t)

1√
s
Ψ∗

(
t− u

s

)
dt = f ⋆ Ψ̄s (u) (1)

with

Ψ̄s (t) =
1√
s
Ψ∗

(
−t

s

)
. (2)

3.3. Discrete wavelet transform

Our orthogonal wavelet basis function is as follows:

Φ(s,l) (x) = 2
−s
2 Φ(2−s x− l), (3)

where l and s are variables that dilate and scale the mother function Φ to generate a family of discrete wavelets.

Location index l gives position, and scale index s gives the wavelet’s width [28].

The analyzing wavelet Φ is used in a scaling equation to span the data domain at different resolutions:

W (x) =
N−2∑
k=−1

(−1)
k
ck+1 Φ(2x+ k), (4)

where W (x) is the scaling function and ck are the wavelet coefficients. The wavelet coefficients must satisfy

N−1∑
k=0

ck = 2 and

N−1∑
k=0

ckcl = 2δl,0, (5)

where l is the location index and δ is the delta function [28].

The signal is split into high and low frequency components in the first level. This first low frequency

subband that contains most of the energy is subsampled and decomposed again into high and low frequency

subbands. This can be continued into K levels [31]:

yhigh [k] =
∑
n

x [n] g [2k − n], (6)

ylow [k] =
∑
n

x [n] h [2k − n] (7)

where h[N − 1− n] = (−1)
n
g(n) and N is the number of current samples of x[n].
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3.4. Wavelet-based compression

ECG signal compression techniques are becoming increasingly important because they make it easier to work

with long duration signals in large databases. Furthermore, they simplify wireless transmission of ECG signals.

In the case of heart diseases, ECG data can be transmitted from rural areas to hospitals to be inspected by

expert cardiologists using telemedicine. After analyzing the data, medical suggestions can be sent to semiskilled

persons in the countryside [32].

We decided to use compressed signals for faster processing. We compressed each signal and saved them as

.mat files for feature extraction. After the coefficients were calculated, a specific threshold value was determined.

Coefficients smaller than this threshold were ignored. Compressed signals consume fewer computer resources

than the original signals when recorded or transmitted over the network. If the inverse transform is applied,

an approximate signal similar to the original one is attained. Obtaining a similar signal means that most of

the features of the original signals can be stored in the compressed signals. Signals were decomposed at level 5,

and a Daubechies 6 wavelet was used as the mother wavelet. For threshold criteria, global thresholding, which

deploys hard thresholding, was used as the thresholding method. Balance sparsity-norm was selected for the

global threshold. We can conclude by looking at Table 1, where we see that the classification performance does

not change much if compressed data are used. PCA was used to reduce the selected features by deriving the

variables that conserved most of the information. We achieved this by transforming a new set of variables, which

were uncorrelated, to the principal components. Most of the variation was retained in the first few variables

[33].

4. Materials and methods

Signals can be represented by using coefficients in a linear combination of wavelet functions. It is possible to

use only these coefficients to perform operations. Furthermore, to compress data, one can truncate coefficients

below a threshold. The signal was reduced in size via wavelet-based compression, making the signal easier to

process. Each signal was compressed and saved as a .mat file using the MATLAB wavelet toolbox. These

files were used for feature extraction. However, before feature extraction, preprocessing steps (denoising, trend

elimination, baseline correction, and normalization) were executed for better results. Preprocessing steps are

given in Figure 1. For denoising, a Daubechies wavelet (db6) was selected and the signals were decomposed

at level 5. A soft fixed-form threshold was selected as the thresholding method, and the noise structure was

selected as unscaled white noise. After denoising, the synthesized signal was updated. This function is available

in the MATLAB wavelet toolbox. When we load the ECG signal, patterns can be seen that are not inherent

to the ECG signal due to disturbances. Data analysis can be hindered by these trends. The linear trend was

eliminated by using the function detrend, which is available in MATLAB. The nonlinear trend was eliminated

by fitting a low-order polynomial to the ECG signal and subtracting it. Eq. (8) is for baseline correction, where

the mean of the signal is subtracted from each value of the raw signal. Eq. (9) is for normalization, where each

value signal is divided by the absolute value of its maximum value.

