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Abstract: This research proposes an algorithmic scheme based on k-means clustering and fuzzy logic to minimize path
loss prediction error. The proposed k-means fuzzy scheme concurrently utilizes the area topographical variability and
multiple path loss prediction models to mitigate the prediction error inherent in the independent use of a conventional
path loss model. Vegetation density, manmade structures, and transmission-receiver distances are the fuzzy inputs
and the conventional path loss models the output: the free space loss, Walfisch–Ikegami, HATA, ECC-33, Stanford
University Interim, and ERICSSON models. The experimental results show that the path loss prediction error of the
k-mean fuzzy scheme is only 2.67% compared to the the drive-test measurement, and this is the lowest relative to that
of the conventional models. The k-mean fuzzy scheme offers a novel means to approximate path loss in localities with
diverse topographical features and also efficiently mitigates the prediction error inherent in the independent use of the
conventional prediction models.
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1. Introduction
In selecting the location for a mobile base station, it is necessary that the service providers take into account area
topographical characteristics for optimal signal coverage. In other words, the path loss and the optimal base
station location are governed by a number of environmental and anthropogenic factors, including vegetation,
manmade structures, and transmission-receiver distance. Specifically, the signal strength on a mobile device is
influenced by the path loss along the route from the base station to the receiving device.

Currently, there exist many path loss prediction models, and different prediction models are suitable for
different topographical features, e.g., the free space loss (FSL), HATA, Walfisch–Ikegami (WI), ECC33, SUI, and
ERICSSON models. In [1] a survey was performed of various propagation models for wireless communication. In
[2] a review was given of wireless propagation models; several path loss models were experimentally investigated
in urban, suburban, and rural settings to suitably match prediction models with different topographic features.

In [3] the performance and analysis of propagation models for predicting RSS for efficient handoff and
further investigations were carried out in urban and highway settings and the results indicated that the HATA
model was suitable for urban areas and the modified COST231 and HATA models were suitable for highways.
However, existing publications rely on one single conventional path loss prediction model, which is prone to
prediction error due to variable area topographical features [4] with comparative analysis of path loss propagation
models in radio communication.
∗Correspondence: wi dokmai1@hotmail.com
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Therefore, the current research proposes an algorithmic scheme based on MATLAB k-means [5] clustering
and fuzzy logic [6] to minimize path loss prediction error given variable area topographical characteristics. The
proposed k-means fuzzy scheme utilizes vegetation density, manmade structures, and distances between the
base station and the mobile device as the fuzzy inputs and 6 conventional path loss models as the output:
the FSL, WI, HATA, ECC, SUI, and ERICSSON models. To validate it, the proposed algorithmic scheme is
implemented in a fuzzy-scheme experimental area. The findings reveal that the k-means fuzzy scheme is most
agreeable with the actual drive-test measurement, given its lowest path loss prediction error, compared to the
conventional path loss models.

2. Methodology and experimental setup

2.1. Path loss models
In wireless communications, path loss occurs in the presence of obstructions on the signal path, subsequently
degrading the transmission between the base station and a receiving device. The signal loss is attributable
to a number of factors, including the transmitter–receiver distance, transmitter and receiver antenna heights,
frequency range, vegetation, and manmade structures. The current research utilizes an amalgamation of the
following path loss prediction models to minimize the prediction error.

2.1.1. Free space loss (FSL)

In free space, the signal loss from the transmitter to the receiver is caused by refraction and reflection from the
ground. The free-space path loss is thus subject to the transmitter–receiver distance and frequency range. The
free-space path loss is expressed as in [7–9]:

L= 32.45 + 20 log10 (d) + 20 log10 (f) , (1)

where L is the free space loss, d is the distance between the transmitter and the receiver (km), and f is the
frequency (MHz).

2.1.2. HATA model
The HATA path loss model is applicable in the 150–1500 MHz frequency range and suitable for a wide range of
areas: urban, suburban, and rural. Specifically, the HATA path loss model for an urban area (Lu) is expressed
as in [10,11]:

Lu = 69.55 + 26.16 log (f)− 13.82 log (hB)− CH + [44.9− 6.55 log (hB)] log (d) , (2)

where CH denotes the city or town size. For a small or medium city,

CH= 0.8 + [1.1 log (f)− 0.7]hM − 1.56 log (f) . (3)

For a large city,

CH = 8.29 [log (1.54hM )]
2 − 1.1,if150 ≤ f ≤ 200 or

CH = 3.2[log(11.75hM )]
2−4.97, if 200 <f ≤ 1500. (4)
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In addition, the HATA model for suburban areas is expressed as

LSU=LU − 2(

(
v
f

28

)
)25.4, (5)

where Lu is the path loss in urban areas (dB), hB the height of the base station antenna (m), hm the height of
the mobile device antenna (m), f the transmission frequency (MHz), CH the antenna height correction factor,
d the distance between the base station and mobile device (km), LU the path loss in urban areas (dB), and
LSU the path loss in suburban areas (dB).

