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Abstract: Smoothing effect is an important characteristic of large scale wind power. In this paper we analyze the
smoothing effect from the prospect of output variability. Specifically, the aggregated output variability of a wind farm
cluster may be significantly lower than that of an independent wind farm, and this phenomenon is referred to as the
variability smoothing effect. In order to quantitatively analyze the variability smoothing effect, this paper introduces the
concept of variability costs and evaluates the variability costs of each wind farm and overall wind farm cluster based on
an optimal scheduling model. It is found that the variability cost of a wind farm cluster as a whole is lower than the sum
of variability costs of all wind farms. Moreover, the difference between wind farm cluster variability cost and the sum of
variability costs of each wind farm is termed the variability smoothing benefit. Meanwhile, the Shapley value method is
deployed to equitably allocate the variability smoothing benefits of the wind farm cluster. The results indicate that the
combined wind farms have the additional benefits of reducing variability costs as well as encouraging the integration of
large scale wind farms.
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1. Introduction
During recent decades, increasing amounts of wind power have been integrated into power systems. On the one
hand, this growth can bring several advantages such as environmental friendliness and cost-effectiveness. On
the other hand, it comes with a number of unique challenges due to the natural characteristics of wind, such as
output variability and less predictability [1,2]. Specifically, the variability of wind power has to be managed in
the short term. As the wind penetration increases, maintaining the energy balance becomes significant because
of the increase of variability in the supply of electricity, which can eventually lead to increases in system costs.
It is known that large scale wind power has the natural feature of the smoothing effect. Due to the space
distribution and time difference between wind farms, the prediction errors and peak-to-valley difference can
be considerably decreased [3]. The smoothing effect can reduce the system costs and help increase the wind
penetration with minor disturbance to the stability of the electrical grid [4]. More recently, numerous studies
have been conducted on the smoothing effect of large scale wind farm clusters. In this paper, the smoothing
effect is analyzed from the viewpoint of the wind power variability costs.

In general, the smoothing effect of wind power has been widely investigated from the perspectives of error
prediction and output variability.
∗Correspondence: kaifengzhang@seu.edu.cn
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(1) Less predictability is one of the main challenges of wind power. To investigate the impact of smoothing
effects on the prediction errors, a novel wind power prediction model considering smoothing effects [5] and
a multiscale stochastic prediction model [6] have been developed. The results show that the smoothing
effects can reduce prediction errors [7], decrease the system costs [8], and help determine the system reserve
capacity [9].

(2) Apart from prediction errors, the variability of wind power is another challenge. To better analyze the
impact of smoothing effects on the wind output fluctuations, various studies have examined it from different
scales: multiple temporal and spatial scales [9,10], temporal scale [11,12], and spatial scale [13–15]. In
[9], a variability index is developed to compare the variability in different geographic areas and different
time scales. The results indicate that the smoothing effect of distributed wind farms is very strong for
short term fluctuation. Ref. [10] shows that combining remote wind farms via electrical transmission is an
economically practical way to level wind since the smoothing effect can help to reduce the wind variances
and decrease the rate of change.

A number of studies have investigated the smoothing effect from the viewpoint of temporal scale. In
[11], a frequency model of wind output variability is proposed and it shows that the smoothing effect of high-
frequency wind power components is larger than that of the low-frequency ones. Ref. [12] measures wind power
output fluctuations for a period of 1 year with the sampling period of 10 s, and it concludes that a greater
degree of smoothing effect can be observed in the region of variations of less than 40 min.

Different studies have examined the smoothing effect from the viewpoint of spatial scale [13–15]. Ref. [14]
shows that with the increase in the size of areas including wind farms, the variation in peak-to-valley difference
of wind power can be decreased significantly. Ref. [15] asserts that large scale wind power plants can effectively
mitigate the variability of wind outputs. Although it has been widely agreed that the smoothing effect can
alleviate the variability of wind outputs and bring potential benefits, limited research has been conducted on
the calculation of benefits caused by smoothing effects. This paper quantitatively evaluates the benefits caused
by the smoothing effects from the perspective of wind variability costs. The wind variability costs are referred
to as the additional costs caused by the volatility characteristic of wind electricity, which serve a key role in
evaluating the economic value of wind.