ECGSignalbase line correction = ECGSignal − mean(ECGSignal) (8)

ECGSignalnormalized =
ECGSignal

|ECGSignalmax|
(9)

For each record, 60 samples were taken from either side of the R peak (maximum value). We used two windows,

resulting in a total of 120 samples. This usage is different from most research, which tends to use only one

window for feature extraction.
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Table 1. Results obtained using the coefficients obtained from the 5th level decomposition of channel 1 with db1 /

results obtained using compressed data by using the coefficients obtained from the 5th level decomposition of channel 1

with db1.

Classification methods
Training Test

Accuracy Accuracy Sensitivity Specificity

Ensemble classifiers

Bagged trees 95.1 / 94.8 95.1 / 91.7 66 / 48 99 / 99

Boosted trees 93.3 / 91.5 93.4 / 89.6 57 / 20 98/ 99

Subspace discriminant 87.4 / 89.2 87.4 / 88.2 3 / 0 99 / 100

Subspace KNN 94.3 / 93.1 94.3 / 90.5 56 / 36 99 / 98

RUSBoosted trees 84.9 / 83.8 85.1 / 80.2 83 / 56 85 / 90

Nearest neighbor

Fine KNN 93.7 / 91.1 93.93 / 88.1 74 / 68 97 / 96

Medium KNN 93.9 / 92.4 94.1 / 90.7 62 / 48 99 / 98

Coarse KNN 92.1 / 90.9 92.4 / 88.1 51 / 41 99 / 97

Cosine KNN 94.2 / 92.2 94.5 / 87.5 66 / 31 99 / 96

Cubic KNN 93.8 / 92.3 93.9 / 90.1 61 / 51 99 / 99

Weighted KNN 94.4 / 93.2 94.6 / 90.5 67 / 34 99 / 96

Support vector machines

Linear SVM 87.2 / 89.2 87.3 / 88.3 0 / 0 100 / 100

Quadratic SVM 89.2 / 90.6 89.3 / 89.6 22 / 23 99 / 99

Cubic SVM 88.1 / 90.2 87.3 / 88.2 0 / 0 99 / 100

Fine Gaussian 93.6 / 92.2 93.9 / 91.1 54 / 43 99 /99

Medium Gaussian 92.7 / 91.6 92.9 / 90.8 52 / 44 99 / 99

Coarse Gaussian 88.4 / 89.6 88.6 / 88.2 13 / 5 99 / 99

Decision trees

Simple tree 88.9 / 89.6 89.1 / 84.1 26 / 2 95 / 98

Medium tree 90.7 / 90.5 90.9 / 88.2 34 / 25 99 / 94

Complex tree 92.4 / 91.5 92.5 / 89.6 57 / 24 98 / 98

Discriminant analysis

Linear discriminant 88.4 / 89.2 88.6 / 87.4 16 / 1 99 / 99

Quadratic discriminant 81.9 / 81.8 81.8 / 80.1 29 / 23 90 / 90

We decided not to use all the wavelet coefficients. The coefficients that had the most significant effect

on classification were chosen and used as features. It is possible to classify much faster with fewer coefficients.

For this to be achieved, first we checked classification performance using the first three coefficients. Then a

fourth was added to observe its effect on classification. After this, we removed the first coefficient to observe

its effect. Then a fifth was added; later, we removed the second. This technique was carried out repeatedly.

We also added standard deviation and variance to the feature set. After forming feature vectors, the number

of features was further reduced with PCA.
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Figure 1. Preprocessing steps (denoising, trend elimination, baseline correction, and normalization).

5. Database

Most research uses the MIT-BIH arrhythmia database, which contains 48 half-hour, two-channel ECG record-

ings. However, we used the ECG signals that were collected in the St. Petersburg Institute of Cardiological

Technics 12-lead arrhythmia database, which contains 75 half-hour annotated recordings. Each record is sam-

pled at 257 Hz. These files belong to patients (15 women and 17 men, aged 18–80 years) with ECGs consistent

with ischemia, conduction abnormalities, coronary artery disease, and arrhythmias [34].

