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Abstract: Optical feedback interferometer (OFI) lasers, also called self-mixing (SM) lasers, have been widely explored
over the last couple of decades due to their low cost, compactness, and self-aligned nature and they provide a very good
solution for measurements of displacement, vibration, distance, velocity, etc. The SM effect takes place when a part of
the laser beam is fed back to the active laser cavity after reflecting from the target. The reflected beam interferes with
the emitted beam and hence the optical and spectral characteristics of the laser get changed. To retrieve the vibration
or displacement signal of the target from the SM signal, different postprocessing algorithms have been proposed, such
as the phase unwrapping method (PUM). The first step of the PUM leads to the coarse estimation of the laser phase
and the final step is an iterative joint estimation of 2 parameters, namely laser coupling coefficient C and linewidth
enhancement factor α . To make this algorithm applicable for real-time measurements, parallel joint estimation for a
wide range of C and α values needs to be done. In this research, 3 algorithms, namely PUM, direct fringe unwrapping
(DFU), and improved DFU (IDFU) were tested for FPGA implementation by using Verilog HDL (hardware description
language) so that more precise and real-time vibration and displacement signals of targets could be extracted from the SM
sensor in an embedded systems environment. These algorithms were developed using Verilog HDL for implementation
on the Xilinx Spartan-3 Xcs400-FG320 development board. Our designed IDFU algorithm performed 0.492 times better
than the parallel PUM algorithm in maximum clock frequency and 1.53 and 1.21 times better than the PUM in slice
registers and LUT utilization of hardware resources, respectively. The designed DFU algorithm can operate 1.355 times
better than IDFU in maximum clock frequency and 25.34 and 14.25 times better than IDFU in slice registers and LUT
utilization of hardware resources, respectively.

Key words: Self-mixing, laser sensors, real time, phase unwrapping method, direct fringe unwrapping, improved direct
fringe unwrapping, field-programmable gate array

1. Introduction
The optical feedback interferometer (OFI) or self-mixing (SM) [1,2] technique has been frequently used during
last 2 decades for measurement of displacement [3], velocity [4], vibration [5,6], acceleration [7], distance [8,9],
and flow [10] as the subsequent sensor is of low cost, simple, self-aligned, and compact [11]. The SM phenomenon
arises when a laser beam enters the active laser cavity after partially bouncing from a target. The reflected
beam interferes with the emitted beam and hence the optical and the spectral characteristics of the laser are
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changed. The characteristics or shape of the resultant SM signal rely on the laser linewidth enhancement factor
α (also known as Henry’s factor [12]) as well as on the intensity of optical feedback coupling factor C (also
designated as Acket’s parameter [13]). A simple SM sensor of λ/2 precision can be developed by counting
the transition or fringes contained by the SM signal [8][5-7]. To get precision better than λ/2, the shape of
fringes contained within the SM signal are studied to extract more information. The SM fringe shape is a good
indicator of actual target movement[2, 4, 5]. By exploiting this idea, various displacement measurement SM
techniques with higher precision have been proposed.

There are 2 principal steps involved in the phase unwrapping method (PUM) [14]. The first step leads
to the coarse estimation of the phase of laser output under feedback once all SM interferometric fringes are
correctly detected [8,11,15]. The second step of the PUM involves a joint estimation of parameters C and
α . This is a signal processing step and comprising an optimization routine. The precision of measurement
of experimental target movement provided by the PUM is of the order of λ/20 [14]. A detailed study of the
PUM indicates that the first step of the PUM is relatively easy to implement and yields a staircase-shaped
phase signal by adding/subtracting 2π [16]. The PUM’s second step, however, is comparatively more complex
to implement, mainly because of the involvement of an iterative minimization routine .[3]. Thus, this iterative
minimization routine step makes the iterative PUM very slow with very high latency and thus not attractive
for real-time applications. To further improve the measurement precision of the PUM approach, a local phase
inversion needs to be detected and corrected by identifying the location of the inverted phase based on peak
and valley location within every SM interferometric fringe [3,17,18].