Furthermore, how to determine the variability costs of wind power is also a critical problem. Refs. [16,17]
calculate the uncertainty costs based on the unit commitment model. The uncertainty costs refer to the extra
costs due to the prediction errors of wind power. However, all the above studies focus on the uncertainty
costs of wind power. There has been limited research so far on the calculation of the variability costs of wind
power. Ref. [18] employs corresponding market prices to determine the variability costs. Ref. [19] measures
the variability cost with the ”value factor”. The value factor is defined as the ratio of wind-weighted average
electricity price and time-weighted average electricity price. At the same time, it evaluates the value factor for
wind to be 0.91–0.95 during the last decade. Ref. [20] applies levelized costs of electricity (LCOE) to estimate
the variability cost of wind. LCOE is a metric for comparing total average costs of wind and conventional plants.
In the previous research by the authors, the calculation method of the variability costs of wind was introduced
[21], and an alternative scenario construction method was proposed to estimate the variability cost of wind
power for a single wind power plant. In the present paper, a further study is performed on the variability cost
of a wind farm cluster.

Note that due to the smoothing effect combining wind farms located in wide areas can reduce the
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variability of wind power [21]. As the positive and negative output fluctuations from different wind plants can
be canceled out, the aggregated variability of a group of dispersed wind plants is expected to be significantly
lower than the sum of individual variations [8]. Thus, the variability cost of a wind farm cluster as a whole is
lower than the sum of variability costs of each wind farm. This phenomenon is referred to as the variability
smoothing effect in this paper, and the difference between variability cost of the wind farm cluster and the sum
of variability costs of each wind power plant is termed the variability smoothing benefit.

This paper investigates the variability smoothing benefits from a mathematical point of view and develops
a reasonable allocation strategy. The novelties of this paper are as follows:

(1) An alternative scenario construction method is developed to evaluate the variability costs of both the
wind farm and the wind farm cluster. The proposed method can construct an appropriate scenario that
adds no additional variability to the conventional power plants.

(2) From the perspective of variability costs, a calculation method of variability smoothing benefits is pro-
posed. More specifically, based on the optimal scheduling model, the variability costs of each wind farm
and overall wind farm cluster are calculated and the difference between the 2 above costs is the variability
smoothing benefit.

(3) An allocation strategy based on the Shapley value method is introduced to distribute the variability
smoothing benefits impartially. The results show that, compared with the EANS sharing solution, the
Shapley value method can lead to a more equitable allocation.

The remainder of this paper is organized as follows: Section 2 analyzes the variability smoothing benefits
and develops a method to estimate them. Section 3 presents the detailed procedures of the variability smoothing
benefits allocation strategy. In Section 4, some conclusions are summarized.

2. Variability smoothing benefits of a wind farm cluster
2.1. Quantification of the variability cost of a single wind farm

The relative variability between wind power and load profile plays a key role in evaluating the variability costs of
wind power. In this paper, the relative variability index V IX (X,Y ) of wind power is defined as the Euclidean
distance between changing rates of X and Y .

V IX(X,Y ) =

√√√√ 1

N − 1

N∑
n=2

(R(xn)−R(yn))2, (1)

where

R(xn) =
xn − xn−1

xn−1
, R(yn) =

yn − yn−1

yn−1

X = {x1, · · · , xn}Y = {y1, · · · , yn},

where xn and yn respectively denote wind output and load demand value in the period n . N denotes the
number of samples. R(xn) and R(yn) denote variability ratios. The relative variability index V IX (X,Y )

measures the relative variability of wind outputs with respect to the load demands. For example, if the relative
variability index is nearly zero, it means the extent of the relative variability between the wind outputs and the
load demands is small.
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In the context of the relative variability, Ref. [21] proposes an alternative scenario construction method
to calculate the variability cost of a single wind farm. A brief description of this method is presented here;
further details can be found in [21].