Our first reason for choosing this database is that it contains 12-channel recordings. The MIT-BIH

arrhythmia database contains only two-channel recordings. The 12-channel ECG records allow us to see the

heart’s electrical activity from 12 different perspectives. The second reason for choosing this database is that

it is a big database. This database is more extensive than the MIT-BIH arrhythmia database. Testing our
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method on such a big database makes our results more reliable. Another reason for choosing this database

is that subjects with ECGs consistent with ischemia, conduction abnormalities, coronary artery disease, and

arrhythmias were included. Also, it should be noted that this database is a new one compared to the MIT-BIH

arrhythmia database. That means that patients’ histories are up to date.

6. Basic classification methods

Signals were classified by using data from the St. Petersburg Institute of Cardiological Technics 12-lead

arrhythmia database. Half of the data were used for training. The remaining data were used for tests. In our

research, there were nine cases for classification. Classes that were classified were as follows: normal (healthy),

premature ventricular contraction, atrial premature beat, fusion of ventricular and normal beat, right bundle

branch block beat, bundle branch block beat (unspecified), supraventricular premature or ectopic beat (atrial

or nodal), nodal (junctional) escape beat, and unclassifiable beat. Classification Learner was often used, but

sometimes MATLAB functions were preferred.

We decided on the classification method using Table 2. The accuracy, sensitivity, and specificity results

obtained by using the reduced coefficients obtained from the 5th level decomposition of channel 1 with db6 are

given in Table 2. Bagged trees were found to produce better results.

Bagging (bootstrap aggregation) was the ensemble learning technique that we chose for classification.

The block diagram of the bagged decision tree is given in Figure 2 [35]. For bagged trees, the ensemble method

was chosen as the bag. The learner type was a decision tree, which is easy to interpret. Moreover, the memory

usage was low, as well. The maximum number of splits was set to 20, and the number of learners was set to 30.

Tenfold cross-validation was applied to the training dataset. That means data were broken into ten sets. Nine

datasets were trained and the remaining one dataset was used for the test. The process was repeated ten times

and mean accuracy was taken. This cross-validation method protects data against overfitting.

Test
Sample 1

Test
Sample 2

Test
Sample 3

Learning
Algorithm Classifier 1

Classifier 2

Classifier 3

Learning
Algorithm

Learning
Algorithm

New
Data

Combined
Classifiers

Prediction

Training
Examples

Figure 2. The block diagram of bagged decision trees [35].

Weak prediction models are ensembled to produce a better prediction model for boosted trees. The

ensemble method chosen was AdaBoost, the decision tree was selected as learner type, the maximum number of

splits was set to 20, the number of learners was set to 30, and the learning rate was set to 0.1. For the subspace

discriminant, the ensemble method chosen was the subspace, and the discriminant was selected as the learner

type. The number of learners was set to 30 and the subspace dimension was set to 2. For subspace KNN, the

ensemble method chosen was the subspace and nearest neighbors were selected as the learner type. The number

of learners was set to 30 and the subspace dimension was set to 2. For RUSBoosted trees, the ensemble method

chosen was RUSBoost, and the decision tree was selected as the learner type. The maximum number of splits

was set to 20, the number of learners was set to 30, and the learning rate was set to 0.1.
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Table 2. The results obtained by using the reduced coefficients obtained from the 5th level decomposition of channel 1

with db6.

Classification methods
Training Test

Accuracy Accuracy Sensitivity Specificity

Ensemble classifiers

Bagged trees 98.9 97.8 87 99

Boosted trees 93.2 93.0 51 99

Subspace discriminant 88.9 88.1 9 99

Subspace KNN 95.6 94.9 67 99

RUSBoosted trees 86.6 84.7 75 86

Nearest neighbor

Fine KNN 94.2 93.8 68 98

Medium KNN 94.0 93.7 55 99

Coarse KNN 92.5 91.8 39 99

Cosine KNN 93.8 93.1 50 99

Cubic KNN 93.9 93.5 52 99

Weighted KNN 94.8 94.4 60 99

Support vector machines

Linear SVM 88.1 87.5 1 99

Quadratic SVM 90.9 90.1 27 99

Cubic SVM 91.5 90.9 40 98

Fine Gaussian SVM 94.5 93.9 54 99

Medium Gaussian SVM 92.5 91.9 39 99

Coarse Gaussian SVM 88.7 88.1 6 99

Decision trees

Simple tree 90.0 89.3 38 0.97

Medium tree 92.0 91.5 46 0.98

Complex tree 93.6 92.8 52 0.99

Discriminant analysis

Linear discriminant 81.1 80.9 57 85

Quadratic discriminant 78.9 77.7 60 81

KNN classification methods were also tested because distance-based classification is an effective and
straightforward method. Euclidean distance was chosen as the distance metric. We set the number of neighbors

to 1 for fine KNN; 10 for medium KNN, cosine KNN, cubic KNN, and weighted KNN; and 100 for coarse KNN.

