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Abstract: Theoretically secure cryptographic algorithms can be vulnerable to attacks due to their implementation flaws.
Bernstein’s attack is a well-known cache-timing attack that uses execution times as the side-channel. The major drawback
of this attack is that it needs an identical target machine to perform its profiling phase where the attacker models the
cache timing-behavior of the target machine. This assumption makes the attack unrealistic in many circumstances. In
this work, we present an effective method to eliminate the profiling phase. We propose a methodology to model the cache
timing-behavior of the target machine by trying hypothetical cache behaviors exhaustively. Our implementation results
show that the proposed nonprofiled Bernstein’s attack has comparable (and better in some test instances) performance
to the original attack with the profiling phase.
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1. Introduction
Cryptographic algorithms that are secure against known theoretical attacks can still be vulnerable to side-
channel analysis if they are not cautiously implemented. Execution time, power consumption, electromagnetic
emission, etc. can be used as side-channel information [1–4]. In unprotected cryptographic implementations,
the secret key directly affects the emitted side-channel information. Thus, observations made on these leaked
data can eventually lead to the revelation of the secret key.

Side-channel attacks, which exploit the fact that microarchitectural resources, such as cache memory
and branch prediction unit, are shared, are widely studied in the literature [4–6]. The cache access patterns of
cryptographic programs can be exploited by the cache-based side-channel attacks. Bernstein’s attack [7] is a
well-known cache-timing attack, which is applied in a client-server setting. The attack tries to infer the secret
key, which resides in a server that employs the Advanced Encryption Standard (AES) [8] to encrypt incoming
messages, by using the variations in the encryption times of randomly generated messages. A major drawback
of Bernstein’s attack is the necessity of having a computer system that is identical to the target system as the
profiling phase of the attack needs to construct a model of the cache timing-behavior of the latter.

In this work we propose a methodology based on hypothetical modeling of the cache timing-behavior of a
computer system and demonstrate that Bernstein’s attack successfully recovers the key using one of the models,
which best represents its cache timing-behavior. In the proposed approach, all possible cache timing-behaviors
of a computer system are analytically extracted and the one that gives the highest correlation to the measured
attack data is chosen to be used in the cache-timing attack. This approach eliminates the need of a profiling
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phase (i.e. the need for an identical target machine), which makes the attack more realistic and feasible in
practice.

The rest of the paper is organized as follows: Section 2 presents related work; Section 3 provides brief
background information on AES, Bernstein’s attack, and a variation of Bernstein’s attack on the last round of
AES; Section 4 discusses the details of the profiling phase; Section 5 outlines the proposed approach; Section
6 explains how we conduct Bernstein’s attack without the profiling phase in order to validate our hypothetical
modeling methodology, and presents discussions on the results; Section 7 concludes the paper.

2. Related work
The first findings on cache-based side-channel attacks are reported in [1] and [9]. We can divide cache-based
side-channel attacks into 3 categories: i) access-driven, ii) trace-driven, and iii) time-driven cache attacks.

Access-driven attacks exploit the information as to whether a cache line (or set) is accessed (or not)
during a cryptographic operation to infer the secret key. In their proposed approach [10], Osvik et al. employ a
spy process to determine the cache lines/sets that are used by a cryptographic application in a known plaintext
and/or ciphertext setup. In trace-driven cache attacks (i.e. the second category of attacks), it is assumed that
the adversary has full control over the target device and that they can determine whether a particular memory
access is a miss or hit during the cryptographic operation by monitoring electromagnetic or power emissions of
a cryptographic device. Trace-driven attacks are also investigated in detail [11]. In the last category of cache
attacks, time-driven attacks measure the execution time of a cryptographic operation and exploit the timing
variations in different runs with different plaintexts. The assumption is that the execution time of the operation
is heavily affected by the memory access times due to cache misses. Thus, the variations in different runs of the
cryptographic operation occur because of different number of cache hits and misses that are dependent on the
secret keys and the plaintext. In [12], Tsunoo et al. use the time variations that occur during encryptions due
to the cache misses as a result of s-box table lookup operations.

