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Abstract: The theory and implementation of an extreme learning machine (ELM) have proved that it is a simple,
efficient, and accurate machine learning methodology. In an ELM, the hidden nodes are randomly initiated and fixed
without iterative tuning. However, the optimal hidden layer neuron number (Lopt) is the key to ELM generalization
performance where initializing this number by trial and error is not reasonably satisfied. Optimizing the hidden layer
size using the leave-one-out cross validation method is a costly approach. In this paper, a fast and reliable statistical
approach called optimum ELM (OELM) was developed to determine the minimum hidden layer size that yields an
optimum performance. Another improvement that exploits the advantages of orthogonal projections with singular value
decomposition was proposed in order to tackle the problem of randomness and correlated features in the input data. This
approach, named projected ELM (PELM), achieves more than 2% advance in average accuracy. The final contribution
of this paper was implementing Tikhonov regularization in the form of the L2 -penalty with ELM (TRELM), which
regularizes and improves the matrix computations utilizing the L-curve criterion and SVD. The L-curve, unlike iterative
methods, can estimate the optimum regularization parameter by illustrating a curve with few points that represents the
tradeoff between minimizing the training error and the residual of output weight. The proposed TRELM was tested in
3 different scenarios of data sizes: small, moderate, and big datasets. Due to the simplicity, robustness, and less time
consumption of OELM and PELM, it is recommended to use them with small and even moderate amounts of data.
TRELM demonstrated that when enhancing the ELM performance it is necessary to enlarge the size of hidden nodes
(L) . As a result, in big data, increasing L in TRELM is necessary, which concurrently leads to a better accuracy.
Various well-known datasets and state-of-the-art learning approaches were compared with the proposed approaches.

Key words: Extreme learning machines, singular value decomposition, Tikhonov regularization, optimum hidden nodes,
orthogonal projection

1. Introduction
Guang and his group reported that a single hidden layer feedforward neural network (SLFN) that has a sufficient
number of hidden neurons, arbitrarily assigned input weights, and biases with almost any nonlinear activation
function can universally approximate any continuous functions or any compact input sets with zero or randomly
small error [1]. Recently, extreme learning machine (ELM) has attracted a large number of researchers and
engineers due to its rapidity and significant generalization performance. It has other merits including least
human intervention, high learning efficiency, and fast learning speed [2–4].
∗Correspondence: nicoskun@yildiz.edu.tr
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ELM is a successful algorithm for both classification and regression [1–6], also extending the ability to
include clustering [7]. It can be used efficiently with online sequential [8] as well as self-adaptive evolutionary
algorithms [9], and in handling big data [10,11]. Almost all ELM studies have revealed that choosing the number
of neurons in the hidden layer (L) is the key factor in determining the overall SLFN network architecture and
performance. An appropriate method for the selection of the optimum number of hidden nodes is still unknown;
it is set by the user and usually adjusted by trial and error [12–14]. To tackle this issue, researchers have proposed
many ELM models that can properly select the network topology according to certain criteria. These models
can be divided into 2 main categories: constructive (growing) methods such as incremental ELM [15,16] and
error minimized ELM [17], and destructive (pruning) methods like pruned ELM [18] and optimally pruned ELM
[6]. All the aforementioned methods have a serious shortcoming. They initiate a starting network structure and
then gradually adjust the network depending on the error metric. They usually converge progressively with
the lack of how to determine the starting network topology. The main objective of this paper is to develop a
fast statistical algorithm that can find an appropriate network structure for an ELM and its variants without
iteratively solutions.

2. ELM theoretical preliminaries

According to ELM theory [1], any nonlinear piecewise continuous activation function, G(.), can be used for
feature mapping to approximate any continuous target function. Some examples of these functions are sigmoid,
tangential, Gaussian, hinging, and ridge polynomials functions. In an ELM, the random choice of input layer
weights and biases may improve the generalization properties of the solution of the linear output layer but
does not guarantee producing valuable hidden layer features. Furthermore, in each round of simulation, the
ELM solution fluctuates due to the random parameters of the hidden layer. A speedy and stable approach
with singular value decomposition (SVD) was developed in order to exploit its orthogonal projections that can
handle the discriminative feature data only.