On the other hand, a real-time algorithm was proposed that is based on direct fringe unwrapping (DFU)
[19]. In the DFU technique, an interesting point to note is that only 2 consecutive samples of the SM signal
are required to be processed at a given time to extract the displacement of the target. Therefore, output can
be updated with only one sample delay. A successive derivative of the SM signal is taken that is based on
subtracting the previous sample from the current sample, i.e. P (t)− P (t− 1) , and then comparing the result
with the threshold value in order to detect the fringes contained by the SM signal [20]. Simple addition of
all these fringes results in a staircase signal, then by adding normalized P (t) it presents sample results in the
unwrapped displacement signal D(t) . Consequently, every arriving sample of SM signal results in a subsequent
output sample of displacement, with a very small latency .[8]. Thus, the DFU algorithm is faster than other
algorithms to extract vibration and displacement signals from SM signals [21]. That being said, it is important to
state that input experimental SM signals usually contain amplitude variations as a function of optical feedback
level. Thus, normalization of input SM signals is essential for correct working of DFU. A normalization block
has therefore been implemented in the present work even if it results in an increase in latency of the overall
algorithm. Note that the fast nature of DFU is enabled due to removal of the analytical solution (through
conjoint parameter estimation) carried out in the PUM. As a result, its measurement performance is strongly
dependent on the operating C value. Thus, simulations have indicated how precision of DFU varies as a function
of C from λ/5 for C = 3.75 to λ/18 for C = 1.75 .

Further studies of DFU suggest that the precision of the DFU technique can be further improved, so
we propose a new technique called improved direct fringe unwrapping (IDFU). In IDFU, we first globally
normalize the SM signal. Then discontinuities of SM signal fringes are detected. Based on these detected
discontinuities, the SM signal is segmented into sections where each section is delimited from other sections by
its surrounding discontinuities. To normalize the SM signal, peak and valley locations are found in each piece of
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the segment. After the normalization of the SM signal, the phase signal is then unwrapped. As per the results
presented later in this paper, the measurement precision of target movement provided by IDFU is of the order of
λ/9.

Rapid growth and improvement in density and the performance per watt of FPGAs has been witnessed in
the last decade. This development subsequently made the design of high-performance and high-precision sensors
possible, which can perform real-time tasks on a single chip. An FPGA-based design for an optical feedback
self-mixing interferometry system (OFSMI) displacement sensing system was proposed in [22]. The proposed
design of the FPGA unit performs noise reduction, signal peak detection, and impulse magnitude tracking. It
uses median filters to remove sparkle-like noise and bandpass ?lters to reduce slow time-varying fluctuations
and high frequency noise. Results of the OFSMI architecture show that the FPGA-based signal processing unit
can achieve fast and reliable displacement sensing. Another FPGA-based ?ltering and normalization process
for SM signals was proposed in [23] to achieve real-time and better quality sensing. The FPGA preprocessing
stage comprises a denoising unit and a normalization unit. Depending upon the features of noise contained in
the SM signal, a combination of a wavelet transform-based filter and a median ?lter is used in the denoising
part. The normalization stage retains the SM signal in the range [–1, 1]. Hardware cosimulation carried out
on a Xilinx Spartan-3E board verified the performance of this FPGA-based preprocessing method. A phase
estimation circuit was developed in [24], which was implemented on FPGA hardware and experimentally tested
using a new state-of-the-art data acquisition system developed for the NASA SWOT project. This circuit is
capable of detecting very small phase differences in time-varying analog signals. The proposed FPGA design
was tested using a 3 gigasamples per second data acquisition system. Phase was calculated adaptively with an
error of less than 0.021◦ (0.006% of 360◦) . A high-speed and very precise phasemeter prototype was proposed
in [25] with an ability to be used for differential wave-front sensing. The proposed phase measurement algorithm
was implemented on an Altera DE2-115 FPGA board and can be used in heterodyne interferometry to measure
displacement.

