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Abstract: In this paper, we study the location optimization problem of remote antenna units (RAUs) in generalized

distributed antenna systems (GDASs). We propose a composite vector quantization (CVQ) algorithm that consists of

unsupervised and supervised terms for RAU location optimization. We show that the CVQ can be used i) to minimize an

upper bound to the cell-averaged SNR error for a desired/demanded location-specific SNR function, and ii) to maximize

the cell-averaged effective SNR. The CVQ-DAS includes the standard VQ, and thus the well-known squared distance

criterion (SDC) as a special case. Computer simulations confirm the findings and suggest that the proposed CVQ-DAS

outperforms the SDC in terms of cell-averaged “effective SNR”.
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1. Introduction

It has recently been shown that the distributed antenna system (DAS) outperforms traditional co-located

antenna systems (CASs) in terms of not only transmit power saving but also spectral efficiency for various cellular

radio environments (e.g., [1–4]). Therefore, the DAS is considered a new cellular communication structure for

future wireless communication networks [3]. The traditional CAS co-locates the antenna elements according to

the wavelength; however, the DAS distributes its antenna elements (located at remote antenna units (RAUs))

geographically over the cell area. Indeed, one of the best possible ways to meet the exponentially increasing

mobile data traffic in coming years is to bring the antennas closer to the user equipment (UE). For further

information and references about the DAS, see e.g. [3].

The system performance improvements of the DAS in terms of power saving and spectral efficiency

highly depend on the locations of its RAUs [3,5–7]. Several papers analyzed the performance of DASs with

fixed RAU locations for various transmit strategies for uplink or downlink. The optimal RAU location in terms

of “area averaged bit error probability” for linear downlink DASs is derived in [8]. An optimal radius for RAU

locations of the DAS in circular layout is investigated in [9]. The authors of [4] propose an iterative algorithm

to determine optimal RAU locations based on stochastic approximation theory. The so-called squared distance

criterion (SDC) was proposed in [6] in order to find optimal antenna locations in a generalized DAS (GDAS)

[10] in order to maximize a lower bound of the cell averaged ergodic capacity. The paper [6] converts the RAU

location problem into the codebook design problem in vector quantization [11]. This implies that any clustering

algorithm like Lloyd or k-means can be used to optimize the RAU locations of the DAS [6]. As a result, the
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SDC [6] received much attention within the DAS academic community, and following in the footsteps of the

SDC and the analysis in [6], several other papers further investigated the SDC for different DAS scenarios. In

[12], the SDC is applied to the downlink DAS with selection transmission (ST) in a single cell. The squared-

distance-divided-power-criterion is proposed in [13] for linear DAS, which similarly maximizes a lower bound

to the ergodic capacity. A RAU location design method for single-cell and two-cell downlink DASs with ST

is presented in [5], which maximizes a lower bound of the expected signal-to-noise ratio (SNR). The results in

[5] are either the same or quite close to the SDC solution. Similarly, an SNR criterion is used for a DAS with

multiple-antenna ports in [14]. In [7], the authors extend the SDC results to single- and two-cell DASs with ST,

maximal ratio transmission (MRT), and zero-forcing beamforming under sum power constraint by maximizing

a lower bound of the expected SNR. In [15], the authors place RAUs in a circular layout and estimate the

optimal radius of the antenna layout that maximizes the sum rate. RAU locations are located evenly on a circle

in [16] and the authors derive some analytical expressions for the achievable rate of an arbitrarily located user.

A geometric model is used to analyze the RAU communications in [17].

In all the aforementioned works in the DAS literature, a performance index like cell averaged ergodic

capacity or expected SNR is optimized evenly over the whole geographical area of the DAS without any location-

specific desired performance preferences. However, in many practical systems desired/demanded SNRs (and

thus desired data rates) depend on locations. For example, desired/demanded average SNR in hot spot areas like

schools and meeting areas is much higher than those in remote and less densely populated areas. Therefore, there

is a need for optimizing the RAU locations for cases where location-specific desired SNRs are specified. This

paper addresses this question. In this paper, we follow a different approach from any others mentioned above

taking the location-specific desired SNR (data rates) into account. For a given location-specific desired SNR

function in the geographical area of GDAS, what are the optimum RAU locations? To address this question,

we propose a composite vector quantization (CVQ) algorithm consisting of unsupervised and supervised terms

for RAU location optimization. We show that the CVQ i) minimizes an upper bound to the cell-averaged SNR

error, provided a desired/demanded location-specific SNR function, and ii) maximizes the cell-averaged effective

SNR.