The matrix solution of the standard ELM method may be close to singular and its pseudoinverse is prone
to numerical instabilities; as a result, a small regularization term (λ) should be included to yield a regularization
model of ELM (RELM). RELM tends to decrease prediction error and reduce the overfitting. Consequently, we
have proposed a RELM version based on L2 -Tikhonov regularization and the L-curve to improve the robustness
of the matrix computations and hence make the accuracy of classification and the RMSE of regression more
reliable.

3. The proposed ELM method

3.1. Standard ELM with optimum hidden nodes (OELM)

According to investigations in various neural network studies, the number of neurons in the hidden layer (L)
has an important relationship with the following parameters: the number of input features (n) and output
(targets/classes) nodes (m), the amount and complexity of training data available, and the extent of accuracy
and hence generalized error (ε) . The proposed solution in determining Lopt is to examine a statistics-based
approach (least square regression) combined with the previous factors as follows:

Lopt =

{
α. (2n+m) for classification
α. (2n+ 1) for regression

, (1)
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where

α =

{
2ε all regression coefficients ̸= 0

2ε+1 otherwise
, (2)

where ε is the root mean square error that influences the target-dependent variable ti .
To calculate the error ε , the model can take the regression coefficients (γ) form as:

ti=xT
i γ+εi, i= 1, · · ·,N. (3)

Solving the least square problem LS with

γ̂ = (XTX)
−1

XT ti, (4)

the predicted response is:
yi=t̂i = X.γ̂. (5)

The residual mean errors are ε2i=(ti−yi)
2 and hence RMSE is:

ε=

√√√√ N∑
i=1

ε2i . (6)

α depends on data size and modeling complexity type, i.e. α = 2ε , and this value is extended to 2ε+1 when
one or more regression coefficients are zero, i.e. γi=0. This case will increase the complexity of handling data
and hence increasing the hidden nodes is necessary. Although the input data distribution may not be linear, it
is an essential step to calculate ε in formulating the linear regression model to simulate the least squares that
solve the output weights β=H†T of the ELM, which is a significant key for an ELM.

3.2. Projected ELM (PELM)

ELM models, like other machine learning approaches, tend to have problems when irrelevant, independent,
or weakly correlated variables are present in the training dataset, and the randomly initialized weights can
affect the performance and model generalization ability. Instead of choosing random weight vectors for w,
the normalized constrained hidden weights were selected based on input sample distributions [19]. The only
shortcoming in the constrained method is no guarantee of choosing the proper constrained vector distribution
for all input samples.

The SVD matrix factorization principle can be employed to solve the above problems by generating
orthogonal subspaces and eigenvalue base matrices and extracting useful features with a dimensionality reduction
[20,21]. To suit nonsquare matrices, any matrix may be decomposed into a set of characteristic eigenvector
pairs as Xm×n=UDV T , where Um×m and V n×nare orthogonal matrices and Dm×n is a diagonal matrix
with singular values. As the ELM structure has only one hidden layer, the projection is applied to the input
layer between the weight vector (w) and input attributes (X) [13,22]. In our proposed method, different forms
of input weights are adopted based on input data (X) and the orthogonal principle available with SVD as
follows: w1=V

√
DT ,w2=V DTU,w3=V DTUT ,w4=V

√
DTU, and w5=V

√
DTUT . After that, the eigenvalues

of (wiX+b) and the ratio between maximum and minimum eigenvalues are calculated for all weights (wi) . It was
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found empirically that the efficient form of the weight vector (wi) yielded the largest ratio of the eigenvalues.
The largest span between maximum and minimum eigenvalues can ensure generating discriminative feature
mapping, which can approximate the desired function distinctly. It makes H† nonsingular, stable, and square
with a minimum row or column dimension that allows for fast calculations.