The majority of the cache attacks rely on the so-called cache cleaning operation via a spy process, which
can be detected easily [13], that evicts all or a part of data of cryptographic process from the cache before
the start of an encryption operation. Bernstein’s attack, which can be categorized as a timing-based attack,
is the only exception. In his experiments, Bernstein runs the attack on an AES server locally and reduces the
key space considerably after measuring the execution times for 230 sample plaintexts. The reasons that lead
Bernstein’s attack to succeed are further investigated in [14,15].

3. Preliminaries
3.1. Advanced encryption standard (AES)

AES is a symmetric-key block cipher algorithm with a block size of 128 bits. AES computations are performed
in rounds. An initial AddRoundKey is the first computation of the encryption process. The following rounds
perform SubBytes, ShiftRows, MixColumns, and AddRoundKey computations in the given order. However,
MixColumns computation is not involved in the last round of AES.

There exists a fast AES implementation which does not perform the round computations separately.
Instead, it combines 3 steps in a round, namely the SubBytes, ShiftRows, and MixColumns, into a lookup
operation in AES acceleration (or lookup) tables. MixColums computations are not involved in the AES final
round; thus a different table is required. The final round is implemented by only one separate table. In this
work, we employ such a fast AES implementation from the OpenSSL library (v0.9.7a Feb 19, 2003).
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3.2. Bernstein’s cache-timing attack

Bernstein presents a cache-based timing attack, which targets the lookup table based OpenSSL implementation
of AES. Two entities are involved in this attack: an AES server and an AES client. The AES server waits
for the incoming encryption requests. When a request is received, it encrypts the message and sends back
the ciphertext. The AES client sends randomly generated messages to the server and gets the corresponding
ciphertext and measures the elapsed timing. The attack has 2 main phases: profiling phase and attack phase.
In the profiling phase, the attacker uses an AES server, which is identical to the target server, to encrypt a
large number of randomly generated plaintexts with a known key. The attacker obtains the execution time
of each encryption and saves it along with the plaintext. Then, in the attack phase, the same operation is
repeated, but this time on the target AES server using an unknown key. In the attack phase, the key is not
known therefore, for each access in the first round, all possible key byte values are tried and a timing profile of
indexes are obtained for each key candidate. Then each of the timing profiles in the attack phase is correlated
with the timing profile obtained in the profiling phase. The key value giving the highest correlation is the most
likely key candidate. The details of the attack can be found in [7,14].

In Bernstein’s attack, the profiling phase tries to model the cache timing-behavior of the target system.
The attack needs no spy process to artificially evict cache lines holding lookup table entries, but rather relies on
naturally occurring evictions, if any [15]. Moreover, no specific knowledge about the target system is required,
since the attack needs nothing other than the timing information. Thus, Bernstein’s attack is generic and can
be applied to all similar systems.

3.3. Applying Bernstein’s attack to the last round of AES

There exists a simpler attack on the final round of AES, which can be applied on the AES implementation
employed in [7] and [14] (OpenSSL v0.9.7a). With this version of the attack, the whole key can be extracted.
In this paper, we employ the last round attack, which allows us to extract the 128 bits of the key [15].

In the last round of AES, a separate table, namely T4 , is used, which basically implements the AES
SubBytes operation. The outputs of T4 lookup operations (i.e. T4[s9i ] , where s9i is the lookup index of round
10 and i = 0, 1, . . . , 15) , are used as indexes to obtain the aforementioned statistical models. In the profiling
phase, the outputs of T4 lookups used in the last round can be computed using the formula

InvShiftRows
(
ci ⊕ k10i

)
, (1)

where ci and k10i stand for the ith bytes of the ciphertext and the 10th round key, respectively, and i =

0, 1, . . . , 15 . As both the key and the ciphertext are known in the profiling phase, we can obtain a timing profile
based on the output values of T4 lookup operations. Timing profiles can be represented as an array of T p

i [256] ,
where i is the order of the T4 access and i = 0, 1, . . . , 15 .

In the attack phase, the secret round key byte k̃10i is unknown; thus we obtain one timing profile for each
candidate of the corresponding key byte using InvShiftRows(c

′

i ⊕ k) for k = 0, 1, . . . , 255 , namely T a
i,k[256] .

Then the timing profiles in the attack phase T a
i,k are correlated to the timing model of the profiling phase T p

i .