The equal weighting function (no weights) was chosen as the distance weighting function for simplicity. Scaling

each coordinate distance was another attribute to decide. For our research, we chose to standardize data.

We also tested SVMs, which find the best hyperplane (with the largest margin between classes) to separate

data. By specifying the box constraint level, we can keep values of Lagrange multipliers in a bounded region.

The box constraint level chosen was 1 for SVMs. Increasing the level can increase training time, but can also

reduce the number of support vectors. The kernel scale was chosen as automatic for linear, quadratic, and cubic

SVM; therefore, to select the scale value, a heuristic procedure was used. The kernel function was chosen as

Gaussian for medium Gaussian, fine Gaussian, and coarse Gaussian SVMs.
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Decision trees were also tested. Decision trees are one of the best choices for fast classification and are easy

to interpret. A decision tree is a flowchart structure. The outcome of the test is represented by each branch. The

class label is represented by each leaf node. Gini’s diversity index was chosen as the split criterion. Employing

a maximum number of splits was our way to control the depth; 4 was chosen for the simple tree classification,

20 for medium tree classification, and 100 for complex tree classification. For the discriminant analysis case,

the selected regularization was diagonal covariance, which chooses the maximal possible regularization.

To evaluate the system, we ran it ten times, each time randomly dividing the data into a training set

and a testing set. Classification accuracy, sensitivity, and specificity were calculated using true positive (TP,

correctly identified events), true negative (TN, correctly rejected events), false positive (FP, incorrectly detected

events), and false negative (FN, incorrectly rejected events) [27]. They are defined as:

Sensitivity =
TP

TP + FN
× 100, (10)

Specificity =
TN

TN + FP
× 100, (11)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100. (12)

7. Deep learning

The convolutional neural network is one of the most successful classification techniques. In a simple convolutional

neural network, the signals pass through a series of layers. Data are given to the system through an input layer.

A set of filters is used in the convolution layer, and each filter is convolved across the signal. Dot products

between the inputs and the entries of the filter are computed to produce an activation map. The layer of

rectified linear units (ReLUs) is an activation function, which is a ramp function. This layer changes negative

input values to zero. Nonlinear properties of the network are increased in this layer, and the system learns

faster with the use of this layer. A pooling layer is usually placed after the ReLU layer. The primary goal of the

pooling layer is to reduce the input size for the next convolution layer. It prevents the system from memorizing

and creates a smaller computational load for the subsequent network layers. At this layer, the signal is passed

through a filter according to a specific stepping value and is processed by taking the maximum or the average

of the values. The fully connected layer connects each neuron in one layer to another neuron in another layer.

The underlying logic implemented is to remove some nodes of the network in a dropout layer. The main goal

of the dropout layer is to prevent the system from memorizing. A Softmax classifier is usually preferred in

deep learning networks. The convolutional neural networks represent the state of the art for many classification

problems [36].

Due to computational cost, convolutional neural networks are not suited for real-time applications. We

therefore used spiking neural networks for faster calculations. It is a similar network designed for real-time

applications. The spiking deep neural network was built as a realistic neural network to emulate the brain. It

was found to be more efficient regarding computation at the expense of performance loss [36].

In spiking neural networks, inputs are presented as streams of events. The evidence is integrated by

neurons during the presentation and spikes are created to communicate information. In our case, we used the

wavelet coefficients as the input.
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The integrate-and-fire (IF) model was used as the spiking neuron. Negative values in spiking neurons

were avoided by using ReLUs. The weights from the ReLUs were directly mapped to a network of IF units.