The main goal of this research article is to implement and compare said algorithms by using Verilog
HDL in order to test these using 2 different FPGA emulation devices. To make the PUM algorithm fast and
applicable for real-time retrieval of vibration and displacement signals from SM signals in an embedded systems
environment, in this paper, we propose HDL implementation of parallelized estimation of C and α parameters,
presented as the parallelized PUM (PPUM). This is achieved by creating memory registers for a range of C and
α values, and then by exploiting the parallel operation characteristic of HDL blocks, we unwrap vibration and
displacement signals from SM signals. Then HDL implementation of the DFU algorithm (by incorporating the
normalization block, essential for real-world experimental SM signals showing variation in SM signal amplitude)
is carried out. As the DFU technique is faster but has less precision than the PUM, to improve the precision of
DFU we propose HDL implementation of a new algorithm known as IDFU that results in better precision than
DFU at the cost of some extra processing steps (required for identification of peak and valley locations followed
by local fringe normalization). At the end, a comparison of HDL-based resource utilization and maximum clock
frequency of these algorithms is carried out.

The rest of this article is structured as follows. Section 2 explains the theory of self-mixing. Sections
3, 4, and 5 describe the PUM, DFU, and IDFU algorithms and their FPGA HDL-based implementations,
respectively. In Section 6 the results of these algorithms are discussed, and, finally, Section 7 provides the
conclusion of this research.
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2. Self-mixing theory
In the SM phenomenon, when a laser wave reflects from a target and couples with the active cavity of the laser,
the wavelength of the laser is no longer constant, i.e. λ0 , but it varies and becomes λF (t) when the target
moves around. The variations caused in the laser diode’s optical output power P (t) because of optical feedback
can be formulated as [16]:

P (t) = P0 +mP0cos(xF (t)) (1)

where P0 is the optical power emitted under no-feedback conditions and m represents the index of modulation,
while xF (t) represents the phase signal under feedback and is given by:

xF (t) =
2πD(t)

λF (t)/2
, (2)

where D(t) represents displacement of the moving target and λF (t) represents the emitted wavelength of LD
under feedback conditions. These fluctuations in the wavelength of the laser senor can be found by [16]:

x0 (t) = xF (t) + C sin[xF (t) + arctan (α)], (3)

where x0 (t) represents phase signals under no feedback as a function of λ0 , which is given as below:

x0 (t) =
2πD(t)

λ0/2
(4)

where D(t) represents displacement of the moving target and λ0 represents wavelength under no feedback. In
SM interferometry, the coupling parameter C has an important role. Variations in C value occur primarily due
to changes in laser-to-target distance and the remote target’s surface reflectivity [13] and cause fluctuations in
SM operating regimes, which may vary from weak to moderate regimes and then to strong feedback regime
displacement [26]. On the other hand, the α parameter is a laser diode device parameter with typical values
of 4 to 5 for Fabry–Perot type laser diodes [12]. Regarding the impact of α on the SM signal, it introduces
asymmetry to the SM signal’s shape [18]. That being said, its influence is far less significant as compared to
the C parameter, variations of which can easily occur during experimental sensing. Note that all the simulated
SM signals presented in this paper are based on the behavioral model of SM sensors, which allows modeling SM
signals as a function of D(t) , C , and α [27].

3. HDL Implementation of PUM

The PUM is a 2-step algorithm. The first step of the PUM results in a coarse estimation of the phase xF (t) ,
also called rough PUM [16]. PUM’s second step is a signal processing step in which a joint estimation of C and
α is achieved by using an optimization routine. This iterative estimation of C and α makes this technique slow
and time-consuming [28]. To make this technique fast and applicable for real-time applications, estimation of
parameters C and α can be parallelized.

