
Turk J Elec Eng & Comp Sci
(2018) 26: 2043 – 2055
© TÜBİTAK
doi:10.3906/elk-1801-23

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

An automatic extraction algorithm of high voltage transmission lines from
airborne LIDAR point cloud data

Xiaojun SHEN1,∗ , Chuan QIN1, Yong DU2, Xinle YU1, Rui ZHANG1

1Department of Electrical Engineering, Tongji University, Shanghai, P.R. China
2State Grid Hubei Electric Power Company Maintenance Company, Hubei, P.R. China

Received: 03.01.2018 • Accepted/Published Online: 03.04.2018 • Final Version: 27.07.2018

Abstract: To improve the effectiveness and generality of existing methods of high voltage (HV) transmission lines
extraction, this paper proposes a novel automatic extraction method of HV transmission lines using airborne LIDAR
point cloud data by incorporating the geography of transmission corridors and the distribution characteristics of airborne
LIDAR point cloud data. The proposed method results in the separation of ground objects by using a differentiation
height threshold segmentation algorithm based on subspace features, which divide long-distance space into several small-
distance space sets to improve the generality of the algorithm. A height density segmentation algorithm is used to locate
transmission towers and extract point cloud data of HV transmission lines to improve the efficiency of the algorithm.
Feasibility test cases show that the proposed method can automatically extract HV transmission lines from airborne
LIDAR point cloud data in flat terrains, canyon terrains, and steep slope terrains in an efficient manner, with high
accuracy and generality.
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1. Introduction
The increasing number of high voltage (HV), large capacity transmission lines, as well as the increasingly
complex geographical environment along the transmission corridors, have introduced a series of difficulties
into the maintenance of HV transmission lines [1]. Light detection and ranging (LIDAR), an emerging remote
sensing technique that uses laser pulses to produce accurate measurements, densely integrates advanced modules
such as GPS, INS, and laser scanning rangefinders and can efficiently acquire 3D coordinates of objects with
high precision [2,3]. Due to the high penetration of laser pulses, LIDAR can swiftly detect surface information
beneath vegetation cover. For this reason, it has a unique superiority in acquiring 3D information of transmission
corridors in complex terrains, or even hazard zones [4–6]. Airborne LIDAR has received widespread attention
and application in the field of HV transmission line inspection, such as monitoring and safety warning [7,8],
management and planning [9,10], and 3D power line extraction and reconstruction [11,12].

The key issues of airborne LIDAR HV transmission line inspection technology include point cloud data
acquisition, point cloud data segmentation and extraction, 3D fitting and reconstruction, and measurement and
evaluation. Because massive point cloud data are generated for the HV transmission line inspection technique
based on airborne LIDAR, a fast and efficient segmentation and extraction algorithm for point cloud data of
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ground objects, transmission towers, transmission lines, and accessories along the transmission corridor will
directly affect the time-effectiveness of this technique and its value for engineering applications [12,13]. As
indicated by recent studies, the automatic extraction of transmission lines has gained some attention, but
related research is still in its infancy. The results of representative studies are introduced as follows: reference
[14] proposed a data segmentation algorithm based on height threshold segmentation to eliminate ground object
points; however, this algorithm is applicable only to flat terrains with small interference, while zones with large
fluctuation and many interferences have poor effects. Reference [15] adopted a filtering method based on the
angles separating points of vegetation cover and those of transmission lines. It separates different transmission
lines using 2D Hough transforms; a hyperbolic cosine function is used to fit single transmission lines, with
poor results for transmission line extraction in terrains with transmission lines mingled with trees. Reference
[16] proposed an automated power line detection method for forest environments based on statistical analysis
and 2D image-based processing technology, but it has some problems, as it is time-consuming and performs
incomplete extraction. Reference [17] proposed a filtering algorithm based on the pattern classification of local
height histograms and chose separate threshold values to classify point cloud distributions into 3 patterns:
transmission lines, transmission towers, and surface points. However, in some cases, it might falsely classify the
points representing the cross arms of transmission towers as transmission lines, with a low level of automation.
Reference [18] presented a new classification method of power lines in urban areas that uses 4 steps: power line
candidate point filtering, local neighborhood selection, spatial structural extraction, and SVM classification.
The precision is more than 98%, but the algorithm is slightly complex for simple terrains.