The paper is arranged as follows: We present the system model in section 2. The proposed CVQ-DAS is

presented and analyzed in section 3. Simulation results are shown in section 4, followed by the conclusions in

section 5.

Notation 1 Throughout the paper, bold upper and bold lower case letters denote matrices and vectors, respec-

tively, and superscript (·)T denotes transpose, IM is the M × M identity matrix, and E {·} represents the

expectation.

2. System model

Let us consider a GDAS [10] with N RAUs in each cell and M antenna elements in each RAU, and every UE

has one antenna. We examine a noise-limited environment as in [6]. This corresponds to an isolated cell case

or any frequency reuse case where the co-channel interference is small compared to the thermal noise. If the

RAU includes multiple co-located antenna elements, then the channels between one RAU and the UE undergo

the same large-scale fading. All channels between the antennas and the UE are assumed to be flat fading and

slow fading. Let us denote the channel vector from the nth RAU to the UE as
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hn =

√
sn
dαn

[hn,1hn,2 · · ·hn,M ]
T
, (1)

where α is the path loss exponent, sn is the large-scale fading (e.g., shadow fading) term (between the UE and

the nth RAU) and is modeled as log-normal random variable (i.e. 10 log10(sn) is a zero mean Gaussian random

variable (rv) with standard deviation σs), and hn,m (n = 1,. . . ,N, m = 1,. . . ,M ) represents the small-scale

fading (multipath) (e.g., Rayleigh fading) term (between the UE and the mth antenna element of the nth

RAU), and is modeled as a unit-variance circularly symmetric complex Gaussian rv. Large-scale and small-

scale fadings are independent. Then the NM × 1 dimensional channel vector h between the UE and the DAS

has the form h =
[
hT
1 h

T
2 · · ·hT

N

]T
. In this paper, we examine the maximal ratio combining (MRC) case in

uplink. Representing the RAU transmit power as pUE , the received signal vector y at GDAS can be written as

y = (pUEah) + ς , where a is the transmitted symbol, h is the channel vector, and ς is a zero-mean complex

additive white Gaussian noise vector whose covariance matrix is E
{[

ςςH
]}

= σςINM in which σς > 0. The

uplink expected SNR with the MRC [18] for the 2-dimensional or 3-dimensional user location xl is obtained by

averaging the instantaneous SNR over the small-scale and large-scale fadings:

θ̄a (xl) =
pUE

σ2
ς

N∑
n=1

Eh,s {sngn,x}
1

∥xl − cn∥α2
, (2)

where Eh,s {·} denotes the expectation with respect to h (small-scale fading) and s (large-scale fading), n is the

index of the RAU and gn,x =
∑M

m=1 |hn,m|2 , andpUE is the transmit power of the UE, and n ∈ {1, · · · , N} . It
is assumed that the expectation Eh,s {·} for a particular location is calculated over all possible small-scale fading

and large-scale fading realizations as done in [6] and [3]. Let location vector be x ∈ ℜq×1 , and an arbitrary

probability distribution function (pdf) of the UE location be denoted by f (x). Similarly, the locations of the

RAUs {cn}Nn=1 ∈ ℜq×1 . Let dmin denote the minimum distance between the UE location and an RAU location,

and dmax be the radius of the GDAS. The system performance of the GDAS is calculated for the area denoted

as Ω̄

Ω̄ : x ∈ Ω ∋ ∥x− cn∥2 ≥ dmin, n = 1, · · · , N (3)

Supposed that an arbitrary location-specific desired/demanded SNR, denoted as θ̄d (x), is provided. The

actual average SNR is given by (2). Then the cell averaged desired/and actual SNR, denoted as Γ̂d , and

Γ̂a , respectively, is derived by averaging θ̄d (x) and θ̄a (x) over user locations, i.e. Γ̂d = Ex

[
θ̄d (x)

]
and

Γ̂a = Ex

[
θ̄a (x)

]
, where Ex [·]denotes the expectation over user locations. In what follows, we define wasted

SNR and effective SNR:

Definition 1 Wasted SNR: For a given location x, if the supplied/actual SNR θ̄a (C,x) is higher than the

demanded/desired SNR θ̄d (x) , then the excessive amount is useless, and thus is wasted. Thus, θ̄wasted (x) =

min
(
0, θ̄a (x)− θ̄d (x)

)
.