As indicated in Figure 1, the variability cost of wind power can be calculated by the optimal scheduling
model. Note that the detailed formulation of the optimal scheduling model can be found in [21]. The crucial
step is to construct a scenario without wind power variability, and then calculate the total system costs under
the constructed scenario and the actual one, respectively. The difference between the 2 costs is the wind farm
variability cost.

Operational cost
under the actual wind

scenario

optimal scheduling model

wind
variability

cost

Operational cost
under the constructed

scenario without
wind variation

Figure 1. Proposed calculation method of wind power variability costs.

To construct the scenario without wind variation, an energy proxy needs to be established to replace the
actual wind power, and an alternative scenario construction method in [21] can be employed for this purpose.
Specifically, in our alternative scenario, wind power is changed into the proxy resource according to 2 principles.
(1) The energy of proxy resource equals that of actual wind power. (2) The shape of the proxy resource curve
and load profile are the same. The specific method is shown in Figure 2.

T t

p

'
w

p  (t)

Load (t)

*
w
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Figure 2. Schematic diagram of the proposed alternative scenario construction method.

Mathematically, the equivalent energy proxy in the constructed scenario is obtained as follows:



T∑
t=1

p′w(t) =

T∑
t=1

p∗w(t) (2a)

p′w(t)− p′w(t− 1)

p′w(t− 1)
=

Load(t)− Load(t− 1)

Load(t− 1)

t = 2, 3, · · · , T

(2b)
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where p∗w(t) is the actual wind power output, p′w(t) is the equivalent proxy resource, and Load (t) is the load
demand.

Equation (2a) assures that the power generation of the energy proxy equals that of the actual wind plants
in a scheduling period; (2b) means that the energy proxy curve should be the same shape as the load curve.
These 2 principles assure that the proxy resources and conventional plants take fair responsibility of following
the load fluctuations. This implies that the conventional power plants do not need to ramp more frequently or
operate in a less efficient way to balance the fluctuations of the proxy resources. Therefore, the energy proxy
does not induce additional variability cost for the power system.

2.2. Quantification of variability smoothing benefits of a wind farm cluster

This paper extends the alternative scenario construction method to calculate the variability costs of a wind
farm cluster and each wind in the cluster.

2.2.1. The variability cost of each wind farm in the cluster

It is assumed that there are two wind farms in the cluster, namely “Wind Farm 1” and “Wind Farm 2”. For
example, to calculate the variability cost of Wind Farm 1, there are 3 steps, which are also displayed in Figure 3:

Wind
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Wind

power 2

Scenario I Scenario II

Thermal

Power 1
...

Thermal

Power n

Thermal

Power 1
...

Thermal

Power n
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Thermal
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Power 1
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Thermal

Power n

Wind

power 2
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Wind
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construction method
( )wp tʹ
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Figure 3. Proposed calculation method of the variability cost of single wind farm.

Step 1: Following the principles of the alternative scenario construction method, we construct 2 scenarios:
Scenario I: Based on Eq. (2), the output profile of Wind Farm 1 is converted into the equivalent energy

proxy, and then Wind Farm 1 and Wind Farm 2 are integrated into the power system with the equivalent energy
proxy and actual output, respectively. Note that the black curves denote the actual wind outputs and the red
curves denote the equivalent energy proxies.

Scenario II: Wind Farm 1 and Wind Farm 2 are integrated into the power system with actual outputs.
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Step 2: Calculate the total system costs of Scenario I and Scenario II based on the optimal scheduling
model.

Step 3: Obtain the difference between costs in Scenario I and Scenario II, which is the wind power
variability cost Ci .