As noted above, several methods have been utilized for transmission line extractions from airborne LIDAR
point cloud data, but these existing methods are mostly targeted at particular terrain types, with limited
algorithmic reliability and generality. Moreover, in the field, transmission lines obtain hugely diversified point
cloud distributions when going through plain areas, hilly areas, canyon areas, mountain areas, etc. The methods
for transmission line extraction in flat areas have little to no precision in undulating areas such as forests and
mountains. Similarly, the methods suitable for undulating areas are inefficient when used in flat areas. The
precise and efficient extraction of point clouds of transmission lines is the key to fitting and rebuilding models of
transmission lines, as well as providing basic data for transmission line inspection and its subsequent application,
analysis, and evaluation, which directly affects the application of these measurements and the estimation of 3D
real scenes.

Thus, there is an urgent need for efficient extraction methods for transmission lines in multiple terrains
from point cloud data. To address this goal, this study proposes a height threshold segmentation algorithm based
on subspace features, as well as a height density segmentation algorithm to segment point cloud data of ground
objects and transmission towers. These algorithms take into account the geography of overhead transmission
corridors and the data structures of airborne LIDAR point clouds of transmission lines. This allows us to realize
the efficient and precise extraction of transmission lines for multiple terrains from an airborne LIDAR point
cloud.

2. Terrain of HV transmission line corridors and the characteristics of airborne LIDAR point
cloud data

2.1. Terrain types of HV transmission line corridor

With the development of power transmission technology, ultrahigh voltage and extrahigh voltage transmission
lines are extending across increasingly long distances, usually through multiple terrains such as plains, canyons,
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and steep slopes, as shown in Figure 1.

Transmission line

Ground

TowerTower

(a)     

Transmission line

Ground

Tower

Tower

   (b)   

Transmission line

Ground

Tower

Tower

(c)

Figure 1. Typical terrain of transmission line corridors: a) plain area, b) canyon area, c) steep slope area.

As Figure 1a shows, plain areas have small changes in height, with a significant difference between the
height of the transmission lines and that of the ground surface. On the other hand, canyons and steep slopes
have abrupt changes in height, resulting in recurring small differences between the heights of transmission lines
and the ground surface, as shown in Figures 1b and 1c.

The distribution profile of transmission lines in canyon zones is approximately equivalent to that of 2
steep slopes, as shown in Figure 2.
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Figure 2. The canyon area equivalent of 2 steep slope areas.

In summary, terrains in transmission corridors can be considered as combinations of 2 basic topographies:
comparatively flat terrain with slow changes in height (flat segments), and highly fluctuating terrain with
complicated topography (steep slope segments).

2.2. Features analysis of airborne LIDAR point cloud of HV transmission lines

In China, the scanning bandwidth of 110 kV to 500 kV transmission lines is around 50 m on both sides of the
conductor, which is 75 m for ±660 kV and 750 kV transmission lines by airborne LIDAR, and the acquisition
density of point cloud is generally 36–50 points/m2 . Figure 3 shows the airborne LIDAR point cloud data of
actual HV transmission lines.
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Figure 3. Airborne LIDAR point cloud data of HV transmission lines.

As shown in Figure 3, airborne LIDAR point cloud data obtained from HV transmission lines include point
clouds of transmission lines, transmission towers, and ground objects. The automatic recognition and separation
of points of transmission towers and ground objects is a necessary step to realize the automatic extraction of
point cloud data of transmission lines. In addition, the knowledge of the distribution and structure of airborne
LIDAR point cloud data of transmission lines is foundational for the precise segmentation and efficient extraction
of point cloud data of ground objects, transmission towers, and transmission lines. Figure 4 shows a schematic
map of airborne LIDAR point cloud data of transmission lines in 2 basic topographies.
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Figure 4. Elevation distribution diagram of point cloud: a) flat area, (b) steep slope area.

As seen in Figure 4a, in flat zones with small height variations, such as plains, transmission towers are of
similar heights; the height distribution space of point cloud data of transmission lines has no superposition with
that of ground objects. However, as seen in Figure 4b, in zones with large fluctuations in height, neighboring
towers are often of different heights, with some height differences that are even greater than the height of a
tower itself. Therefore, the height distribution of point cloud data of transmission lines and that of ground
objects will overlap to some extent, and the superposition of these height distributions will occur.

In some zones, the distributions of points of ground objects, towers, and transmission lines have the
following features, from low to high: points of ground objects are distributed continuously throughout the
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whole region, with low height; points of towers are concentrated, with a broad range of height, while their
horizontal projection is basically distributed within a small rectangle with high density. Points of transmission
lines are distributed linearly in 3 dimensions; due to security considerations, they generally have the largest
height difference with the ground, and they are loosely distributed.