The key value k that yields the highest correlation is chosen as the most likely candidate for the key byte k̃10i .
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4. A closer look at the profiling phase
In Section 3, we have outlined 2 attacks. However, they have both needed a profiling phase. It is now crucial to
understand what we achieve after the profiling phase. Unintentional collisions in cache lines holding the AES
lookup tables cause variations in access times due to cache misses. The profiling phase aims to obtain data about
cache timing-behavior of AES by registering the variations in cache line access times. Cache timing-behavior of
AES can be expressed as a timing model for each of the 16 T4 accesses in the last round. Since we know the
secret key in the profiling phase, the timing model for the ith access in the last round is simply a histogram
of average execution times of an AES encryption indexed by output bytes of T4 as computed in (1). Figures
1a and 1b illustrate actual timing models for 10th and for 12th accesses to T4 respectively, when the profiling
phase is executed on a computing platform with Intel Pentium P6200 CPU running Ubuntu 3.0.0-12 kernel.
Here, the inverse s-box operation is also applied to the models to enhance visual clarity. Thus, the x-axis shows
the byte indexes (s9i ) used in accesses to table T4 .

In Figures 1a and 1b, the timing measurements are either above or below the average execution time.
Here the measurements above the average can be attributed to cache misses in the corresponding cache lines.
Furthermore, the execution times tend to remain above or below the average line for a group of consecutive
index values. This particular pattern can be explained by the fact that a cache line holds 16 of the T4 entries.
Thus a collision in a cache line will naturally affect the access times of 16 entries. To summarize, at the end of
the profiling phase, we obtain a timing model T p

i for the ith access in the last round, which is just an array of
256 average execution times of AES.

In the attack phase, the timing measurements are obtained, grouped, and averaged depending on the
values of the ciphertext byte involved in the ith output of the T4 lookup operation, as the corresponding key
byte value is unknown. The result is cache timing-behavior model T̃ a

i , which is again an array of 256 average
execution times. Then, the 2 timing models, namely T p

i and T̃ a
i , are correlated. As T p

i is indexed by T4

output values and T̃ a
i is indexed by ciphertext byte values, we transform the latter into 256 timing models,

T a
i,k indexed by the T4 output values by applying an exhaustive search on the key space of k ∈ [0, 255] . Actual

correlations are computed between T p
i and T a

i,k , and the key values with low correlations are eliminated. The
remaining keys, sorted from highest to lowest correlation, are expected to be few, resulting in a significant
reduction in the key space if the attack is successful. The essential steps of the last round attack with profiling

phase are given in Algorithm 1, where T p =
15∪
i=0

T p
i and T a =

15∪
i=0

T̃ a
i .

The last round attack can reveal the entire key, although it still needs a profiling phase. It is not an
easy task for an attacker to setup an identical platform and to run the profiling phase. It is also pointed out in
[10] and [16] that accessing an identical machine or reproducing the machine-specific cache effects may not be
feasible.

To increase the feasibility and applicability of the attack, we present a novel methodology that needs
neither an identical target system nor a profiling phase. We use hypothetical modeling to obtain the timing-
behavior of the cache and need only the size of the lookup tables and the cache line size of the computing
platform.
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Algorithm 1 Attack with profiling phase
Require: T p and T a

Ensure: KR : Ordered reduced key space
1: K ← ∅
2: KR ← ∅
3: for i = 0 to 15 do
4: for k = 0 to 255 do
5: T a

i,k ← Transform ( T̃ a
i , k )

6: γ ← Correlate ( T a
i,k , T p

i )

7: ν ← Variance ( T a
i,k , T p

i )
8: K [i]← K [i] ∪ (k, γ, ν)
9: end for

10: K[i]← Sort ( K[i] ) ▷ Descending on γ
11: δ ← Threshold ( K[i] )
12: KR[i]← Reduce ( K [i] , δ )
13: end for

5. Simplified cache timing model

In this section, we introduce a methodology to model the timing characteristics of the data cache for a running
program on a CPU. As far as the cache attacks are concerned, a simple model that is based on variations in cache
line/set access times can be used to capture the cache timing-behavior. The proposed methodology does not
aim to capture all the complicated structural properties of a modern cache. On the contrary, it aims to extract
a generic cache timing-behavior model based on a simplified set of assumptions. The proposed model requires
minimum knowledge (i.e. cache line size) about the target system. Although the timing model is obtained using
simplified assumptions, it is shown by our experimental results that it can still be used effectively to conduct
attacks. This implies that our simplified model can be extended and improved to cover real-world computing
platforms. Next, we provide a more formal explanation of our model for data cache timing-behavior:

Definition 1 Data in the data cache of a CPU are composed of individual bytes. Elements of data are
individually accessible by data indexes.