2.2.2. The variability cost of the wind farm cluster
For convenience of description, we assume that there are n wind farms distributed in different nodes, namely
”Wind Farm 1”, ”Wind Farm 2” ... and “Wind Farm n”. The rest of generations are thermal power units,
which are shown in Figure 4. To calculate the variability cost of the wind farm cluster, the crucial step is to
construct 2 scenarios:
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Figure 4. Proposed calculation method of the variability cost of wind farm cluster.

Scenario III: All the wind farms are integrated into the power system with the actual outputs.
Scenario IV: All the output profiles of wind farms are changed into the equivalent energy proxies and

then integrated into the power system with equivalent energy proxies.
Then calculate the total system costs of Scenario III and Scenario IV based on the optimal scheduling

model, and the difference between 2 system costs is the variability cost of wind farm cluster Csmooth
cluster .

2.2.3. Variability smoothing benefits
The variability smoothing benefits are determined by subtracting the aggregated variability cost from the sum
of the variability costs of each wind farm, which are displayed in Figure 5. Note that the vertical scale is in $.

Mathematically, it can be expressed as

CΣ
cluster =

n∑
i=1

Ci (3)
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Variability cost of
wind farmcluster

Sumof variability costs
of each wind farm

Variability smoothing
benefits

$

Figure 5. The diagram of variability smoothing benefits of wind farm cluster.

ϕ=CΣ
cluster − Csmooth

cluster , (4)

where n is the number of wind farms in the cluster. CΣ
cluster denotes the sum of variability costs of wind farms

and ϕ denotes the variability smoothing benefit.

2.2.4. Solution algorithm

To solve the optimal scheduling model of the wind power, various optimization algorithms have been proposed,
including genetic algorithm [22], particle swarm optimization algorithm [23], Lagrangian relaxation methods
[24], dynamic programming [25], and the mixed integral linear programming (MILP) optimization method [26].
The MILP algorithm is the most common method to solve the optimization problems, and many studies have
examined the power system problems with the MILP method [27–29]. In this paper, we transform the optimal
scheduling model into the MILP optimization problems, which can be solved using MILP solver under CPLEX
software on Intel Core i5 CPU at 2.60 GHz and 8 GB of memory.

2.3. Simulation of variability smoothing benefits of the wind farm cluster

In this section, a discussion is given on the variability smoothing benefit of the wind farm cluster, which is shown
on a modified system of IEEE118-bus. The system contains 54 sets of thermal power units, 186 branches, and
91 load terminals. We use realistic hourly ERCOT market load and wind generation data from 25 July 2017
until 31 July 2017. Note that the wind production data are from 3 geographically dispersed installations. The
load profile and wind generation of each scheduling period are respectively shown in Figures 6 and 7.

To quantify the correlation between the wind output and the load demand, Pearson’s correlation coeffi-
cient is applied. Pearson’s correlation coefficient can be used to measure the linear correlation between 2 sets
of data and its value varies between –1 and 1. The positive coefficient indicates the positive correlation of the
compared variables while the negative coefficient indicates the negative correlation of the compared variables.
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Figure 6. One week of load profile. Figure 7. One week of wind generation data.

More precisely, the Pearson’s correlation coefficient can be computed as defined in Eq. (5):


ρ (X,Y ) =

N∑
n=1

(xn−X)(yn−Y )√
N∑

n=1
(xn−X)

2

√
N∑

n=1
(yn−Y )

2

X =
{
x1, . . . xn} Y = {y1, . . . yn}

, (5)

where xn and yn respectively denote wind output and load demand value in the period n . N denotes the
number of samples. X and Y respectively denote the average value of samples X and Y .