The bias was fixed to zero throughout training with backpropagation. Weight normalization was used to obtain

faster convergence and near-lossless accuracy. The network weights were normalized to ensure that activations

were small enough to prevent the ReLUs from overestimating output activations. All the weights were rescaled

by the maximum possible positive input. A five-layer fully connected neural network was trained. We used a

learning rate of 1 and 50% dropout. The weights were randomly initialized between 0.1 and –0.1. We obtained

a training accuracy rate of 96.73% for the networks. We obtained an accuracy rate of 95.17% for the normalized

network and an accuracy rate 95.22% for the unnormalized network on the test set. The normalization improved

latencies without loss in accuracy. The accuracy of the normalized and unnormalized spiking neural network

with respect to time is given in Figure 3.
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Figure 3. The accuracy of normalized and unnormalized spiking neural network.

8. Results

The average size of a 12-channel, 30-min signal was 11,102,420 bytes (10.6 MB). After compression, the average

size of a signal for one channel was found to be 95.120 bytes (92.9 KB). It can be said that the file size drops

to 1% of its original size. Around 99% of the energy was retained, which means almost all the energy was

preserved (zeros 96.87%), and it is possible to reduce the amount of data considerably. Also, 2.23 s was needed

to complete the compression of 30-min signals. After compressing the data, the time needed for calculations

was reduced. Thus, the system is faster even though some time is needed for compression. The number of

features was reduced to 6 by deciding on coefficients that had the most significant effect on classification and

usage of PCA. Our system achieved 98.6% accuracy for training and 97.8% accuracy, 87.4% sensitivity, and

99.7% specificity for testing (average values). By looking at Table 3, we can say that a similar success rate was

observed compared to the related works, but we tested our method on a bigger database. It took 777.626 s

(average time) for the feature calculation of 75 half-hour ECG recordings with MATLAB on a computer with

AMD A6-6310 processor and 4 GB RAM. After reduction of features, only 7.754 s was needed to complete the

test. That means our system is faster and more stable.

9. Discussion

A quick and accurate diagnosis is possible using clinical decision support systems. These are biological signal

processing applications created to help physicians. Also, using these applications, clinical management of heart

diseases can be improved.
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Table 3. Comparison of the related works with the proposed method.

Reference Type Channel Database Classifier Accuracy

Dokur et al. [1] 10 1 MIT-BIH Neural network 99.4

Prasad and Sahambi [2] 12 1 MIT-BIH Neural network 96.77

Shyu et al. [3] 2 1 MIT-BIH Neural network 99.79

Zhao and Zhang [4] 6 1 MIT-BIH SVM 99.68

Jiang et al. [5] 14 1 MIT-BIH SVM 98.65

Yu and Chen [6] 6 1 MIT-BIH Neural network 99.65

İşler and Kuntalp [7] 2 1 MIT-BIH KNN 96.39

Zellmer et al. [8] 6 1 MIT-BIH SVM 99.72

Emanet [9] 5 1 MIT-BIH Random Forest 99.8

Llamedo and Mart́ınez [10] 2 1 MIT-BIH Linear classifier 93

Rai et al. [11] 5 1 MIT-BIH Neural network 99.84

Rai and Trivedi [12] 2 1 MIT-BIH Neural network 97.8

Li et al. [13] 2 1 Complex Phys. Morphology c. 93

Ye et al. [14] 16 1 MIT-BIH SVM 99.3

Llamedo and Mart́ınez [15] 3 1 PhysioNet Cluster centroid 96

Faziludeen and Sabiq [16] 3 1 MIT-BIH SVM 98.46

Chen et al. [17] 2 1 PTB database Linear discrim. 85.57

Dima et al. [18] 2 1 Southampton SVM 89.22

Saminu et al. [19] 3 1 MIT-BIH Neural network 98.22

Banerjee and Mitra [20] 2 3 Physikalisch T. Threshold-based 97.6

Sahoo et al. [21] 5 1 MIT-BIH SVM 98.11

Jacob and Joseph [22] 2 1 MIT-BIH SVM 94.8

Saini et al. [23] 10 1 MIT-BIH KNN 87.5

Sharma et al. [24] 2 1 PTB Diag. SVM 96

Dewangan and Shukla [25] 5 1 MIT-BIH Neural network 87

Sayilgan et al. [26] 7 1 MIT-BIH Naive Bayes 92

Rad et al. [27] 5 1 OHCA Neural network 78.5

Proposed Method 9 12 St. Petersburg Bagged tree 98.6

It is most probable that biomedical signal processing will play a key role in patient care at a distance [37].