2.1.3. COST 231 WI Model
This path loss model is the combination of Walfisch’s and Ikegami’s models [12–14] and is applicable in the
800–2000 MHz frequency range.

L50(dB) =Lf+Lrts+Lmsd (6)

Lf=32.4 + 20 logd+20 logfc (7)

Lrts = 16.9− 10 log(
(w

m

)
) + 10 log(

(
f

MHz
)

)
+ 20 log(

(
∆hmobile

m

)
)+LOri (8)

10 + 0.345 φ
deg for 00 ≤ φ < 350

LOri= 2.5 + 0.075
(

φ
deg − 35

)
for350 ≤ φ < 550

4.0 + 0.114
(

φ
deg − 55

)
for550 ≤ φ < 900

(9)

Lmsd=Lbsh+ka+kdlog(d) + kf log(fc)− 9 log(b) (10)

Here, Lf is the free-space loss, Lrts is the rooftop-to-street diffraction and scatter loss, Lmsd is the
multiscreen loss, w is the road width, Lori is the orientation loss, and φ is the incident angle relative to the
road.

2.1.4. ECC-33 model
The ECC-33 model is a modified path loss prediction model based on the Okumura model. The ECC-33 path
loss model is expressed as in [15,16]:

PL=Afs+Abm−Gb−Gr, (11)

Afs= 92.4 + 20 log(d) + 20 log(f), (12)

Abm= 20.41 + 9.83 log(d) + 7.894 log(f)9.56[log(f)]2, (13)

Gb = log(hb/200)[13.958 + 5.8(log(d))2], (14)

Gr= [42.57 + 13.7 log(f)][log(hr)− 0.585]. (15)
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Here, Afs is the free space attenuation, Abm is the basic median path loss, Gb is the base-station antenna
height gain factor, Gr is the terminal customer premise equipment (CPE) height gain factor, f is the frequency
(GHz), d is the distance between the base station and the CPE (km), hb is the base station antenna height
(m), and hr is the CPE antenna height (m).

2.1.5. Stanford University Interim (SUI) model

The SUI model categorizes terrains into 3 terrain types: A, B ,and C. Terrain A is a region with dense vegetation
and mountainous topography and thus suffers from the highest path loss. Terrain B is characterized by hilly
terrains with light vegetation densities or flat terrains with moderate tree densities and thus exhibits moderate
path loss. Terrain C comprises flat terrains with light vegetation. The SUI path loss model [17,18] is expressed
as follows:

PL(dB) = 10γ log( d
d0

)Xf +Xh + sford > d0, (16)

γ = a− bhb + (
c

hb
), (17)

Xf= 6.0 log( f

2000
). (18)

For terrains A and B,

Xh= (−10.8) log( hr

2000
). (19)

For terrain C,Xh= (−20) log( hr

2000
). (20)

Here, d is the distance between the base station and the receiving antenna (m), d0 = 100 (m), Xf is the
correction factor for a frequency above 2 GHz, Xh is the correction factor for the receiving antenna height (m),
S is the correction factor for shadowing (dB), and s is a log normally distributed factor to take account of the
shadowing due to trees and other clutter (8.2–10.6 dB).

2.1.6. ERICSSON model
The ERICSSON model [19–21] is an extension of the HATA model and is applicable to frequencies up to 1900
MHz. The ERICSSON path loss model can be expressed as

PL=a0+a1log(d)+a2log(hb)+a3log(hb) log(d)− 3.2(log(11.75))2+g(f), (21)

g(f)= 44.49log(f)− 4.78((log(f))
2
, (22)

where f is the frequency and a0 , a1 , a2 , and a3 are constants subject to environmental variability. The default
values given by the ERICSSON model are a0 = 36.2, a1 = 30.2, a2 = 12.0, and a3 = 0.1.
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Figure 1. The development of the k-means fuzzy-based path loss prediction model.

2.2. Experimental setup

Figure 1 illustrates the development stages of the path loss algorithmic scheme based on k-means clustering
and fuzzy logic. The proposed scheme could be deployed to predict the signal path loss in areas with variable
topographical features.