Definition 2 Effective SNR: The “effective SNR” for location x, denoted as θ̄eff (x) , is defined as the amount

of SNR that is completely utilized by the users and not wasted according to a given desired SNR θ̄d (x) : thus,

θ̄eff (x) = min
(
θ̄d (x) , θ̄a (x)

)
. Cell averaged effective SNR is then equal to Ex [θeff (x)] .
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Defining a q × N dimensional matrix C ∈ ℜq×N , where q is 2 or 3 and whose columns are the RAUs

locations {cn}Nn=1 , the RAU location optimization problem could be formulated as

max
C

(
Ja (C) = Ex

[
θ̄a (C,x)

])
(4)

as in e.g. [5,7]; or

min
C

(
J2 (C) = Ex

[(
θ̄d (x)− θ̄a (C,x)

)2])
(5)

In this paper, the proposed composite vector quantization (named CVQ-DAS) in the next section minimizes

J2 (C) in (5) because i) the desired SNR is location-specific and we aim to shape the actual SNR function

θ̄a (C,x) according to the desired SNR function θ̄d (x), and ii) the J2 (C) in (5) minimizes the wasted SNR

and maximizes the effective SNR.

3. CVQ-DAS for determining GDAS RAU locations

3.1. Statistical setting

Let us consider the J2 (C) in (5). In Appendix A, we show that the average SNR function θ̄a (·) in (2) has a

global Lipschitz constant, which is denoted as νglob for the interval [dmin, dmax] .

Definition 3 Winning RAU for a given location x: For any location x ∈ Ω , we call the RAU location that is

the closest to x the winning RAU, denoted by cn(x) , where index n(x) ∈ {1, 2, · · · , N} . In other words, for the

winning RAU cn(x) :
∥∥cn(x) − cn

∥∥ = min {∥x− cn∥}Nn=1 .

Proposition 1 The J2 (C) in (5) is upper bounded by the following UB2 (C) :

UB2 (C) = (q + 1)

∫
x∈Ω̄

(
ν2glob

∥∥x− cn(x)
∥∥2
2
+
(
θ̄d (x)− θ̄a

(
C, cn(x)

))2)
f (x) dx, (6)

where f (x) is the probability distribution function of the UE location.

Proof The proof is given in Appendix B. 2

3.2. Deterministic setting

In section 3.1, we analyze the RAU location problem from a statistical point of view. In what follows, we derive

the same upper bound in a deterministic setting in order to devise the RAU allocation algorithm by using a

gradient descent approach. Let us assume that we are given L location samples from the user distribution

f (x), denoted by set {xl}Ll=1 . Then J2 (C) in (5) is approximated by these L samples as

J2 (C) ≈ J̃2 (C) =
1

L

L∑
l=1

(
θ̄d (xl)− θ̄a (C,xl)

)2
, (7)

where θ̄d (xl) and θ̄a (C,xl) are the desired/demanded and the actual/supplied average SNR, respectively, at

location xl . Following the steps (A.1) to (B.8), we similarly obtain the following upper bound denoted as
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UB2,d (C):

J̃2 (C) ≤ UB2,d (C) =
q + 1

L

(
L∑

l=1

ν2glob
∥∥xl − cn(l)

∥∥2
2
+
(
θ̄d (xl)− θ̄a

(
C, cn(l)

))2)
(8)

Corollary 1 Following the steps (5) to (B.8) for J1 (C) ≈ J̃1 (C) = 1
L

L∑
l=1

(
θ̄d (xl)− θ̄a (C,xl)

)
, we obtain the

following upper bound:

J̃1 (C) ≤ UB1,d (C) =
1

L

(
L∑

l=1

√
q + 1νglob

∥∥xl − cn(l)
∥∥
2
+
(
θ̄d (xl)− θ̄a

(
C, cn(l)

)))
(9)

Proposition 2 Defining λn,x = Eh,s {sngn,x} , λmax
n,x = max {λn,x} , φ′

max = −αd
−(α+1)
min , and Ja (C) ≈

J̃a (C) = 1
L

L∑
l=1

θ̄a (C,xl) from (4), the J̃a (C) is lower bounded by the following LBa (C) :

LBa (C) =
1

L

L∑
l=1

(
β
∥∥x− cn(x)

∥∥
2
+ θa

(
C, cn(x)

))
, (10)

where β = pUE

σ2
ς

N∑
n=1

λmax
n,x φ′

max < 0 .