First of all, the optimal scheduling model is employed to calculate the total system costs of Scenario I
and Scenario II. Then the difference Ci between the total cost of Scenario I and Scenario II is obtained and
shown in Table 1. Based on Eq. (1), the relative variability indexes of different wind farms can be obtained and
are shown in Figure 8. Note that Figure 8 shows the absolute value of the average variability cost of wind 2. It
can be observed that the average variability cost increases from $1.805 to $11.743 when the relative variability
index grows from 0.094 to 0.417. This means that the average variability cost of wind is positively associated
with relative variability index. Furthermore, from the results of Pearson’s correlation coefficients, it can be seen
that the positive correlation between the output of wind 2 and the load demand is strong while the correlation
between the output of wind 1 or wind 3 and the load demand is extremely weak. The negative variability cost
of wind 2 is due to its strong positive correlation with the load demand. This indicates that positive correlation
can lead to negative variability costs.
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Figure 8. The average variability costs and relative variability indexes of different wind farms.
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Table 1. The variability cost of each wind farm.

Wind Total Relative Average Pearson
power serial wind power variability variability costs correlation
number (MW) index ($/MW) coefficient
Wind 1 204602.1 0.417 11.743 0.0711
Wind 2 107735.7 0.094 –1.805 0.7963
Wind 3 171877.7 0.308 9.580 0.0959

Secondly, the optimal scheduling model is employed to calculate the total system costs of Scenario III
and Scenario IV. Table 2 presents the comparison of the difference between the total costs of Scenario III and
Scenario IV, which is the variability cost Csmooth

cluster of three wind farms. It can be seen that the relative variability
index of the wind farm cluster is less than the average relative variability index of the 3 wind farms. This implies
that the total output variability in the wind farm cluster is smaller than that of the aggregated value produced
by the independent wind farm.

Table 2. The variability cost of wind farm cluster.

Total wind Relative Total Average
power variability variability costs variability
(MW) index costs ($) ($/MW)
484,215.5 0.293 7,677,168 7.961

Based on Eqs. (3) and (4), the variability smoothing benefits can be obtained and are shown in Table 3.
It can be seen that the variability cost of the wind farm cluster is decreased by 23.78% compared with the sum
of variability costs of the single wind farm. The results indicate that the combined wind farms obtain additional
benefits by reducing the variability costs.

Table 3. The variability smoothing benefits of wind farm cluster.

The variability The sum of The variability
cost of wind variability costs smoothing
farm cluster ($) of wind farms ($) benefits ($)
7,677,168 10,072,974 2,395,806

As a result, 3 conclusions can be drawn from this case study. First, the average wind variability cost
increases with increasing relative variability index. Second, a positive correlation can lead to negative variability
costs. Third, due to the variability smoothing effect, the sum of variability costs of the single wind farm is greater
than the variability cost of the wind farm cluster.

3. Allocation strategies of variability smoothing benefits of the wind farm cluster
The last sections discuss how variability smoothing benefits are determined. A related question is how to allocate
variability smoothing benefits amongst the wind farms equitably. If the benefits are allocated by electricity or
capacity, it will be detrimental to the small capacity wind farm. When the volatility of the large capacity wind
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farm is relatively high, it may distribute more variability smoothing benefits to the large capacity wind farm
than its own contribution.

In the field of benefits distribution, the equal allocation of nonseparable costs (EANS) sharing solution
[30] and Shapley value method [31] are widely used. The principle of EANS sharing solution is to average
nonseparable benefits amongst all the members; Shapley value is indicative of the extent of each member’s
marginal contribution to the coalition. It can lead to an equitable allocation. In this paper, the performances of
the 2 above methods used for allocating the variability benefits of wind farm cluster are analyzed and compared.

3.1. The allocation strategy based on EANS sharing solution

EANS is a nonseparable benefit sharing solution, and its principles of allocation are shown in (6)–(8).

ϕi = SCi +
1

n
NSC (6)

SCi = v(N)− v(N\ {i}) (7)

NSC = v(N)−
N∑
i=1

SCi, (8)

where n denotes the number of participants in the static cooperative game (corresponding to the number of wind
farms), SCi denotes the separable benefits of participant i , v(N)denotes the total benefits of all participants
(the variability benefits of multiple wind farms), v(N\ {i}) denotes total benefits of n − 1 participants not
containing participant i (the sum of the variability benefits of the n − 1 wind farms not containing wind i) ,
NSC denotes inseparable benefits for all participants, and ϕi denotes the sharing solution of participant i (that
is the allocated variability benefit of wind farm i) .