K-means clustering is applied to a satellite image of the fuzzy-scheme training area to discretize the
constituent areas into 4 clusters: low-rise and high-rise structures, and dense and light vegetation. The
transmitter–receiver distance is determined by location coordinates. The fuzzy rules for fuzzy-scheme training
are defined in response to variable combinations of the transmitter–receiver distance and topographical features
(i.e. low-rise or high-rise structure, dense or light vegetation).

The predetermined fuzzy rules are applied to the fuzzy-scheme training area to determine the path loss and
compared against the drive-test measurements for the path loss error. The predetermined fuzzy rules associated
with individual measurement points are the conventional models (FSL, WI, HATA, ECC, SUI, ERICSSON)
whose path loss prediction error is smallest when compared against the measured path loss of the corresponding
measured point. Fine-tuning is then carried out to refine the fuzzy rules to further minimize the path loss error
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prior to reapplying it to the fuzzy-scheme experimental area. The fine-tuning is realized by varying the states
(L, M, H) of the input memberships (x1 , x2 , x3) of the fuzzy rules, where L, M, and H denote the low, medium,
and high states and x1 , x2 , and x3 respectively represent the distance between the base station and a measured
point, vegetation, and manmade structures. To verify the proposed algorithmic scheme, the experimental path
loss results are compared against the actual drive-test measurement.

In this research, the area for fuzzy-scheme training datasets (i.e. the fuzzy-scheme training area) is
an urban area of Thailand’s Nonthaburi Province, around 20 km north of the capital Bangkok. The fuzzy-
scheme training area consists of dense and light vegetation and manmade structures of variable heights. The
measurements were taken at approximately 1000 measurement points at variable distances from the base station.
Figures 2a and 2b respectively illustrate the satellite image of the fuzzy-scheme training area and its k-means
clustered image, where the colors of light blue, blue, yellow, and brown-green represent dense vegetation, high-
rise structures, low-rise structures, and light vegetation. Table 1 tabulates the parameters of the base station and
the receiving device. The path loss prediction (between the base station and measured points) associated with
the conventional prediction models (FSL, WI, HATA, ECC, SUI, ERICSSON) was carried out using MATLAB.
The k-mean fuzzy scheme was also realized by MATLAB.

(a) (b)

4

3.5

3

1

2.5

2

1.5

Figure 2. The fuzzy-scheme training area: (a) satellite imagery, (b) k-means clustered image.

Table 1. The parameters of the base station and receiving device.

Parameters Value
Frequency 2.1 GHz
Antenna height (base station) 30 m
Antenna height (receiving device) 1.5 m
Building height 15 m
Base station antenna type HBX-6517DS-VTM
Base station antenna gain 19.2 dB
Base station power 33 dBm

The fuzzy logic training inputs are the base station–measurement point distance (x1) and the proportions
between vegetation (x2) and manmade structures (x3) . In this research, the fuzzy logic is based on the theory
of sets rather than the definitive decision of true/false or yes/no [22,23]. The fuzzy logic output is the path
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loss models (FSL, HATA, WI, ECC, SUI, and ERICSSON) that are optimal in response to combinations of
topographical features and the transmission–receiver distance.

Figure 3 illustrates the fuzzy logic mechanism (sugeno) of the proposed algorithmic scheme, where the
training inputs are distance, vegetation, and structures and the output is the path loss models. The fuzzy logic
limit is defined using the triangular membership function (trimf) in MATLAB, where a and care the lower
limit and b is the upper limit (a < b < c) .

PredictRule

(Sugeno)
f (u)

EQUATION

DISTANCE

BUILDING

TREE

Figure 3. The fuzzy logic mechanism of the proposed algorithmic scheme.

Figures 4a–4d respectively illustrate the fuzzy-logic input functions for distance, vegetation, and manmade
structures. In Figure 4a, the distance membership function is [0 400], with the low (L), medium (M), and high
(H) states of [0 80140], [110 190 260], and [230 330 400], respectively. The vegetation membership function is
[0 100], with the L, M, and H states of [0 18 35], [28 50 65], and [58 77 100] (Figure 4b). In Figure 4c, the
membership function of manmade structures is [0 100], with the L, M, and H states of [0 18 35], [28 50 65], and
[58 77 100]. Figure 4d illustrates the overview of the fuzzy rules (i.e. 27 rules), where the outputs are Eqs. 1–6,
which correspond to the FSL, WI, ECC, HATA, SUI, and ERICSSON models.