Assumption 1 Data in the cache are aligned and occupy a number of consecutive cache lines (unfragmented).
The first byte of data is always placed in a new cache line.

Assumption 2 The direct-mapping is used as the cache placement strategy, where a single cache line can be
considered as a cache set.

Assumption 3 Parts of data, essentially a sequence of bytes, can be accessed simply by indexing. Each index
value points to an equal number of bytes.

Assumption 4 Data are the relevant part of the code that cause cache hits/misses when accessed. Accessing
data in the cache (i.e. a cache hit) and data not in the cache (i.e. a cache miss), take t and t + ∆ , respectively,
and we always have ∆ > 0 .
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Assumption 5 Cache collisions may occur between 2 different programs or within the same program; i.e. data
sharing the same cache lines/sets can evict each other. During the run of a program, collisions occur always on
the same cache lines/sets.

Assumption 6 A cache collision in a cache line evicts the entire block from the cache and brings a new block
from the memory.

Assumption 7 During a single run of a program, data are accessed only once, which means the program
observes only one hit or one miss during the run.

Assumption 8 The execution times of a program in the presence of hits and misses are th and tm , respectively.
And, th and tm have equal probability to occur.

Based on these assumptions, we obtain several immediate results, captured as propositions.

Proposition 1 Following Assumption 1 and Assumption 3, the total number of cache lines occupied by data
can be calculated as ⌈

|data|
b

⌉
, (2)

where |data| and b stand for the number of bytes in data and in a cache line, respectively.

Proposition 2 Following Assumptions 4, 7, and 8, we can approximate th , tm , and ta of a program with

th = t+ tf , (3)

tm = (t+∆) + tf , (4)

ta = (th + tm)/2 , (5)

where ta is the average execution time of a program, tf is the execution time of instructions that do not require
memory access. As ∆ > 0 , we have th < ta < tm . This result implies that a particular execution time of a
program will tend to be higher than the average execution time of that program (ta) , when the program accesses
the cache lines that are subject to collisions, and vice versa.

Proposition 3 Let the cache line index range [c1, c2] , where c2 > c1 and c1c2 ≥ 0 , represent the indexes where
cache lines are in collision. Taking the Assumptions 2, 5, and 6 into account, we can calculate the range of
data indexes that maps to the colliding cache lines. Let κ be the number of bytes accessed by each data index.
Then all data indexes within the following range are mapped to the cache lines that are in collision:[

c1.b

κ
,
c2.b

κ
+

b

κ
− 1

]
(6)

Here the cache line and data indexes start from 0 (i.e. the first b bytes of the data reside in the 0th cache
line, second b bytes reside in the 1st cache line, etc.).
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Algorithm 2 Modeling the Cache Timing-Behavior
Require: data, m, Sc, b, κ
Ensure: T : Cache timing-behavior model

1: Ic = MissDataIndex( Sc, b, κ ) ▷ Proposition (3)
2: for s = 0 to m− 1 do ▷ for each data index
3: if s ∈ Ic then
4: T [s] = 1
5: else
6: T [s] = −1
7: end if
8: end for

Based on these assumptions and propositions, an algorithm can be given to extract a timing model of
the cache memory. Algorithm 2 describes the steps to obtain a model for given data.

In Algorithm 2, m is the number of indexes that are used to access data parts of κ bytes, b is the
number of bytes in one cache line, and Sc denotes the subset of cache lines subject to collisions (i.e. contention
set). The algorithm returns a timing model T , where each value of the index used to access data is matched
with a timing value. Line 1 of Algorithm 2 calculates the set of data indexes that result in cache misses and
Line 3 of Algorithm 2 checks whether a data index is in set Ic . In the case the referenced index causes a miss,
the access to the corresponding data part will take longer. In this model, we assume ta = 0 , th = −1 , and
tm = 1 for simplicity.