Proof Defining φ (d) = d−α , dn,x = ∥x− cn∥2 , and dn,c =
∥∥cn(x) − cn

∥∥
2
, and then adding and subtracting

the term θa
(
C, cn(x)

)
from the J̃a (C), we write

Ja (C) =
1

L

∑L

l=1

[(
N∑

n=1

λn,x (φ (dn,x)− φ (dn,c))

)
+ θa

(
C, cn(x)

)]
(11)

Applying the mean value theorem to the function φ (d) = d−α for ∀di, dj ∈ [dmin,∞) gives

φ (di)− φ (dj) =
(
d−α
i − d−α

j

)
φ′ (µdi + (1− µ)dj) , (12)

where µ ∈ [0, 1], and φ′ (·) < 0. The derivative of φ (d) is φ′ (d) = −αd−(α+1) < 0. Hence, the minimum

(negative) value of the derivative for the interval [dmin,∞) is at d = dmin , and is denoted by φ′
max < 0. Using

the triangle inequality (dk,x − dk,c) ≤
∥∥x− ck(x)

∥∥
2
, for k = 1,2,. . . ,K, and the fact that φ′

max < 0, we obtain

a lower bound to the Ja (C) in (4):

J (C) ≥ 1

L

L∑
l=1

(
β
∥∥x− cn(x)

∥∥
2
+ θa

(
C, cn(x)

))
= LB (C) , (13)

where β = pUE

σ2
ς

N∑
n=1

λmax
n,x φ′

max < 0, which gives the lower bound LBa (C) in (10). This completes the proof. 2
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The proposed composite vector quantization for DAS (CVQ-DAS) is given as

cn(l) (t+ 1) = cn(l) − εI(t)
(
cn(l) − xl

)
− εO(t)

(
cn(l) − cn

)
τ(t), (14)

where cn(l) is the winning RAU to a given location xl , and τ(t) =

 +1, if θ̄d (xl) > θ̄a (C,xl)
−1, if θ̄d (xl) < θ̄a (C,xl)
0, if θ̄d (xl) = θ̄a (C,xl)

, and εI(t)

and εO(t) are decreasing nonnegative real numbers representing the step sizes.

Proposition 3 For a given set of
{
xl, θ̄d (xl)

}L
l=1

, updating the winning RAU location cn(l) for location xl

at step tby the CVQ-DAS in (14) minimizes the upper bound UB2,d (C) in (8). In the CVQ-DAS in (14), the

εI(t) and εO(t) are decreased at each step when t goes to infinity. The UB2,d (C) in (8) minimizes an upper

bound to J2 (C) in (5), and maximizes a lower bound LBa (C) in (10) to Ja (C) in (4).

Proof For a given
{
xl, θ̄d (xl)

}
, first defining e2,l = ν2glob

∥∥xl − cn(l)
∥∥2
2
+
(
θ̄d (xl)− θ̄a

(
C, cn(l)

))2
and e1,l =

νglob
∥∥xl − cn(l)

∥∥
2
+
(
θ̄d (xl)− θ̄a

(
C, cn(l)

))
from (8) and (9), respectively, and calculating their gradients with

respect to the winning RAU location cn(l) , and then updating the winning cn(x) according to their instantaneous

gradients cn(l) (t+ 1) = cn(l) (t) − ε(t)
de2,l(t)
dcn(l)

and cn(l) (t+ 1) = cn(l) (t) − ε(t)
de1,l(t)
dcn(l)

, respectively, gives the

proposed CVQ in (14), where ε(t) is a decreasing nonnegative real number representing the step size. In the

case of minimization of UB2,d (C) in (8), the step sizes εI(t) and εO(t) are equal to

εI(t) = ε(t)2 (q + 1) ν2glob

εO(t) = ε(t)
2α (q + 1) υ2pUE

σ2
ς

N∑
n=1

λn,x∥∥cn(l) − cn
∥∥α+2

2

, (15)

where λn,x = Eh,s {sngn,x} . Similarly, in the case of minimization of UB1,d (C) in (9), the step sizes εI(t)

and εO(t) are equal to

εI(t) = ε(t)
(√

q + 1
)
νglob εO(t) = ε(t)

2αpUE

σ2
ς

N∑
n=1

λn,x

z0.5α+1
n,l

(16)

Finally, in the case of maximization of LBa (C) in (10), because β < 0 in (10), in order to maximize the