Figure 1 shows our proposed parallelized PUM, which is based on joint parallel estimation of C and α

parameters. In Figure 1, the arc-cosine block takes the inverse cosine of the FPGA input SM signal with the
help of the CORDIC lookup table. We detect fringes by taking the difference of 2 consecutive arc-cos samples
and then compare the difference result with a threshold value. In the staircase block we continuously add or
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subtract fringes that are detected in the fringe detection block, which results in a staircase signal. Then we add
a staircase signal with arc-cos signal that results in rough recovery of phase signal xF (t) . To make parallel
estimations of C and α , we define memory registers for a range of C values in a weak feedback regime, i.e
C ≤ 1 and α values, and then by exploiting the parallel operation characteristic of HDL blocks, we implement
characteristic Eq. (1) for unwrapping vibration signals from SM signals.

C and α estimation processes used in Parallel-PUM are depicted in Figure 2. While implementing
Parallel-PUM (cf. Figure 1), we take 4 values of C and 4 values of α . For each value of C , we take all values of
α and thus we get 16 output target displacements. We then take the difference of 2 consecutive values of each
output and pass each difference output through the high-pass FIR filter. Next, global minimization is applied
on output displacement signals and we observe that at C = 0.8 and α = 5 (the values used to simulate the
input SM signal) we get the best possible target displacement signal, as shown in Figure 3.
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Figure 1. Schematic flow chart diagram of Parallel-PUM. Figure 2. Block diagram of C and α estimation process
used in Parallel-PUM.

We have used a parallelized estimation of C and α , where 16 estimations are conducted in parallel to
speed up the estimation process. However, the range of C and α can be expanded by using other C and
α values in the successive iterations. This, however, will increase the latency of the Parallel-PUM, which is
the cost to pay for enlarging the working range of the currently designed algorithm in terms of processing SM
signals with a larger C range.

4. HDL implementation of DFU

The DFU algorithm recovers displacement covered by the target from the SM signal using a phase unwrapping
technique. The sawtooth-shaped fringes of the SM signal belong to a regime of moderate feedback and have an
apparent linear relation with the motion of the target, so precision can be achieved more than λ/2 by using
this linearity concept of fringes.

The SM fringe shape (see, for example, Figure 3a) represents the movement of the target except when
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sharp discontinuities occur [21]. Each SM fringe normally represents a λ/2 displacement of the target. The
unwrapping of the target displacement signal is thus achieved through detection of fringes followed by counting
of fringes to increase precision more than λ/2. As DFU is of a real-time nature and a simple technique, this has
been previously implemented on a microcontroller-based hardware prototype along with a combination of an
adaptive optics-based displacement sensor model that enables vigorous stabilization of the SM optical-feedback
regime [29].

The steps that are involved in the DFU method are listed in a flowchart shown in Figure 4. In the
first step, we take the derivative of the SM signal shown in Figure 5a. In the second step, we detect the
fringes/transitions shown in Figure 5b (which may have either positive amplitude or negative amplitude) by
comparing the derivative signal with a threshold value. In the third step, we continuously add or subtract
fringes that were detected in the previous step, which results in the staircase signal shown in Figure 5c. In the
fourth and final step, we add the normalized SM signal to this staircase signal, which results in the unwrapped
target vibration signal shown in Figure 5d. The normalization of the SM signal is needed because even slight
mismatching in amplitudes results in additional measurement errors.
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λ = 785 nm; (b) unwrapped phase signal; (c) optimum
retrieved displacement signal.

Figure 4. Schematic flow chart of DFU.

5. HDL implementation of IDFU
The DFU technique is faster but has less precision than the PUM. However, the precision of the DFU technique
can be improved at the cost of some extra processing steps. We propose a new algorithm known as IDFU,
which has target movement measurement precision of order of λ/9. In IDFU first we globally normalize the SM
signal. Then discontinuities of SM signal fringes are detected. On the basis of these detected discontinuities,
the SM signal is segmented into sections where each section is delimited from other sections by its surrounding
discontinuities [3]. To normalize the SM signal, peak and valley locations are found in each piece of the segment.
After the normalization of the SM signal, the phase signal is then unwrapped.