3.2. The allocation strategy based on Shapley value method

A disadvantage of the EANS approach is that it ignores alliances other than the major leagues and alliances
including n − 1 participants, and this may affect the results of assignment. The Shapley value method treats
each participant in the alliance as an analytic object that considers the effects of all possible alliances on the
allocation results. The crux of the Shapley value is to allocate benefits according to the marginal contribution
of each alliance member to the reduction of the variability costs. The principle for the Shapley value allocation
method is

ϕi (v) =
∑

S⊆N\i

s! (n− s− 1)!

n!
[v (S ∪ {i}) − v (S)] , (9)

where n is all participating members of the arrangements (corresponding to the number of wind farms in the
cluster), s denotes the number of participants in the coalition (corresponding to the number of wind farms that
take part in the coalition), v(S ∪ {i}) denotes the total benefits of alliance S not containing participant i ,
v (S)denotes the benefit of the alliance S , and ϕi (v)denotes the allocated variability benefit of wind farm i .
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3.3. Simulation of variability smoothing benefits allocation strategy

In this section, a comparison is performed between the EANS sharing solution and the Shapley value method.
We use a realistic hourly ERCOT market load and wind generation data for 3 geographically dispersed wind
farms on 10 August, which are shown in Figure 9. Using the method in Section 2.2, the variability costs of
wind 4, wind 5, wind 6, and the wind farm cluster are obtained and shown in Table 4.
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Figure 9. 24 h load profile and wind generation data.

Table 4. Variability costs of multiple wind farms.

Wind 4 Wind 5 Wind 6
Variability costs ($) 122,800.7 304,321.3 197,733.9
Average variability costs ($) 2.127 6.682 9.83
Relative variability index 0.115 0.287 0.314
Pearson correlation coefficient –0.3345 0.0116 –0.396

The sum of variability costs of the 3 wind farms is CΣ
cluster = $624855.86 , and the total combined

variability cost is Csmooth
cluster = $389744.843 ; therefore the variability smoothing benefit is ϕ = CΣ

cluster−Csmooth
cluster =

$235111.017 . The combined variability costs among multiple wind farms are shown in Table 5. Note that
wind 4, 5 represents combined wind farm of wind 4 and wind 5.

Table 5. Combined variability costs of multiple wind farms.

Wind 4,5 Wind 4,6 Wind 5,6
Relative variability index 0.162 0.298 0.173
The sum of variability costs ($) 427,122 3,205,334.56 502,055.17
Combined variability costs ($) 348,135.3 297,389.7 380,600.1
Variability smoothing benefits ($) 78,986.72 23,144.86 121,455.1

According to the results of Table 5, the relative variability index of wind 5, 6 is smaller than that of
wind 5 and wind 6. The relative variability indexes of wind 4, 5 and wind 4, 6 are between their minimum
and maximum values.
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Then the calculation procedures of the Shapley value method are as follows. Firstly, the marginal
contribution of each wind in all possible alliances is calculated and shown in Table 6.

Table 6. The marginal contribution of multiple wind farms.

Order of Marginal contribution Marginal contribution Marginal contribution
arrival of wind 4 ($) of wind 4 ($) of wind 4 ($)
4,5,6 v (4) = 0 v (4, 5)− v (4) = 78, 986.72 v (4, 5, 6)− v (4, 5) = 156, 124.3

4,6,5 v (4) = 0 v (4, 5, 6)− v (4, 6) = 211, 966.2 v (4, 6)− v (4) = 23, 144.86

5,4,6 v (4, 5)− v (5) = 78, 986.72 v (5) = 0 v (4, 5, 6)− v (4, 5) = 156, 124.3

5,6,4 v (4, 5, 6)− v (5, 6) = 113, 655.9 v (5) = 0 v (5, 6)− v (5) = 121, 455.1

6,4,5 v (4, 6)− v (6) = 23, 144.86 v (4, 5, 6)− v (4, 6) = 211, 966.2 v (6) = 0

6,5,4 v (4, 5, 6)− v (5, 6) = 113, 655.9 v (5, 6)− v (6) = 121, 455.1 v (6) = 0

Then, according to (8), the allocation results of the Shapley value method are

ϕ4 = 1
6v (4) +

1
6v (4) +

1
6 [v (4, 5)− v (5)] + 1

6 [v (4, 5, 6)− v (5, 6)]