The proposed OELM and PELM algorithms are described here:
Consider a dataset containing N samples given as (xi,ti)|xi∈Rn,ti∈Rm, i = 1, · · ·, N , with n the number

of input attributes and m the number of output classes, i.e. X∈RN×n and T ∈ RN×mwith any suitable

activation function G (x) . Using X and ti , we find γ̂=(XTX)
−1

XT ti and then calculate the fitted response

yi= X.γ̂ and the root mean error as ε=

√
N∑
i=1

(ti−yi)
2 , followed by using Eq. (2) to specify α .

1. Eq. (1) will then be used to calculate the best minimum number of hidden neurons Lopt

2. Depending on either randomly assigned input weight vectors wi and hidden nodes bias bi , i = 1, · · ·, Lopt

as used in OELM or the SVD projection principle as used in PELM:

a. Find the singular value decomposition of input data (X) , UDV T = SV D(X) .

b. Construct many sets of input weights as w1=V
√
DT ,w2=V DTU,w3=V DTUT ,w4=V

√
DTU,and

w5=V
√
DTUT .

c. Calculate the eigenvalues of (wiX + b) , ?i , and choose the corresponding wi that produces the
largest ratio between the max and min eigenvalues.

d. Choose w = w(:, 1 : Lopt) and the bias as b=rand (Lopt, 1)

3. Calculate the hidden layer output matrix

H(w1, · · ·, wLopt , b1, · · ·, bLopt , x1, · · ·, xN ) =


G(w1,b1,x1) · · · G(wL,bL,x1)

... · · ·
...

G(w1,b1,xN ) · · · G(wL,bL,xN )


NxL;L=Lopt

.

4. Extend the target vector ti to Tij =

{
1 for vectorsof classi = j

0 for vectorsof classi ̸= j
.

5. Calculate the hidden output weight β :β = H†T , where H† = (HTH)
−1

HT is the pseudoinverse of hidden
layer output matrix H .

From the perspective of evaluation, the samples are divided into training and testing sets. The training
sets are adopted first to obtain the value of the output weight (β) , and then:

6. β is used to fit or classify the test patterns of the output label (ytest) using

ytest = argrowmax(Htestβ).
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3.3. Tikhonov regularization with L-curve

Tikhonov regularization (TR), in statistics, is known as ridge regression that allows the addition of a small
positive value called the regularization parameter (λ) to the diagonal HTH or HHT to gain more stability,
a robust solution, and good generalization performance, thus avoiding model overfitting and improving overall
prediction accuracy. It is probably the most successful regularization method of all time [23]. Different
approaches for calculating the proper regularization parameter (λ) have been employed, such as the discrepancy
principle, generalized cross validation (GCV), and the L-curve [24]. Appropriate model selection and parameter
optimization can be achieved with leave-one-out cross validation (LOOCV), which consumes a large amount of
computations [6,10,25,26], an adopted efficient computing method depending on the prediction sum of squares
(PRESS) formula to calculate the cross validation minimum square error (MSECV) utilizing Eq. (7):

MSECV(K)=
1

K

K∑
i=1

(
ti−ŷi

1− (HATii)
)
2

, (7)

where

HAT = HH† = H.(HTH)
−1

HT . (8)

In PRESS, estimating the pseudoinverse and MSECV by K -repetitions would be computationally expensive,
leading to missing the advantage of the ELM in fast predicting. Like the GCV approach, the L-curve method
does not depend on specific or prior knowledge of the noise variance. As noted, the difficulty in GCV is that
its function can have a very flat minimum, making it difficult to determine the optimal λ numerically. On the
other hand, the GCV rule may be unstable for correlated noise, resulting in undersmoothing [25].