As shown in Figure 5, within small distances along a transmission line, clear height distributions of ground
objects, towers, and transmission lines are observed, featured by flat terrains that can be easily generalized. In
a local range, heights of transmission lines and towers are significantly greater than that of the ground, which
makes it possible to convert the recognition of point clouds of steep slope terrains into a combination of small
flat terrains.

3. Extraction algorithm proposed
The automatic recognition and extraction of point cloud data of transmission lines involves 2 basic steps: the
recognition and segmentation of ground objects and towers.

3.1. Recognition and segmentation algorithm of point cloud data of ground objects
The feasibility and effectiveness of ground objects separation and transmission line extraction of transmission
line corridors in flat terrains from airborne LIDAR point clouds based on elevation have been verified. The
main challenge for the engineering application of this method is the universality in multiple terrains [14,17]. As
mentioned in Section 2, ground object points cannot be separated from nonground object points using height
distribution features in highly fluctuating terrains. However, in a local range, heights of transmission lines and
towers are significantly greater than that of the ground, which makes it possible to convert the recognition
of point clouds of steep slope terrains into a combination of small flat terrains. On such a basis, this study
proposes a height threshold segmentation algorithm based on subspace features to eliminate the point cloud
data of ground objects. The procedures are as follows:

First, the boundary values of the original point cloud data are calculated to determine the distribution
space of the initial point cloud M0 : 

xmin = min (x)

xmax = max(x)
ymin = min (y)

ymax = max(y)
zmin = min (z)

zmax = max(z)

, (1)

where (x, y, z) indicates the 3D coordinates of an arbitrary point.
Second, a segmentation scale dx , which is appropriate to a specific situation, is selected to divide the

whole point cloud space into n subspaces along the X coordinate, as is shown in Eq. (2) and Figure 6:

n = ⌊(xmax − xmin)⌋/dx + 1. (2)

Then Eq. (3) is used to calculate the height difference δi of point clouds in each subspace Mi(i= 1, 2, . . . ,n) ,
using δi as the feature value of subspace Mi .

δi = zmax − zmin (3)

Finally, a threshold value δz is set, based on which the feature value δi is used to classify subspaces.
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Figure 5. The distribution of point clouds on the small-
distance scale of steep slope area.

Figure 6. Subspace division based on the X axis.

If δi > δz , then the subspace is classified into class A.
If δi ≤ δz , then the subspace is classified into class B.
Due to different scanner models and scanning accuracy, the quality of the collected point cloud varies.

Therefore, the δz setting should be based on the actual point cloud quality and the size of the subspace. When
the size of the taken subspace is large and the collected point cloud density is high, a larger threshold value
should be set; on the contrary, the threshold value may be appropriately reduced.

Point clouds in subspace class B can be treated as those of pure ground objects; point clouds in subspace
class A contain those of both ground and nonground objects.

Subspaces of class A should be further segmented using the height threshold segmentation algorithm.
Height values zi of each point in the original cloud must be calculated. Eq. (4) is used to calculate the

average height of all points. In this formula, n represents the number of point clouds:

z̄ =

n∑
i=1

zi

n
. (4)

The whole point cloud is divided into top and bottom parts according to z̄ . The average heights of the points
of both parts, z̄1 and z̄2 , are calculated. The average value of z̄1 and z̄2 is used as a new z̄ . This step is
repeated until z̄ is stabilized within a certain range. The whole point cloud is then divided into 2 parts based
on z̄ . Specifically, points with height values less than z̄ are ground objects, while points with height values
greater than z̄ are nonground objects (namely, towers and transmission lines, as well as some trees and slope
tops), as shown in Figure 7.

The process of eliminating ground object points using the height threshold segmentation algorithm based
on subspace features is shown in the flow chart in Figure 8.

3.2. Algorithm of tower identification and segmentation
Following the identification and segmentation of the ground objects mentioned above, there are still some
nonground object points present that contain transmission lines and towers, as well as minor trees and slope
tops. To extract point clouds of transmission lines, the point clouds of towers, trees, and slope tops should be
further eliminated. The analysis of point clouds shows that the density of points representing towers, trees,
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Figure 8. Flow chart of the height threshold segmentation
algorithm based on subspace features.

and slope tops is greater than that of transmission lines; therefore, density differences can be used to eliminate
these points. For convenience, points representing towers, trees, and slope tops are collectively referred to as
“tower points” in the following section. This study proposes a height density segmentation algorithm to realize
the recognition and segmentation of towers and remaining objects. The procedure is as follows:

First, the boundaries between the point clouds of towers and transmission lines are located to determine
the initial space of the point cloud M0 .