When biomedical signals are transmitted via network systems, signal compression and fast, reliable analysis

applications will be needed. When executing such work, efficiency and speed is a top priority.

The usage of wavelet-compressed data from the St. Petersburg Institute of Cardiological Technics 12-

lead arrhythmia database was our first step. In general, the MIT-BIH arrhythmia database is used by most

research that is performed on ECG signals [1–12,14,16,19,21–23,25,26], and classification is executed on a single

channel [1–19,21–27]. Our research was performed on 12 channels. Furthermore, wavelet-compressed data are

available, but they are not encountered in such a research study that uses these compressed data for classification.

Compression takes some time, but it decreases the data that are processed. Thus, it is faster to use compressed

data, especially in big databases. If we think about wireless transmission of the signal, it is even better to

compress and send. The data were preprocessed, similar to most of the research for improved classification [1–
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27]. Denoising, trend elimination, baseline correction, and normalization were found to be necessary for better

performance. The usage of wavelets for feature extraction is a known approach. However, as an extra step, we

reduced the number of features by deciding on coefficients that have the most significant effect on classification

and usage of PCA [38]. Even though PCA is a method used by researchers, checking each coefficient one by

one and using PCA at the same time is not common. After deciding on coefficients and adding the standard

deviation and variance of the feature set, PCA was applied to finalize our feature set. The dimension of the

feature set was six. Our feature set is smaller than those of other related works. It should be noted that two
small windows are used when calculating wavelet coefficients. Even though the size of the window differs in

each study, most research uses one window [1–27]. Usage of two small windows reduces the number of features,

which results in faster classification.

Finally, we use bagged trees for classification to compare the performance of 12-lead ECG recordings.

Basic classification methods were compared to determine if a better method was available for our research (as

seen in Table 2). The wavelet coefficients were also classified using spiking neural networks, and the accuracy

of normalized and unnormalized systems was obtained.

Generally, neural networks are preferred for classification [1–3,6,11,12,19,25,27]. The SVM [4,5,8,14,16,18,

21,22,24] is another popular technique for classification of arrhythmia. Random forest [9], linear classifier [10],

morphology consistency evaluation [13], cluster and centroid identification [15], linear discriminant analysis

[17], threshold based classifier [20], KNN [7,23], and naive Bayes [26] are the other classification methods that

are used in related works. The results obtained from 12-lead ECG recordings using bagged trees classification

showed that our performance was as successful as others and more stable. The results obtained from 12-lead

ECG recordings using bagged trees classification can be seen in Table 4.

Table 4. The results obtained from 12-lead recordings using bagged trees classification.

Bagged trees
Training Test

Accuracy Accuracy Sensitivity Specificity

Lead 1 98.9 97.8 87 99

Lead 2 99.0 97.9 88 99

Lead 3 97.9 96.6 81 99

Lead 4 99.1 98.7 93 99

Lead 5 98.2 97.1 82 99

Lead 6 98.7 98.1 88 99

Lead 7 98.8 98.1 90 99

Lead 8 98.9 98.1 89 99

Lead 9 98.5 97.9 87 99

Lead 10 98.3 97.7 87 99

Lead 11 98.3 97.8 88 99

Lead 12 98.5 98.0 89 99

10. Conclusion and future works

This research proposes a fast, simple, and accurate arrhythmia detection system based on wavelet parameters.

The bagged tree method was chosen for classification. Simulation in MATLAB R2016a showed that our system
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achieves 98.6% accuracy for training and 97.8% accuracy, 87.4% sensitivity, and 99.7% specificity for testing

(average values) with wavelet-compressed data from the St. Petersburg Institute of Cardiological Technics 12-

lead arrhythmia database. Our system was as successful as others and more stable. Also, our method is found to

be fast enough for real-time applications because of a significantly reduced number of features. This reduction

was achieved by using two small windows when calculating wavelet coefficients and finding the coefficients that

had the most significant effect on classification. We used PCA for further reduction of the number of features.

In future studies, new and more extensive databases are planned to be used with different features combined

with wavelet coefficients.
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