Figure 5 depicts, as an example, the fuzzy-logic mechanism that yields the WI path loss model as the
output (Eq. (2)), given the low input states (L, L, L) for distance, vegetation, and structures (60, 22, 29). The
repetitive fuzzy rules are nevertheless excluded. Figure 6 illustrates the surface view of MATLAB-simulated
fuzzy logic given the distance, vegetation, and manmade structures as the inputs and the path loss models
(equations) as the output.

Table 2 tabulates the minimums, thresholds, and maximums associated with the low (L), medium (M),
and high (H) states of the fuzzy logic inputs: distance, vegetation, and manmade structures.

Table 2. The threshold of input fuzzy logic.

Input Distance Vegetation Structures
Minimum 0 110 230 0 28 58 0 28 58
Threshold 125 245 - 31.5 61.5 - 31.5 61.5 -
Maximum 140 260 400 35 65 100 35 65 100
States L M H L M H L M H

Figure 7 compares the simulated path loss (dB) using the proposed fuzzy scheme, the actual measurement,

1995



BHUPUAK and TOOPRAKAI/Turk J Elec Eng & Comp Sci

0 50 100 150 200 250 300 350 400

L M H

0.2

0.4

0.6

0.8

1.0

DISTANCE

D
eg
re
e
o
f
m
em
b
er
sh
ip

0 10 20 30 40 50 60 70 100

L M H

0.2

0.4

0.6

0.8

1.0

TREE

D
eg
re
e
o
f
m
em
b
er
sh
ip

80 90

0 10 20 30 40 50 60 70 100

L M H

0.2

0.4

0.6

0.8

1.0

BUILDING

D
eg
re
e
o
f
m
em
b
er
sh
ip

80 90

(a) (b)

(c) (d)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

DISTANCE=200 EQUATION=4TREE=50BUILDING=50

Figure 4. The fuzzy-logic input and output membership functions: (a) distance, (b) manmade structure, (c) vegetation,
(d) the fuzzy-logic input-output membership function.

and the conventional techniques (FSL, WI, ECC, HATA, SUI, ERICSSON) at variable measurement points.
The path loss under the proposed fuzzy scheme most resembles the actual measurement, as evidenced by the
nearly overlapping FUZZY and MEASURE results.

Figure 8 compares the path loss prediction errors under the proposed fuzzy scheme and the conventional
path loss models vis-à-vis the actual measurement. The fuzzy scheme yields the lowest error percentage (2.79%),
suggesting a mere 2.79% discrepancy between the fuzzy logic-based prediction and the actual measurement.

3. Results and discussion
The refined k-means fuzzy algorithmic scheme was subsequently applied to an experimental area whose topology
resembles the fuzzy-scheme training area, consisting of 870 measure points. Figures 9a and 9b respectively depict
the satellite image of the fuzzy-scheme experimental area and its k-means clustered image, where the colors of
light blue, blue, yellow, and brown-green represent dense vegetation, high-rise structures, low-rise structures,
and light vegetation.

To further verify this, a drive test was carried out and the fuzzy-scheme outcomes were compared against
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Figure 5. An example of the fuzzy-logic mechanism given the low input states (L, L, L).
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Figure 6. The simulated surface view of fuzzy logic.

the actual measurement and the conventional path loss models (FSL, WI, ECC, HATA, SUI, ERICSSON).
Figure 10 compares the experimental path loss errors under the fuzzy scheme and the conventional path
loss models vis-à-vis the actual measurement. The fuzzy scheme yields the lowest error percentage (2.67%),
indicating a negligible discrepancy between the fuzzy logic-based predictions and the actual measurement.

Figure 11 illustrates the actual drive-test measurement of the fuzzy-scheme experimental area, which is
presented as received signal code power (RSCP) associated with different measure points. The experimental
area exhibits good mobile coverage. The actual measurements were compared with the fuzzy-scheme outcomes
and the conventional path loss models (FSL, WI, ECC, HATA, SUI, ERICSSON) for the path loss prediction
error.

Figure 12 compares the path loss (dB) using the proposed fuzzy scheme, actual measurement, and
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Figure 7. Comparison of the path loss using the proposed
algorithmic scheme (fuzzy), drive-test (measure), and con-
ventional methods (FSL, WI, ECC, HATA, SUI, ERICS-
SON) given the training datasets.

Figure 8. The path loss prediction errors using the pro-
posed algorithmic scheme (fuzzy) and the conventional
methods in relation to the actual measurement, given the
training datasets.
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Figure 9. The fuzzy-scheme experimental area: (a) satellite imagery, (b) k-means clustered image.

conventional techniques (FSL, WI, ECC, HATA, SUI, ERICSSON) at variable measure points. By comparison,
the path loss under the proposed fuzzy scheme exhibits the lowest path loss prediction error (2.67%) vis-à-vis
the actual drive-test measurement.