Second, the segmentation scales dx and dy are used to divide the initial space M0 along the X and Y
coordinates into m× n subspaces Mi,j(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) , as is shown in Eq. (5) and Figure 9:

{
m= ⌊(xmax − xmin)/dx⌋+ 1

n = ⌊(ymax − ymin)/dy⌋+ 1
. (5)

Then the number of point clouds Ci,j in each subspace Mi,j is counted and used as the feature value of this
subspace.

The threshold value C0 is then set, and all subspaces are classified into 2 classes according to C0 .
Specifically, points of a subspace with height values greater than the threshold value C0 are classified as tower
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points, while those with height values less than the threshold value C0 are classified as transmission line points.
As with δz , the C0 setting should also be based on the actual point cloud quality and the size of the subspace.

Finally, subspaces belonging to points of towers and transmission lines are extracted. Thus, the segmen-
tation of towers and transmission lines is completed, so that the extraction of point cloud data of transmission
lines is realized.

A flow chart depicting the recognition and segmentation process of towers and remaining objects based
on the height density segmentation algorithm is shown in Figure 10.
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Figure 9. Subspace division based on X and Y axes. Figure 10. Flow of height density segmentation.

4. Case study

To verify the feasibility of the algorithm of automatic extraction of transmission lines, data are used from some
sections of towers for outgoing transmission lines of the 500 kV Fenghuangshan substation, as measured by
airborne LIDAR. The data are single-span point clouds for both flat and steep slope terrains, with spans of
210.8 m and 608.5 m, respectively. MATLAB 2016a, which has good algorithmic calculating performance and
visual demonstration, is used to carry out the algorithmic testing and the resulting demonstration to support
the feasibility test.

In China, the size of the grid is 2.5 m × 2.5 m when laser point cloud data are used to generate DEM
[19]. Therefore, in order to meet the rules and have high accuracy as well, the segmentation of the ground
objects is set to dx= 5 m , and the segmentation of the recognizing towers is set to dx×dy= 05 m×05 m . The
test results are shown in Figures 11a, 11b, 12a, and 12b.

First, a height threshold segmentation algorithm based on subspace features is used to carry out the
identification and segmentation of ground objects. Point cloud data of towers and transmission lines for flat
terrain and steep slope terrain, after segmenting the ground objects, are shown in Figure 11a and Figure 12a,
respectively.
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Figure 11. Testing results of flat terrain: a) ground
objects point cloud data filter result; b) transmission line
point cloud data extraction result.

Figure 12. Testing results of steep slope terrain: a)
ground objects point cloud data filter result; b) transmis-
sion line point cloud data extraction result.

As can be seen, using the proposed algorithm, ground object points can be effectively eliminated in both
flat and steep slope terrains (illustrated in red in the figures). While a small number of points of trees, slope
tops, and towers remain, the points of transmission lines are completely preserved.

In the next step, the segmentation of tower points (including a small number of trees and slope tops) and
the recognition and extraction of transmission lines are carried out according to a height density segmentation
algorithm, as shown in Figure 11b and Figure 12b.

As can be observed from Figure 11 and Figure 12, except for some mistakenly eliminated point clouds
of transmission lines due to interference from neighboring towers, the point clouds of most zones are perfectly
recognized and extracted.

In order to verify the validity of the proposed algorithm, we compared the difference between the proposed
algorithm and the traditional method, the height threshold segmentation method mentioned in reference [14].
The results of the traditional method are shown in Figures 13a, 13b, 14a, and 14b.

By comparing the experimental results of the proposed algorithm with those of the traditional algorithm,
we can see that in the flat areas where the terrain changes little, the proposed algorithm is basically the same
as the traditional algorithm in nonterrain points and the power line extraction results. However, the traditional
algorithm has poor extraction results and part of the power line points are removed, resulting in only a small
fraction of the power line point cloud extraction success. The proposed algorithm effectively solves this problem.