Figure 6 shows the block diagram of HDL implementation of IDFU. In the global normalization block
we first find the single maximum and single minimum value in the SM signal and store the values in registers.
We then globally normalize the FPGA input SM signal shown in Figure 7 by using the following relation:
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Figure 6. Schematic flow chart of IDFU.

Din Norm = (din −min)/(max−min), (5)

where din is the input SM signal to the FPGA and max and min are register-stored maximum and minimum
values of the SM signal, respectively. In the fringe detection block we then detect fringe discontinuities and their
locations in the globally normalized SM signal and store these values and locations. Based on these detected
fringe locations, in the local normalization block, we then find maximum and minimum values from one fringe
location to another fringe location for all detected fringes in the globally normalize SM signal and store the
values in registers. We then locally normalize the globally normalized SM signal shown in Figures 7a–7e with
the help of Eq. (4) by using all fringes’ max and min values to correctly extract the phase signal from the SM
signal.

6. Results and discussion
The Spartan-3 FPGA series by Xilinx has been used for implementation and testing of these 3 algorithms. This
section is further divided into 3 subsections, i.e. PUM results, DFU results, and IDFU results.

6.1. PUM HDL results
In HDL implementation of the PUM, we used 1000 samples of the SM signal. Each sample of the SM signal has
a fixed 32-bit width. Table 1 shows the timing report and hardware resource utilization of the PUM algorithm.
The FPGA-based PUM algorithm operates at 55.190 MHz maximum frequency.

6.2. DFU HDL results
In HDL implementation of DFU, we used 1000 samples of the SM signal. Each sample of the SM signal has a
fixed 32-bit width. Table 2 shows the timing report and hardware resource utilization of the DFU algorithm.
The FPGA-based DFU algorithm operates at 82.604 MHz maximum frequency.
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Figure 7. (a) SM signal with C = 3.75, α = 5, and λ = 785 nm; (b) globally normalized SM signal; (c) locally normalized
SM signal; (d) output displacement signal provided by IDFU (blue line) as compared with reference simulated motion
(red line); (e) error between reference motion and IDFU-based retrieved motion.

Table 1. Timing and device resource utilization summary of PUM design.

Maximum frequency 55.190 MHz
Latency 5500 clock cycles
No. of slice registers 3138
No. of slice LUTs 1666
No. of occupied slices 276
No. of LUT flip flop pairs used 476
No. of bounded IOBs 274

6.3. IDFU HDL results
In HDL implementation of IDFU, we used 1000 samples of the SM signal. Each sample of the SM signal has a
fixed 32-bit width. Table 3 shows the timing report and hardware resource utilization of the IDFU algorithm.
The FPGA-based IDFU algorithm operates at 111.995 MHz maximum frequency.

6.4. Comparisons of HDL implementations of PUM, DFU, and IDFU

The Spartan-3 xcs320-FG420 Xilinx FPGA board has been used for implementation and testing of the PUM,
DFU, and IDFU algorithms. Table 4 shows the comparisons of timing reports and hardware resource utilizations
of the PUM, DFU, and IDFU algorithms. The FPGA-based PUM algorithm operates at 55.190 MHz maximum
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Table 2. Timing and device resource utilization summary of DFU design.

Maximum frequency 82.604 MHz
Latency 1000 clock cycles
No. of slice registers 81
No. of slice LUTs 97
No. of occupied slices 35
No. of LUT flip flop pairs used 74
No. of bounded IOBs 34

Table 3. Timing and device resource utilization summary of IDFU design.