LBa (C), the location matrix C should both minimize E
[∥∥x− cn(x)

∥∥
2

]
≈ 1

L

L∑
l=1

∥∥x− cn(x)
∥∥
2
and maximize

E
{
θa
(
C, cn(xl)

)}
≈ 1

L

L∑
l=1

θa
(
C, cn(xl)

)
at the same time. According to this observation, we devise a two-step

iterative procedure:

Step: 1

cn(l) (t+ 1) = cn(l) (t)− ε(t)
d
∥∥x− cn(x)

∥∥
2

dcn(l)
(17)

Step: 2

cn(l) (t+ 1) = cn(l) (t) + ε(t)
θa
(
C, cn(xl)

)
dcn(l)

, (18)
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where ε(t) > 0. Eq. (17) gives

cn(l) (t+ 1) = cn(l) (t)− εI(t)
(
cn(l) (t)− xl

)
, (19)

where εI(t) = ε(t)/
∥∥cn(l) − xl

∥∥
2
. Eq. (18) gives

cn(l) (t+ 1) = cn(l) (t)− εO(t)
(
cn(l) (t)− ck

)
, (20)

where εO(t) = ε(t) α
2σ2

ς

N∑
k=1

λk

z0.5α+1
k,l

. Combining (19) and (20) into one step gives the proposed CVQ in (14).

From (15)–(20), by suitably decreasing the step size ε(t) (and eventually εI(t) and εO(t)) at each step when

t goes to infinity assures that the RAU locations converge, which completes the proof. 2

Examining the proposed CVQ update for the winning RAU in (14), there are two terms:

1) The first term whose step size is εI(t) is nothing but the well-known Kohonen rule, where only the winning

vector cn(l) for the input xl is updated, which realizes a vector quantization (VQ) in input space (see

e.g. eq. 13.46 on pp. 13–15 in [19]). Therefore, the codebook vector ck(l) gets always closer to the input

xl in an unsupervised fashion.

2) The other term introduces a supervised term and makes the winning RAU location ck(l) , at each step,

either get closer to or go away from all other RAU locations depending on the desired SNR value for that

particular location. If
(
θ̄d (xl) > θ̄a

(
ck(l)

))
then τ(t) = 1 and the winning ck(l) gets closer to all ck ;

otherwise if
(
θ̄d (xl) < θ̄a

(
ck(l)

))
then τ(t) = −1 and the winning cn(l) goes away from cn , where n

= 1,2,. . . ,N. Update of the winning codebook vector (RAU location) when θ̄d (xl) > θ̄a
(
C,xn(l)

)
and

θ̄d (xl) < θ̄a
(
C,xn(l)

)
is depicted in Figures 1a and 1b, respectively.

(a) (b)

Figure 1. Update of the winning codebook vector when (a) θ̄d (xl) > θ̄a
(
C,xn(l)

)
and (b) θ̄d (xl) < θ̄a

(
C,xn(l)

)
by

(14) for the N = 2 case (e.g., if n(l) = 1, then k = 2).

Therefore, the main difference between the proposed CVQ and the standard SDC is as follows: while the

SDC takes only the mobile locations into account, the CVQ takes not only the mobile locations but also the

location-specific desired SNR θ̄d (x) into account. That is why the CVQ outperforms the VQ in maximizing the

effective SNR. From (14), although the computational complexity of the proposed CVQ is higher than that of
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the standard VQ, the calculations and simulation campaigns are carried out only once and offline to determine

the RAU locations. Once the RAU locations are determined and fixed, then there is no computation to be

performed any more.

Corollary 2 If θ̄d (x) is chosen such that θ̄d (x) ≥ θ̄a (C,x) , for any x ∈ Ω̄ , and thus τ(t) = +1 in (14),

then for maximization of Ja (C) in (5), the winning RAU location always both gets closer to the user location

and gets closer to other RAU locations.