The L-curve is a log-log plot that seeks to determine a proper value of λ that balances between 2 error
components, training error versus the residual norm of output weight, while keeping our objective function as
in Eq. (9):

minλ,β{ ∥Hβ−T∥22 +λ ∥β∥22}. (9)

The L-curve method consists of the analysis of the piecewise linear curve, whose breakpoints are:

(xi,yi)=(log ∥Hβi−T∥22 logλ ∥βi∥22 ), i = 1 top, (10)

where p is the row dimension of the regularization matrix, which varies depending on the resolution level.
The L-curve basically consists of 2 parts: a “flat” part where the regularization errors dominate and a

“steep” part where the perturbation error dominates. This curve in most cases exhibits a typical L shape, and
the optimal value of the regularization parameterλ must lie on the corner of the L. The L-curve is usually more
amenable numerically due to its simplicity, accuracy, ability to deal with large scale matrices, and cost that
is less than or similar to other regularization methods [27]. Incorporation of the regularization parameter and
various recombinations of Hi in the SVD method with a suitable λ extraction approach (L-curve) was used to
obtain the various H† s with minimal recomputation and hence the optimum λoptandβopt .

Due to the variety of experimental data types, the proposed algorithm can use different subsets Hi

depending on random permutation or limited LOOCV as a valuable approach to overcome the overfitting or if
the data samples are small by the bootstrapping method.
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Suppose a training set of N samples is given as {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · ·, N} , with any
suitable activation function, using X ∈ RN×n , t ∈ RN , and the hidden layer output and target matrices
HN×LandTN×m . Then permute H into different max random subsets Hi , i.e. HiϵH=⇒ {H1H2, . . . ,Hmax .

Employ Hiwith SVD matrix factorization and L-corner curve methods as follows:

1. For i = 1 : max , we used max = 20 .

2. Take Hi and T utilizing the L-curve regularization method by employing the Hansen Regularization
Toolbox Package [28] to find λi corresponding to Hi that satisfies minλi

{ ∥Hiβ−T∥22 +λi ∥β∥22} .

3. End.

4. Select the minimum λi as λopt and corresponding Hias the usable H ; they lead to βopt .

5. Based on SVD factorization:

(a) HTH if N ≥ L → SV D(HTH) = V D2V T ,

(b) HHT if L ≥ N → SV D(HHT ) = UD2UT . (11)

6. Calculate βopt and hence yopt=H.βopt using the Woodbury formula [29] as:

(a) for N ≥ L : βopt = (HTH + λoptIL)
−1

HTT = V (D2 + λoptIL)
−1

V THTT =

N∑
i=1

vi

(
1

d2ii + λopt

)
vTi .H

TT, (12)

(b) for L ≥ N : βopt = HT (HHT + λoptIN )
−1

T = HTU(D2 + λoptIN )
−1

UTT =

HT
N∑
i=1

ui

(
1

d2ii + λopt

)
uT
i .T. (13)

4. Experimental results
The ELM was tested with 3 situations: optimum hidden number, the SVD projection, and TR regularization.
The experimental results and runtime reported were based on the average of 20 independent trials for regularly
sized datasets. All simulations were implemented using the MATLAB 8.1 (R2013a) environment and performed
on an Intel Core i5, 2.4 GHz CPU, 4 GB RAM computer. Eleven datasets from the University of California
at Irvine (UCI) Machine Learning Repository [30] were tested: 4 for classification and 7 for regression with 20
different random permutations taken without replacement. Two-thirds of the samples were used for training
and one-third for testing. Big data were handled with 2 extra datasets [31]: the AR Face Database with 700
× 300 training and 700 × 300 testing samples has 100 individual face recognitions, and the USPS (US Postal
Service) Digits Database consists of handwritten digits from 0 to 9 with 7291 × 256 training and 2007 × 256
testing samples. The results showed that OELM, PELM, and TRELM can predict or fit the desired targets
rapidly at low error rates even with large datasets.
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4.1. Standard ELM with optimum hidden nodes (OELM)