To further verify the robustness of the proposed algorithm, 6 groups of point cloud data of single-span
transmission lines on flat terrain (with spans of 210.8 m, 215.5 m, 354.2 m, 330.2 m, 269.8 m, and 450.9 m,
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Figure 13. Testing results of flat terrain: a) ground
objects point cloud data filter result; b) transmission line
point cloud data extraction result.

Figure 14. Testing results of steep slope terrain: a)
ground objects point cloud data filter result; b) transmis-
sion line point cloud data extraction result.

denoted as No. 1, No. 2, No. 3, No. 4, No. 5, and No. 6, respectively) are used for this test. The number
of point clouds extracted for each data sample is counted. A manual recheck of the extracted point clouds of
transmission lines is carried out. Specifically, points other than those of transmission lines are manually deleted,
and the number of the remaining effective points of transmission lines is counted. The ratio of the number of
effective points to the number of extracted points is treated as the accuracy ratio for the extraction of point
clouds of transmission lines. The results are shown in Tables 1 and 2.

Table 1. Comparison of extraction results in flat areas.

Order number No. 1 No. 2 No. 3 No. 4 No. 5 No. 6
Number of original points 511,395 749,187 817,377 831,395 749,187 107,377
Extracted point number by proposed method 9411 12,534 14,306 13,911 12,534 17,306
Extracted point number by hand 9148 11,986 14,064 13,521 11,986 17,012
Correctness 97.2% 95.6% 98.3% 97.2% 95.6% 98.3%

As Table 1 shows, the number of automatically extracted point clouds of transmission lines is slightly
larger than that of manually extracted point clouds. The reason for this is that a small number of noise points
with similar features exist in the neighboring area of the point clouds of transmission lines, and these points are
not effectively eliminated by the proposed method. Even in such a situation, the proposed method still has an
accuracy rate of above 95%, which satisfies the engineering application requirements. Of course, theoretically,
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Table 2. Extraction results of transmission line point cloud data.
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the existence of noise points will interfere with the fitting precision of transmission lines, especially suspension
and maximum sag points. A correction scheme for point clouds of transmission lines should be explored to
further improve extraction accuracy.

In this study, the segmentation threshold of each subspace is obtained by dividing a whole point cloud
space into several subspaces, based on which ground object points are eliminated. Theoretically, the length
of each subspace dx will affect the extraction precision and the efficiency of transmission lines. To quantify
the influence of the length of subspace dx on the extraction precision and efficiency, an experiment on the
extraction of transmission lines is carried out by setting the length of subspace dx using No. 3 data. The
experiment results are shown in Table 3.

Table 3. Extraction results with different subspace lengths.

Subspace length (m) Correctness Run time (s)
1 85.9% 17.6
3 92.2% 14.7
5 98.3% 12.9
10 97.8% 10.5
20 97.9% 9.3
50 97.5% 8.7
100 97.1% 8.4
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As Table 3 shows, with increasing length of subspace dx , the extraction accuracy rises before it falls
slowly, and the execution time of the algorithm drops with increasing of dx . It can be concluded, based on
the principle of the extraction algorithm, that when dx is small, because the number of point clouds within
a subspace is small, the segmentation threshold is affected by noise points, resulting in the low precision of
extraction. Multiple rounds of threshold calculation lead to longer execution times. In a certain range, with
the increasing length of a subspace dx , interference from noise points decreases and the precision of extraction
increases. With the reduction of the number of subspaces, the execution time is lowered. With the further
increase in the length of a subspace dx , the time consumption is further reduced; however, some abnormal data
such as tree tops cannot be effectively recognized locally, leading to a decrease in the recognition precision. The
use of a reasonable range of values of the subspace length dx is thus very crucial.

In summary, the proposed extraction algorithm can effectively realize the accurate extraction of transmis-
sion lines for both flat and steep slope terrains, with an extraction precision of no less than 95%, thus indicating
its engineering value. A reasonable selection of the segmentation length of a subspace is beneficial to achieve a
balance between the extraction precision and the execution efficiency of transmission lines.

5. Conclusion
The automatic extraction algorithm of transmission lines proposed in this paper can effectively realize the accu-
rate extraction of point cloud data of transmission lines for both flat and steep slope terrains with high generality
and reliability, which represents a valuable solution to the extraction of point cloud data of transmission lines in
multiple terrains. The length of a subspace affects the precision and efficiency of extraction; therefore, further
studies are needed to develop methods of self-adaptive value selection for selecting subspace lengths in multiple
terrains, with a view to balance extraction precision and efficiency.
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