There are both unsupervised and supervised terms in (14), and that is why we call it composite vector

quantization (CVQ). In order to give an insight into the update rule of the CVQ-DAS in (14), we sketch the

CVQ in Figure 1 for the K= 2 case (e.g., if k(l)= 1, then k= 2). The standard update of the Kohonen

rule-based VQ, which corresponds to the SDC in [6], is shown in Figure 2 for the same case for comparison

reasons. The Kohonen-based VQ update is given by

Figure 2. (a) Update of the standard VQ by (21) (and thus the SDC criterion in [2]) for the K= 2 case (e.g., if k(l) =1,

then k =2), (b) runtimes of SDC and CVQ in Example 1.

cn(l) (t+ 1) = cn(l) − ε(t)
(
cn(l) − xl

)
, (21)

where ε(t) > 0, and n(l) is the index of the winning codebook vector. The Kohonen-based VQ and the SDC

in [6] minimize the following VQ cost function:

JSDC (C) =
1

L

L∑
l=1

∥∥xl − cn(l)
∥∥2
2

(22)

Comparing (8), (19), and (20) with (21) and (22), we see that the first step of the proposed CVQ-DAS is nothing

but the SDC in [2]. If the second step (20) is omitted, then the proposed CVQ-DAS becomes equal to the SDC

in [6].

4. Simulation results

Example 1 (High SNR scenario) Without loss of generality, a direct-sequence (W)CDMA wireless network is

considered in all examples of the GDAS. For link gain modeling, attenuation factor 2 ≤ α ≤ 6 , the log-normally

distributed sn in (1) is generated according to the model in [20], and the lognormal variance is 6 dB. Without
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loss of generality, the sum of the RAU transmit powers is equal to 1 W for all simulations. The minimum

distance between the RAU and UE is dmin = 2 m. Here we examine a two-dimensional GDAS scenario as in

[6]. The MS locations are drawn from a PPP process [21] whose density is 0.03. Without loss of generality, the

location-specific target SNR is chosen to reduce from 80 dB to 20 dB with respect to the norm of the difference

between the MS location and the center of the GDAS. We plot the clusters found by the SDC [6] and the CVQ-

DAS for the very same initial conditions in Figure 3 for N = 6 . Figure 3 shows that the RAU locations found by

the CVQ-DAS are closer to each other as compared to the SDC solutions, which yields the clusters in Figure 3.

The effective SNR with respect to number of RAUs is shown in Figure 4 for the SDC and the CVQ-DAS. Figure

4 shows that the proposed CVQ-DAS outperforms the SDC in terms of the average effective SNR, and the gain

is about 1 dB in most cases. This gain is obtained at the expense of computational complexity in the clustering

algorithm. Figure 2a compares the runtimes of the SDC [2] and the CVQ-DAS for a 100-step clustering process

and shows that both evolve almost linearly with respect to number of RAUs. Although the CVQ-DAS is slower,

it pays off because the off-line clustering is done only once and gives about 1-dB SNR gain in our scenarios.

Figure 3. Clusters and RAU locations found by (a) SDC and (b) CVQ-DAS for N = 6.

Figure 4. (a) Effective SNR, and (b) effective ergodic capacity for the high-SNR case.
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Example 2 (Medium SNR scenario) To generate a medium SNR scenario, the sum of the RAU transmit

powers is reduced to 0.001 W. The minimum distance between the RAU and UE is increased to dmin = 20 m.

Other parameters are the same as in Example 1. The effective SNR and effective ergodic capacity with respect

to number of RAUs is shown in Figures 5a and 5b, respectively. Figure 5 shows that the proposed CVQ-DAS

outperforms the SDC in terms of effective SNR.

Figure 5. (a) Effective SNR, and (b) effective ergodic capacity with respect to number of RAUs for the medium SNR

scenario.

5. Conclusions

In this paper, we propose a composite vector quantization (CVQ) algorithm for the location optimization

problem of RAUs in generalized DAS. The proposed CVQ minimizes an upper bound to the cell-averaged SNR

error, provided a desired/demanded location-specific SNR function, and maximizes the cell-averaged effective

SNR. It converts the RAU location optimization problem into a codebook design problem in vector quantization,

and includes the SDC in [6] as a special case. The CVQ is composed of two terms: one unsupervised and one

supervised. The unsupervised term is related to the standard Kohonen rule, which is a realization of the

standard vector quantization. This unsupervised part is equal to the SDC in [6]. The other term, which is

supervised, makes the winning codebook vector (RAU location), at each step, either get closer to or go away

from the rest of the RAU locations depending on the desired SNR value for that location. Computer simulations

confirm the findings and suggest that the proposed CVQ-DAS outperforms the SDC in terms of cell-averaged

“effective” SNR, and gives comparable performance with respect to the SDC in terms of cell-averaged SNR.
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A. Appendix