The performance (accuracy and RMSE ± standard deviation over the computational time) of the primary ELM
learning algorithm was examined and elaborated first with optimum hidden node number (Lopt) in Eqs. (1)
and (2) on the 11 UCI datasets as presented in Tables 1 and 2 and Figures 1a, 1b, 2a, and 2b. The simplest
datasets like “Diabetes and Wine” in Table 1” and “Stock and Breast Cancer” in Table 2 are of root mean
square error ε≈ 0, soα≈ 1 and hence the optimum Lopt will be (2n+m) where m= 1 for regression. Figures 1a
and 2a show the relationship between hidden nodes number with average testing accuracy where each value of
accuracy represents the average of 20 different random permutations. Figures 1b and 2b estimate the optimal
hidden node size using k-fold cross validation with k = 10 inside the testing set. Here, cross validation with
Figures 1b and 2b is employed to validate the ability of OELM in finding the optimum (Lopt) .

Table 1. OELM performance results for classification samples.

Dataset/types n/m α Lopt
Train. Test. Train. accuracy Testing accuracy
data data (%) / time (s) (%) / time (s)

P. I. Diabetes/* 8/2 1.32 23 576 192 78.95 ± 1.23 / 0.007 77.34 ± 2.86 / 0.002
Wine/* 13/3 1.20 34 115 63 99.52 ± 0.66 / 0.0044 96.04 ± 1.89 / 0.003
Segment/** 19/7 4.31 194 1500 810 96.27 ± 0.3 / 0.15 94.77 ± 0.57 / 0.039
Satellite/** 36/7 2.32 183 4435 2000 93.97 ± 0.49 / 0.35 89.44 ± 0.58 / 0.065
*Small data type, **moderate data type.

Table 2. OELM performance results for regression samples.

Dataset/type n α Lopt
Train. Test. Training RMSE / Testing RMSE /
data data time (s) time (s)

Stock/* 9 1.05 20 634 316 0.0993 ± 0.0118 / 0.002 0.0934 ± 0.009 / 4.0e-04
Breast Cancer/* 32 1.07 69 130 64 0.0983 ± 0.0026 / 0.007 0.103 ± 0.005 / 3.8e-04
Bank/* 8 1.01 17 3000 1500 0.012 ± 2.36e-04 / 0.017 0.012 ± 3.6e-04 / 0.004
Ailerons/** 40 2 162 4770 2384 2.0e-05 ± 2.9e-06 / 0.06 2.0e-05 ± 0.2e-06 / 0.005
D Elevators/** 6 2.3 30 6345 3172 1.7e-04 ± 2.1e-05 / 0.04 1.8e-04 ± 2.3e-05 / 0.01
Elevators/** 18 2 74 5835 2917 1.0e-04 ± 1.8e-06 / 0.13 0.8e-04 ± 2.7e-6 / 0.02
Kinematics/** 8 2.9 49 5462 2730 0.202 ± 0.0093 / 0.017 0.204 ± 0.0086 / 0.0057

Figure 1 is for the ‘Pima Indians Diabetes’ classification dataset and it is clear that the best testing
accuracy is at Lopt = 20 from the average test and Lopt = 23 from the LOOCV test. Figure 2 is for the
‘Segment’ dataset, which produces the highest accuracy with lower optimum hidden node number Lopt = 200.
The Lopt values obtained from different approaches are comparable, which demonstrates the validity of the
proposed method.

4.2. Projected ELM (PELM)

PELM was tested on the same databases (classification type only) and the results are reported in Table 3. The
simulation results are in line with the earlier standard ELM, which confirmed the increase in the accuracies
(about 2% or more) with or without a slight increase in training time. Moreover, the standard deviations for
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Figure 1. The relationship of testing accuracy with (a) hidden nodes number and (b) k-fold number for Pima Indians
Diabetes dataset.
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Figure 2. Testing accuracy relation with (a) L and (b) k-fold number for Segment dataset.

all datasets dropped significantly, which means that PELM is more stable and robust against variations. In
order to decrease the required time in PELM, it can exploit the SVD as a dimensionality reduction method to
reduce the applied input data X∈RN×n to lower dimensionality spaces ∈RN×d , i.e. d<n , and hence improve
the overall performance.
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Table 3. PELM performance results.