6. Practical application of the proposed methodology and validation results
6.1. Cache-timing attacks without a profiling phase

The attack without the profiling phase needs only the knowledge of the cache line size of the target computer
and the sizes of the lookup tables. A typical cache line size is 64 B in the majority of contemporary computers
and the AES lookup tables and their sizes can be obtained by examining the source code of the implementation.

Since we perform the last round attack, the data are table T4 of 1024 B, which is used only in the last
round of AES encryption. It has 256 indexes and each index is used to access a 4 B entry. As all our target
platforms have cache line sizes of 64 B, table T4 occupies 16 cache lines. The correct timing model of the
cache can be obtained only if we know the cache lines subject to eviction due to collisions. However, without an
identical computer system on which AES runs with a known key, we infer no information about the contention
set and therefore the cache timing-behavior cannot be obtained.

On the other hand, in our simplified approach, we have only a total of 216 simplified models as T4

occupies 16 cache lines. Thus, a brute-force approach, based on trying all simplified models exhaustively, is
feasible.

To form our simplified models, we need to find the cache contention sets. As there are 216 simplified
models (i.e. 216 cache configurations of hits and misses), we can use 16-bit integers that take values in[
0, 216 − 1

]
to represent these models. For instance, the index value of 0x7FFF in hexadecimal representation

indicates that the first cache line is in the contention set, assuming that each bit of an index stands for a cache
line and the bit value of 0 indicates a collision in the corresponding cache line. Algorithm 3 explains how the
cache contention sets are derived. It takes an index and iterates through its bits starting from the rightmost
bit, which corresponds to the last cache line.
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Algorithm 3 Obtaining a Cache Contention Set
Require:

l : index of simplified cache timing model
n : number of cache lines occupied by data

Ensure: Sc : Cache contention set for index l

1: Sc ← ∅
2: for i = n− 1 to do
3: if ( l mod 2 == 0 ) then
4: Sc ← Sc ∪ i
5: end if
6: l← l/2
7: end for

Finally, Algorithm 4 gives us the most possible cache timing-behavior model given the timing measure-
ment data from the attack phase (i.e., T a) .

Algorithm 4 Searching For Cache Timing-Behavior Model
Require:

T4 : Lookup table
m : Index count of T4
κ : Size of each T4 entry in number of bytes
b : Size of each cache line in number of bytes
T a : Timing model in attack phase
n : Number of cache lines occupied by T4
δ : Correlation threshold

Ensure: T̃h : Correct cache timing-behavior model
1: M ← ∅
2: for l = 0 to 15 do
3: Sc ← Algorithm 3 ( l, n )
4: for j = 0 to 15 do
5: Th

l [j] [:]← Algorithm 2 (T4, m, Sc, b, κ)
6: for i = 0 to 255 do
7: x← AES-sbox(i)
8: Th

tmp [j] [x]← Th
l [j][i]

9: end for
10: Th

l [j] [:]← Th
tmp[j][:]

11: end for
12: KR ← Algorithm 1 ( Th

l , T
a )

13: M ←M ∪ (Th
l , |KR|)

14: end for
15: M ← Sort ( M ) ▷ Ascending on |KR|

16: T̃h ←M [0] [0]

Algorithm 4 iterates through all simplified cache timing models; it first finds the corresponding contention
set in line 3, then calculates the corresponding simplified model in line 5, and applies the AES s-box operation
on the model in lines 6–10 since we perform the last round attack using the outputs of table T4. Then the
attack phase in Algorithm 1 is applied to find the size of the reduced key space in line 12. The sizes of the
reduced key space for simplified models are saved as described in line 13. Finally, they are sorted from smallest
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to largest (line 15) and the simplified model with the smallest reduced key space size is chosen as the most
probable cache timing-behavior model (line 16). Once we obtain the model, we can run Algorithm 1 and find
the key bytes.

In order to test Algorithm 4, we ran it for the example data set1 in Figures 1a and 1b, and obtained
the index 14433 as the most probable cache timing model (i.e. the cache contention set). When we plot this
model according to Algorithm 2, we obtain Figure 2. A closer look at Figure 2 reveals that our simplified model
resembles the real model previously depicted in Figure 1b. Figure 2 shows behavior similar to that of Figure
1b. As explained for Figures 1a and 1b in Section 4, we can observe that consecutive groups of cache lines are
either in the contention set or not, which is consistent with the real model that is based on the measurements.
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Figure 1. Profiling phase models. (a) Byte 10 Model, (b) Byte 12 Model.
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Figure 2. Calculated profiling phase model.