Maximum frequency 111.995 MHz
Latency 2500 clock cycles
No. of slice registers 2053
No. of slice LUTs 1382
No. of occupied slices 202
No. of LUT flip flop pairs used 3649
No. of bounded IOBs 202

clock frequency while the DFU and IDFU algorithms operate at 111.995 MHz and 82.604 MHz, respectively.
Though the DFU algorithm has higher frequency than IDFU, IDFU has higher target movement measurement
precision as compared to DFU. The results show that our designed IDFU algorithm performed 0.492 times
better than the PUM algorithm in maximum clock frequency and 1.53 and 1.21 times better than the PUM
in slice registers and LUT utilization of hardware resources, respectively. The designed DFU algorithm can
operate 1.355 times better than IDFU in maximum clock frequency and 25.34 and 14.25 times better than
IDFU in slice registers and LUT utilization of hardware resources, respectively.

Table 4. Device resource utilization summary of PUM, DFU, and IDFU designs.

Logic

Used

PUM IDFU DFU
Improvement Improvement
factor of IDFU factor of DFU
w.r.t PUM w.r.t IDFU

Maximum frequency 55.190 MHz 111.995 MHz 82.604 MHz 0.492 MHz 1.355 MHz
Latency (clock cycles) 5500 2500 1000 2.2 2.5
No. of slice registers 3138 2053 81 1.53 25.34

No. of slice LUTs 1666 1382 97 1.21 14.25

No. of occupied slices 276 202 35 1.37 5.77

No. of LUT flip flop pairs used 476 3649 74 0.13 49.31

No. of bounded IOBs 274 202 34 1.53 5.94
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6.5. Comparisons of HDL implementations of PUM, DFU, and IDFU using the Virtex7 FPGA
Device

The Virtex7 XC7VX330T-FFG1157 Xilinx FPGA board has been used for implementation and testing of the
PUM, DFU, and IDFU algorithms. Table 5 shows the comparisons of timing reports and hardware resource
utilizations of the PUM, DFU, and IDFU algorithms by using the Virtex7 Xilinx FPGA board. The FPGA-
based PUM algorithm operates at 185.042 MHz maximum clock frequency while the DFU and IDFU algorithms
operate at 239.051 MHz and 205.731 MHz, respectively.

Table 5. Device resource utilization summary of PUM, DFU, and IDFU using Virtex7 FPGA board.

Logic

Used

PUM IDFU DFU
Improvement Improvement
factor of IDFU factor of DFU
w.r.t PUM w.r.t IDFU

Maximum frequency 185.042MHz 239.051MHz 205.731 MHz 0.774MHz 1.162MHz

Latency (clock cycles) 5500 2500 1000 2.2 2.5
No. of slice registers 2984 1843 62 1.619 29.725

No. of slice LUTs 1703 1421 136 1.1985 10.448

No. of occupied slices 274 204 34 1.343 6.00

No. of LUT flip flop pairs used 581 3867 179 0.150 21.6033

No. of bounded IOBs 274 202 34 1.356 5.941

6.6. Comparisons of measurement performance of PUM, DFU, and IDFU algorithms

Table 6 presents the measurement performance in terms of root mean square (RMS) error and absolute maximum
(max.) error of the considered SM displacement retrieval algorithms for the same input SM signal corresponding
to C = 3.75, α = 5, and λ = 785 nm, while comparisons of error in displacement retrieval are shown in Figures
8a–8d. Specifically, the graphical presentation of error in displacement retrieval can be seen in Figures 7e, 8b,
and 8d for IDFU, DFU, and PUM, respectively. For the considered simulated SM signal, Table 6 presents the
results of precision = wavelength/max. error for each of these algorithms for operating wavelength λ = 785
nm, which turns out to be λ/28, λ/5, and λ/9 for PUM, DFU, and IDFU, respectively.

Table 6. Measurement performance in terms of RMS error of different SM displacement retrieval algorithms for the
same input SM signal corresponding to C = 3.75, α = 5, and λ = 785 nm.