Dataset/type n/m
α

Lopt
Training Testing Train. accuracy Test. accuracy
data data (%) / time (s) (%) / time (s)

P.I. Diabetes/* 8/2 1.32 23 576 192 79.91 ± 0.9 / 0.0063 78.7 ± 2.12 / 0.002
Wine/* 13/3 1.20 34 115 63 99.7 ± 0.39 / 0.0047 97.62 ± 1.42 / 0.0045
Segment/** 19/7 4.31 194 1500 810 97.06 ± 0.17 / 0.165 96.81 ± 0.4 / 0.04
Satellite/** 36/7 2.32 183 4435 2000 95.38 ± 0.37 / 2.145 91.73 ± 0.47 / 0.1709

4.3. L2 -Tikhonov regularization ELM with L-curve (TRELM)

For an ELM, choosing an appropriate or optimum regularization parameter (λopt) with good efficiency and
speed is crucial. As can be observed from Figure 3 for the segment image database, the best regularization
parameter is λopt= 0.02817 , which can be calculated from the corner of the L-curve that tries to suppress as
much as possible the influence of both error norms at the same time. Figure 3 reveals that, in spite of the
large input data space of the segment image, the construction of the L-curve is made of 10 points only, i.e.
p= 10 row dimension. The p-dimension is flexible and depends on the degree of regularization precision. The
advantages of using the L-curve include the easiness and speed to present the set of the 2 axis points; it is also
flexible in choosing the number of represented points. The performance of the proposed TRELM model was
tested for all types of data sizes (small, moderate, and large) for both classification and regression problems
as stated in Tables 4 and 5. These tables reveal that TRELM is applicable, robust, and of optimum solutions
for both moderate and large data experiments. TRELM can tackle a wide range of machine learning problems
that yield lower error rates with large L in classification and normal L in regression. Moreover, for the small
dataset, the TRELM accuracy/RMSE is comparable to the OELM approach but with longer time, so TRELM
is not recommended for small datasets. For all data types, it is obvious that the ELM with regularization needs
more time than that without it because it operates properly with many hidden nodes; also, TRELM has more
stable response, which means it has lower variations than OELM and PELM. For the AR and USPS datasets,
Figures 4a and 4b show the average accuracy comparison over many runs among the 3 proposed approaches
(OELM, PELM, and TRELM). It is apparent that OELM and PELM do not have a linear relationship as in
TRELM with respect to the number of hidden nodes.
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Figure 3. L-curve regularization method for Segment image database for λopt .

Many studies [1–18] demonstrated the superiority and effectiveness of the ELM and its improved varieties
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Figure 4. ELM models accuracy for (a) AR and (b) USPS datasets.

Table 4. TRELM performance results for classification datasets.

Dataset Type λopt L Train. acc. / time (s) Test. acc. / time (s)
P. I. Diabetes Small 0.1108 1300 81.4 ± 1.107 / 0.7970 75.5 ± 1.97 / 0.0058
Wine Small 0.0183 2100 97.4 ± 0.48 / 0.0204 98.41 ± 1.38 / 0.0033
Segment Moderate 0.0281 1100 97.1 ± 0.19 / 3.3280 95.43 ± 0.43 / 0.0289
Satellite Moderate 0.4493 1900 94 ± 0.31 / 19.6933 90.1 ± 0.37 / 0.2919
AR Large 0.2466 2100 100 ± 0.27 / 1.5643 93.78 ± 0.36 / 0.0712
USPS Large 54.598 2100 99.7 ± 0.73 / 34.67 94.94 ± 0.91 / 0.1733

Table 5. TRELM performance results for regression datasets.