6.2. Implementation results
We executed the last round attack with and without a profiling phase on various software and hardware setups
with different client-server deployment configurations. Each attack is conducted by the AES client with 230

randomly generated messages, where the size of each message is 600 B. The target of the attack, the AES server,
runs the table-based OpenSSL (v0.9.7a) implementation of AES, which is employed originally by Bernstein. In
the attacks with a profiling phase, 2 separate measurements are used while in the attacks without a profiling
phase only attack phase measurements are used. The attacks generated a candidate set for each key byte value,

1 The C and MATLAB codes as well as the example data set used in the paper can be found at
https://github.com/alicanatici/cacheAttackWithoutProfilingPhase
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which are sorted by their likelihood. By multiplying the sizes of the candidate sets we obtained the reduced
key space size for the whole AES key, which necessitated an exhaustive search. For each attack setup, we
conducted a number of attacks and calculated the average of the results. In the Table we prefer to list only
the average values after we conducted a number of attacks for each case as enumerating the results of each
attack individually would result in a table which is difficult to interpret. Furthermore, in some of our setups,
we observed large discrepancies between the best and worst case results, which we think would misguide the
reader. In the first 2 columns of the Table, the attack configurations (i.e. the CPU type and the client-server
deployment setup) are given. The last 2 columns present the average sizes of the reduced key spaces obtained
after the attacks have been applied. Ubuntu (Linux kernel 3.0.0) is used as the operating system in the first 4
rows’ experiments and CentOS (Linux kernel 2.6.18) is used for the last 2 rows.

Table. Attack results.

Processor AES client-server Reduced key space with Reduced key space without
deployment a profiling phase a profiling phase

Intel Pentium P6200 same core 232 232

Intel Pentium P6200 different core 249 237

Intel C2Duo P8400 same core 1 212

Intel C2Duo P8400 different core 224 229

Intel Xeon E5405 same core 234 219

Intel Xeon E5405 different core 251 216

In our experiments, we always found the unknown AES key in the reduced key space. We also observed
that for all of the attack configurations the sizes of the reduced key spaces were always within feasible limits
for an exhaustive search. An in-depth analysis of the results further reveals that the attack performed better
in the majority of the cases when the client and server were located in the same core. Since cache collisions are
caused by the program itself [15] and by other programs [14] sharing the same cache lines, when the 2 programs
reside in the same core, more cache collisions occur and the attack performs better. The results also show that
the performance of the proposed attack without a profiling phase is comparable to that of the original attack.
We further observed performance gains in some of the cases, specifically in rows 2, 5, and 6. If we check the
sizes of the “reduced key space with a profiling phase” in these rows, we see that they are larger compared to
the rest of the results. This implies that the profiling and/or attack phase measurements are noisy and this
situation degrades the performance of the attack with a profiling phase. However, when we apply our proposed
approach on these cases, we observe a performance gain. This gain is possibly due to the fact that our simplified
models are noise free and specifically selected for the attack phase data. Thus, we can claim that our proposed
methodology gives better results under noisy conditions.

Experiment results show that it is possible to conduct successful cache-timing attacks with the proposed
simplified model. On the other hand, how such successful results are achieved with this simplified model may
not be obvious. If the assumptions captured all the structural properties of a cache (which is most probably
not possible), our model could mimic exactly the same behavior of a cache and we would possibly need fewer
number of measurements to conduct a successful attack. However, in our experiments without a profiling phase,
we used 230 measurements, which is the same number that we used in the attack with a profiling phase. This
high number of measurements is required in order to compensate for the unknown architectural and behavioral
complexities of cache memory hierarchy, which cannot be fully captured by our simplified set of assumptions.
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For example, in Assumption 2, what would happen if we assumed the cache were 4-way set associative? There
would not be any cache evictions in a related AES table until the relevant cache line in the set were accessed by
the process. However, the experiments show that cache evictions eventually occur. Thus, we would just need
to wait until a cache eviction occurs, which means taking more measurements. Consequently, we compensate
for the deficiencies due to the simplifications of the cache behavior by increasing the measurement count and
using statistical techniques.