Algorithm RMS error (nm) Max. error (nm) Precision
Time taken to extract target
displacement signal from 1000
samples of SM signal

PUM 13.9 27.5 λ/28 1.8 ms
DFU 56.7 150.5 λ/5 0.8 ms
IDFU 27.8 89.4 λ/9 1.2 ms

It is thus seen that the PUM provides the best measurement precision performance. Likewise, it is also
seen that the use of local normalization of SM fringes in IDFU (see Figure 6) allows achieving better precision

1829



REHMAN et al./Turk J Elec Eng & Comp Sci

0                1000            2000             3000            4000
-1

0

1

A
m

p
li

tu
d

e 
(µ

m
)

0                1000            2000             3000            4000
-200

-100

0

100

A
m

p
li

tu
d

e 
(n

m
)

(b)

(a)

0                1000               2000           3000           4000           5000
-1

0

1

A
m

p
. (

µ
m

)

0                1000               2000           3000           4000           5000

No of Samples (au)

-30

-20

-10

0

10

A
m

p
. (

n
m

)

(c)

(d)

Figure 8. (a) Output displacement signal provided by DFU (blue line) as compared with reference simulated motion
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retrieved motion; (c) output displacement signal provided by PUM (blue line) as compared with reference simulated
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performance as compared to DFU, which does not use local normalization. Use of local normalization of SM
fringes becomes important for higher values of C because SM fringes begin to reduce in amplitude as a result
of increase in C beyond the value of 1 (the same can be seen by comparing Figure 5a based on C = 1.75 with
Figures 7a and 7b based on C = 3.75). As a consequence, DFU gives poor performance in the case of an increase
of C . For example, simulations have shown that the precision of DFU decreases from λ/18 for C = 1.75 to
λ/5 for C = 3.75. As reduction in SM fringe amplitude is a major cause of poorer DFU precision for higher C

signals, local normalization of individual SM fringes is carried out in IDFU so that individual fringe amplitudes
are appropriately adjusted (as seen in Figure 7b and Figure 7c). This then provides comparatively better
displacement measurement precision results for IDFU as compared with DFU, as also graphically presented in
Figures 7e and 8b.

Table 6 also provides a comparison of computation time for the PUM, DFU, and IDFU algorithms.
For the PUM, the execution of 1000 samples of the SM target signal is completed in 1.8 ms to extract target
displacement, while the same 1000 samples of the target are executed using DFU in 0.8 ms to extract target
displacement. Similarly, for IDFU, the execution of 1000 target samples took 1.2 ms. Computation time
comparison shows that the DFU algorithm is about 55.5% faster in extracting target displacement than the
PUM for the said case. Equivalently, DFU only takes 44.4% of the time consumed by the PUM to do the same
job. Similarly, IDFU is about 33.3% faster than the PUM while it is 50% slower than DFU.
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7. Conclusion
The FPGA-based HDL implementation of 3 SM phase unwrapping algorithms is a significant step towards the
full integration of a digital SM sensor into a chip, which would be accomplished to deliver nanometric precision
in real-time applications for sensing displacement and vibration signals of targets on embedded systems. In this
research work, by using HDL, we simulated 3 phase unwrapping algorithms of SM laser sensors, namely PUM,
DFU, and IDFU, for 2 different FPGA hardware devices. The final step of the PUM involves an iterative joint
estimation of C and α parameters, which makes this algorithm slow and time-consuming and not applicable
to real-time applications. We proposed parallel joint estimation of C and α parameters so it becomes fast
and can be used in real-time applications. We tested these 3 algorithms on a Xilinx Spartan-3 Xcs400-FG320
development board using Verilog HDL. When we compare the HDL-based results of the PUM and IDFU, we
find that our designed IDFU algorithm performs 0.492 times better than Parallel-PUM in maximum clock
frequency and 1.53 and 1.21 times better than the PUM in slice registers and LUT utilization of hardware
resources, respectively. The designed DFU algorithm can operate 1.355 times better than IDFU in maximum
clock frequency and 25.34 and 14.25 times better than IDFU in slice registers and LUT utilization of hardware
resources, respectively.
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