+ 1
6 [v (4, 6)− v (6)] + 1

6 [v (4, 5, 6)− v (4, 6)] = $54907.24

ϕ5 = 1
6 [v (4, 5)− v (4)] + 1

6 [v (4, 5, 6)− v (4, 6)] + 1
6v (5) +

1
6v (5)

+ 1
6 [v (4, 5, 6)− v (4, 6)] + 1

6 [v (5, 6)− v (6)] = $104062.4

ϕ6 = 1
6 [v (4, 5, 6)− v(4, 5)] + 1

6 [v (4, 6)− v (4)] + 1
6v (6) +

1
6v (6)

+ 1
6 [v (5, 6)− v (5)] + 1

6 [v (4, 5, 6)− v (4, 5)] = $76141.43

The results obtained from the EANS sharing solution and the Shapley value method are shown in Table 7.
The allocation results of variability smoothing benefits are also displayed in Figure 10. As indicated in Table
6, wind 5 pays the greatest amount of variability cost, and wind 4 pays the smallest amount of variability
cost. However, they get equal variability smoothing benefits based on the EANS sharing solution, and thus it
is detrimental for the wind farms to contribute more to the alliance. For the Shapley value method, wind 5
is rewarded through the largest variability smoothing benefits. Table 4 indicates that wind 5 is positively
correlated with load, while wind 4 and wind 6 are negatively correlated with load. That means wind 5
counteracts the relative variability of wind 4 and wind 6. Therefore, wind 5 gets larger variability benefits
and wind 4 gets less variability smoothing benefits based on the Shapley value method. The Shapley value
method shows each wind’s contribution to the reduction of wind variability costs, which is more equitable than
the EANS sharing solution.

Table 7. Allocation results.

Wind 4 Wind 5 Wind 6
EANS($) 78,370.3 78,370.3 78,370.3
Shapley value($) 54,907.2 104,062.4 76,141.43
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Figure 10. The allocation results of variability smoothing benefits.

The results indicate that: (1) The EANS sharing solution is simple, but it ignores the fact that each wind
farm’s contribution to the reduction of variability costs is not equal. (??) The Shapley value method reflects the
marginal contribution of each wind farm to the wind farm cluster. It can lead to a more equitable allocation.

4. Conclusion
In this paper, variability smoothing benefits of a wind farm cluster are studied from a mathematical point of
view, and a reasonable strategy for allocating variability smoothing benefits is introduced. The main conclusions
are as follows:

(1) The previous wind variability cost calculation method is expanded from a single wind farm to a wind
farm cluster. The calculation results demonstrate that the variability cost of wind power increases with
increasing relative variability index. Moreover, the variability cost of the wind farm cluster as a whole is
lower than the sum of variability costs of each wind farm.

(2) To investigate the impact of the variability smoothing effects on the wind power fluctuations, a calculation
method based on the variability costs is proposed. The results show that the variability smoothing effect
of a large scale wind farm cluster can contribute largely to its output fluctuations and variability costs.

(3) The Shapley value method is developed to allocate the variability smoothing benefits of the wind farm
cluster based on the marginal contribution of each wind farm. The results indicate that compared with
the EANS sharing solution, the Shapley value method can lead to a more equitable allocation.

In future work, we plan to consider the integration of wind power capacity into generation planning, the
unit commitment, and economic dispatch. Moreover, we may further consider other strategies to mitigate the
impacts on the power system operation by the variability of wind power, such as demand response and battery
energy storage.
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