Dataset/type λopt L Train. RMSE / time (s) Test. RMSE / time (s)
Stock/* 0.00034 250 0.0459 ± 0.0011 / 0.1535 0.0540±0.0025 / 0.0026
Breast Cancer/* variable > 100 0.0982 ± 0.0060 / 0.0279 0.1078±0.0078 / 0.0062
Ailerons/** 0.06081 150 8.16e-06 ± 5.96e-07 / 0.7541 8.4e-06 ± 6.44e-07 / 0.0141
Bank/** 0.00248 120 6.448e-04 ± 6.90e-05 / 0.384 0.002 ± 1.486e-04 / 0.0058
D-Elevators/** 0.04979 120 1.39e-04 ± 1.82e-06 / 0.8191 1.40e-04 ± 2.42e-06 / 0.0133
Elevators/** 0.02237 260 9.68e-05 ± 1.41e-06 / 1.589 9.88e-5 ± 2.90e-06 / 0.0258
Kinematics/** 0.07427 800 0.0952 ± 0.0022 / 5.8260 0.1134 ± 0.0038 / 0.0787

as the fastest nonlinear predication approach, better than or comparable to the generalization and performance of
widely used state-of-the-art learning algorithms such as the nearest neighbor classifier (NN), linear discriminant
analysis (LDA), linear and least square support vector machine (LSVM and LS SVM) [32], logistic regression
classifier (LR) [33], and collaborative representation-based regularized least square (CRC RLS) [34]. For fair
comparison, we compare the TRELM paradigm with the AR and USPS databases as in Tables 6 and 7. It is
clear that TRELM has both speed and accuracy advantages over the abovementioned learning methods.
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Table 6. Performance comparison for AR datasets.

Classifier method NN LDA LSVM LR CRC RLS TRELM
Testing accuracy (%) 71.57 84.71 75.85 77.42 93.62 93.78
Testing time (s) 0.193 0.421 3.987 0.144 NA 0.071

Table 7. Performance comparison for USPS datasets.

Classifier method NN LDA LSVM LR CRC RLS TRELM
Testing accuracy (%) 92.82 80.61 93.37 91.18 93.78 94.94
Testing time (s) 4.86 0.373 8.102 0.282 NA 0.1733

5. Conclusion and future works
In ELMs with fixed network architecture, the suitable number of hidden nodes (L) is the key to ELM
performance and it is the only factor that needs to be tuned by the user. In most cases, L is arbitrarily
initiated and then it is gradually increased or decreased by a fixed interval. A nearly optimal number is then
selected based on the error metric with the cross validation method. It is, however, quite time-consuming.
In this work, a simple and fast approach based on the least square method was developed for calculating the
minimum optimum hidden node number (Lopt) . As was assessed with the cross validation tool, our investigated
approach can attain the desired Lopt or close to it for different data types with minimal user intervention.

In an ELM, both the randomness of the SLFN input weights and correlated features can result in
poor generalization performance or ill-posed problems. To overcome these restrictions, SVD was exploited
significantly as in PELM to produce efficient input features and enhance the parameter selections. For more
improvement in recognition precision and speed, it can extend the use of SVD to reduce the dimensionality of
the input data. Finally, L2 -regularized Tikhonov regularization was added to the ELM (TRELM) to prevent
the model from overfitting and improve the overall robustness. The L-curve and SVD approaches were utilized
implicitly within the TRELM to find the regularization parameter, to retain the fast ELM learning advantage,
and to dramatically reduce the complexity of the matrix calculations. As long as L is large enough, TRELM
is more accurate, is less sensitive to the changing of L , and needs a longer time than OELM and PELM.
Now building a suitable ELM with optimum hidden nodes is easy and fast and has an automatic learning
ability where the users have limited impact, so construction of suitable hardware capable of working with the
optimum ELM for biometric classification applications is hereby recommended. It will be beneficial if other
matrix factorizations and valuable regularizations like L1 or L21 types can be included within the ELM models
to handle outliers and imbalances in input data.
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