A further improvement introduced by this new method is that it does not need the modification of the
address space layout randomization (ASLR) flag as mentioned in [15]. The ASLR technique randomizes the
address space of the executables, stack, heap, and the libraries. Since the original Bernstein’s attack needs
2 separate runs (i.e. profiling and attack phase), the address spaces may be different at each run due to
ASLR. Thus, the timing models of these 2 phases may not correlate and the attack may fail. However, in our
methodology there is no need for a separate profiling phase that may cause a mismatch between profiling and
attack phase timing models. Consequently, this result demonstrates that the use of ASLR is not an effective
countermeasure against the cache attack.

The applicability of the proposed attack on CPUs that are from different vendors is an important topic
that needs further investigation, but during our research we did not have the opportunity to conduct the
attack on CPUs from different vendors. Nevertheless, in modern CPUs cache architectures share common
characteristics, such as multilevel cache hierarchies and moving of data in blocks in case of cache conflicts.
Furthermore, in [17,18], the authors implement Bernstein’s attack on ARM CPU and, in [19–22], the authors
successfully apply known cache attacks on embedded ARM CPU platforms. We think that these publications
and the similarities of the modern cache architectures provide strong evidence that our attack would also work
on different CPU platforms.

It may be argued that the table-based AES implementation is outdated and many improvements, such
as AES-New Instructions (NI) support and side-channel resistant implementations have been added to the
OpenSSL library since then. Nevertheless, we think, as many others in the scientific community, that vul-
nerabilities enabling cache attacks are important artifacts that require further study. Therefore, in this study
we investigated the feasibility of an improved attack based on a generalized cache timing-behavior modeling
approach, and in order to verify our claims we used this specific implementation as a test bed since it is easier to
observe leakages, which simplifies the verification process. In addition, there have been many recent works based
on this table-based AES implementation. In [17,18], Spreitzer et al. perform Bernstein’s cache-timing attack on
modern ARM CPU architectures, demonstrating that it is possible to perform this attack on ARM architectures.
In [19–22], several authors conduct other known cache attacks such as prime+probe, flush+reload, evict+reload,
flush+flush, cache access pattern, and cache collision attacks, which show these attacks are also applicable on
embedded platforms. In [23,24], Gülmezoğlu et al. conduct successful flush+reload and prime+probe cache
attacks on cross-virtual machine (VM) environments. In [25], Irazoqui et al. show it is possible to successfully
conduct Bernstein’s cache-timing attack on Xen and VMware by using popular crypto libraries. Again Irazoqui
et al. show in [26,27] that it is possible to perform flush+reload and prime+probe cache attacks on virtualized
environments. In [28], Weiβ et al. perform Bernstein’s cache-timing attack on a virtualization environment,
which runs on an ARM CPU platform. In a recent research that claims a novel attack [29], the stalling delay
caused by cache bank conflicts is exploited to infer the secret key. In [30], Moghimi et al. conduct a cache
attack on a Software Guard eXtensions (SGX)2 supported Intel platform with different AES implementations.

2 See https://software.intel.com/en-us/sgx which was accessed on March 17, 2018.
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In [31], the authors provide improvements over existing cache attacks and provide experimental results. In [32],
the authors show a cross processor cache attack that targets high efficiency CPU interconnects. Moreover, in
[33,34], the authors share their findings on cache attacks experimented on general purpose CPUs. All of the
works mentioned above share a common point, which is that they all use the same or similar table-based AES
implementations.

7. Conclusion
In this work, we present a methodology to extract a simplified model of the cache timing-behavior of a computer.
Furthermore, we also present a variant of Bernstein’s cache-timing attack without a profiling phase on the
last round of AES and demonstrate that it can be successfully applied in many experimental settings. The
implementation results demonstrate that the method can be used to extract realistic timing models and the
nonprofiled attack has a comparable performance to the original attack with a profiling phase. The proposed
methodology can also be applied on other CPU architectures and on other cryptographic algorithms, as long as
cache conflicts (e.g., cache misses) occur on sensitive data (e.g., AES lookup tables), which leaks information
about the secret key. In summary, the new method allows to apply Bernstein’s attack in a more realistic and
practical context by eliminating the profiling phase and its associated difficulties.
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