Table 3 tabulates the prediction error of the conventional path loss models (FSL, WI, ECC, HATA, SUI,
ERICSSON) relative to the proposed fuzzy scheme. The comparative results reveal that the proposed fuzzy
scheme outperforms the independent deployment of the conventional path loss models (FSL, WI, ECC, HATA,
SUI, or ERICSSON). By comparison, the predictive performance of the WI path loss model is comparable to
the proposed fuzzy scheme, followed by the HATA, ERICSSON, SUI, ECC, and FSL models (Table 3).
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Figure 10. The path loss prediction errors using the proposed algorithmic scheme (fuzzy) and the conventional methods
in relation to the actual measurement, given the experimental datasets.
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Figure 11. The actual drive-test measurement of the fuzzy-scheme experimental area.
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Table 3. The path loss prediction error relative to the proposed fuzzy scheme.

Model Prediction error against
the proposed model (times)

FSL 13.93
WI 2.76
ECC 7.28
HATA 2.83
SUI 6.38
ERICSSON 4.98

Table 4 tabulates the proportions of the path loss models nominated by the proposed fuzzy scheme
for the fuzzy-scheme experimental area. By comparison, the HATA prediction model exhibits the highest
proportion (34.40%), followed by WI (34.00%), ERICSSON (13.20%), SUI (11.70%), and ECC (6.70%). Given
the urbanization of the fuzzy-scheme experimental area, the FSL model is never nominated by the proposed
scheme.

Table 4. Proportions of the path loss models nominated by the fuzzy scheme for the experimental area.

Path loss model Proportion (%)
WI 33.83
ECC 6.88
HATA 34.29
SUI 10.55
ERICSSON 14.45

Table 5 tabulates the topographical characteristics under the conventional path loss prediction models
(WI, ECC, HATA, SUI, ERICSSON), where H, M, and L denote the high, medium, and low states. In the table,
for example, the WI path loss model is optimal for an area with dense vegetation (H) and moderate manmade
structures (M). Meanwhile, the HATA prediction model is appropriate for an area with moderate vegetation
(M) and moderate manmade structures (M).

Table 5. Area topography under variable path loss prediction models, where H, M, and L denote the high, medium,
and low states.

Path loss model Topographical characteristics
WI Vegetation = H, manmade structures = M
ECC Vegetation = L, manmade structures = L
HATA Vegetation = M, manmade structures = M
SUI Vegetation = L, manmade structures = H
ERICSSON Vegetation = H, manmade structures = L

In contrast, [8] applied a study in urban and suburban areas using multiple path loss prediction models
independently and found that the Hata–Okumura model was suitable for the urban area, with the least path
loss prediction error as measured by a root mean square error (RMSE) of 15.79. Meanwhile, the ECC-33 model
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was applicable to the suburban area with RMSE of 6.9 [6]. However, this research has proposed the k-means
fuzzy scheme to mitigate the prediction error inherent in the independent use of a conventional path loss model.

4. Conclusion
This research has proposed an algorithmic scheme based on k-means clustering and fuzzy logic to minimize the
path loss prediction error in light of variable area topographical characteristics. The proposed k-means fuzzy
scheme utilizes vegetation density, manmade structures, and transmission–receiver distances as the fuzzy inputs,
and the conventional path loss models as the output: the FSL, WI, HATA, ECC, SUI, and ERICSSON models.
Unlike the current error-prone practice that relies on one single path loss model, the proposed k-means fuzzy
scheme simultaneously takes into account the area topographical variability and multiple path loss prediction
models to minimize the prediction error. For validation, the proposed scheme is implemented in a fuzzy-scheme
experimental area and the results reveal that, given its lowest path loss prediction error (2.67%), the k-means
fuzzy scheme is most agreeable with the actual drive-test measurement in comparison with the conventional path
loss models (FSL, WI, ECC, HATA, SUI, or ERICSSON). Specifically, the proposed scheme outperforms the
independent use of the conventional path loss models. The k-means fuzzy algorithmic scheme could be applied
to approximate the path loss and identify an optimal base station location for various operating frequencies
(e.g., 900 MHz, 1800 MHz) given variable area topographical characteristics. Future research could test the
k-mean fuzzy scheme in areas with different topographical settings to further verify and fine-tune the scheme
to minimize the path loss prediction error. Another fuzzy inference system (FIS) could be trialed, in addition
to the experimental sugeno-type FIS.
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