To examine the global Lipschitz constant of the average SNR function θ̄a (·) in (2) for the interval [dmin,∞),

where dmin is the minimum distance between the user and any RAU, we first show that the path loss function

φ (d) = d−α for the interval [dmin,∞) has a Lipschitz constant as ϑ = α/d
(α+1)
min , where α is the path loss

exponent. Because φ (d) = d−α is a differentiable function in [dmin,∞), we apply the mean value theorem in

(12) and obtain

|φ (di)− φ (dj)| ≤ ϑ |di − dj | , (A.1)

where ϑ = α/d
(α+1)
min is a Lipschitz constant of the path loss function φ (d). It is assumed that large-scale and

small-scale fading random variables sn and gn,x are independent, and the average large-scale fading Es {sn} is

RAU location-specific. Denoting the average small-scale fadings at locations xi and xj as ḡn,xi = Eh {gn (xi)}
and ḡn,xj = Eh {gn (xj)} , respectively, we define

γ =

∣∣∣∣∣∣
max

{
ḡn,x ∥xi − ck∥−α

2 , ḡn,ck
∥xj − ck∥−α

2

}
∣∣∣∥xi − ck∥−α

2 − ∥xj − ck∥−α
2

∣∣∣
∣∣∣∣∣∣ (A.2)

Using Eq. (A.2) and with φ (d) = d−α as a decreasing function, we observe that∣∣∣ḡn,xi ∥x1 − ck∥−α
2 − ḡn,xj ∥x2 − ck∥−α

2

∣∣∣ ≤ γ
∣∣∣∥x1 − ck∥−α

2 − ∥x2 − ck∥−α
2

∣∣∣ (A.3)

From the average SNR function θ̄a (·) in (2), we have

∥∥θ̄a (xi)− θ̄a (xj)
∥∥
1
=

1

σ2
ς

K∑
k=1

s̄n
∥∥ḡk,xiφ (∥xi − ck∥2)− ḡk,xjφ

(
∥xj − ck∥2

)∥∥
1

(A.4)

Using (A.3) and (A.4), and applying the triangular rule and considering the definition of the l1 -norm of a

vector, we obtain ∥∥θ̄a (xi)− θ̄a (xj)
∥∥
1
≤ νglob ∥xi − xj∥2 , ∀xi,xj ∈ Ω̄, (A.5)

where νglob = αγ
(∑K

k=1 pks̄k

)
/
(
σ2
ς d

(α+1)
min

)
, in which α is the path loss exponent, γ is related to the average

small-scale fading as defined in (A.2), pk is the transmit power of the k th RAU, s̄k is the average large-scale

fading coefficient related to the k th RAU, σ2
ς is the average noise power, and dmin is the minimum distance

between any UE and RAU. From (A.5), θa (·) in (2) has a global Lipschitz constant νglob for the interval

[dmin,∞).

B. Appendix Proof of Proposition 1

Adding and subtracting the term θ̄a
(
C, cn(x)

)
from the argument of the expectation in (5) and taking the

absolute value gives

J2(C) ≤
∫

x∈Ω̄

 ∣∣θ̄a (C, cn(x)
)
− θ̄a (C,x)

∣∣
+θ̄d (x)− θ̄a

(
C, cn(x)

)
2

f (x) dx (B.6)
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Some of the steps in the proofs of Appendices A and B are partly inspired by the analysis in [22,23]. Examining

the average SNR function θ̄a (·) in (2), we prove in Appendix A that the θ̄a (·) has a global Lipschitz constant

νglob for the interval [dmin,∞):∥∥θ̄a (xi)− θ̄a (xj)
∥∥
2
≤ νglob ∥xi − xj∥2 , ∀xi,xj ∈ Ω̄, (B.7)

where νglob = αγpUE

(∑N
n=1 s̄n

)
/
(
σ2
ς d

(α+1)
min

)
, in which α is the path loss exponent, γ is related to the average

small-scale fading as defined in (A.2) in Appendix A, pUE is the transmit power of the user, s̄n is the average

large-scale fading coefficient related to the nth RAU, σ2
ς is the average noise power, and dmin is the minimum

distance between user location and any RAU. Thus, using the mean value theorem and the Lipschitz constant

of θ̄a (·) in (2) and the fact that the l1 -norm of a (q+ 1 ) dimensional vector is not greater than
√
q + 1 times

its l2 norm gives

J2 (C) ≤ UB2 (C) , (B.8)

where UB2 (C) is given by (6). This completes the proof.
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