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Abstract: Plane wave diffraction by the infinite periodic planar graphene grating and infinite grating above a perfectly
conducting plane in the THz range is considered. The mathematical model is based on the graphene surface impedance
and the method of singular integral equations. A comparison with finite grating is made. Reflectance, transmittance,
and absorbance are studied as a function of graphene and grating parameters.
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1. Introduction
In [1], diffraction by finite graphene grating was described with the use of the method of singular integral
equations (SIEs). In this paper we are going to use this method to consider infinite periodic grating of graphene
strips.

Graphene gratings may be used as frequency selective surfaces, sensors, plasmon waveguides, and in
tunable antennas [2–6]. A review of the application of the finite element method, finite-difference time-domain
method, and method of moments was presented in [7]. The method of integral equations was used for a
free-standing graphene strip and disc in [8], and for a finite number of graphene strips in [9]. In [10,11], the
Fourier expansion method was used for the graphene infinite periodic strip grating under normal incidence.
Strict analysis of the same grating under arbitrary incidence with the use of the semiinverse procedure and the
method of analytical regularization was given in [12]. In [13], the method proposed in [12] was developed for
the infinite periodic graphene grating embedded in a dielectric slab.

Classical methods also can be applied to study periodic gratings of material strips such as the Riemann–
Hilbert problem technique [14]. In [15], a theory of summation equations was developed. The method for
solving summation equations with different kernels in the form of trigonometric functions, Mathieu and Bessel
functions, adjoint Legendre functions, and Jacobi polynomials was proposed. An approach that deals with
operators with singularities of stationary boundary value problems in theory of wave diffraction by periodic
gratings was proposed in [16]. Here we propose a method that leads to Cauchy-type SIEs. These equations
have similar forms for the infinite periodic gratings as well as for the finite gratings (only the kernel-function
and right-hand side differ), so a unified method of numerical solution can be used. All these methods are equal
in effectiveness and the use of one of them does not preclude the enforcement of others.
∗Correspondence: kaliberdame@yandex.ua
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In this paper, we consider H -polarized wave diffraction by the infinite periodic graphene grating placed in
the free space and above a perfectly electric conducting (PEC) plane. The numerical scheme of the solutions of
the obtained SIEs is based on the Nystrom-type method of discrete singularities and has guaranteed convergence
[17–22]. Complex-valued graphene conductivity σ is obtained using Kubo formalism [23,24]. The graphene
grating above a PEC plane with dipole excitation was used as an antenna with tunable direction pattern in
[25].

We will obtain the solution of the problems in several steps. First, we represent a scattered field using
the Fourier series with unknown amplitudes. After that, from boundary conditions, dual series equations will
be presented. Then they will be reduced to the SIEs.

2. Statement of the problem
Consider two diffraction problems. The first is the H -polarized wave diffraction by the infinite periodic grating
of graphene strips placed in the z = 0 plane. The second problem is diffraction by the infinite periodic graphene
grating above the PEC plane. The infinite grating is described by the period l and strip width 2d . The strips
are infinite along the x -axis; the distance between the grating and PEC plane in the second problem is h . Let
us place the coordinate system as is shown in Figures 1a and 1b.
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Figure 1. Structure geometry: a) free-standing graphene periodic grating, b) graphene periodic grating above PEC
plane.

We seek the total field as a sum of the incident and scattered field. In the case of graphene strips, the
following boundary conditions should be satisfied [8,9,26]:
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y

)
=

1

σ

(
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x −H−

x

)
, (1)

E+
y = E−

y , z = 0, y outside the strips, (2)

and

Ey = − 1

iωε0

∂Hx

∂z
,

where ε0 is the permittivity of free space. “+” corresponds to the field above the grating (z → +0) and “–”
to the field below the grating (z → −0) .

3. Infinite periodic grating

Let us consider infinite periodic grating of graphene strips placed in the z = 0 plane (see Figure 1a). The
H -polarized field is incident on the grating from the half space z > 0 :

Hi
x(y, z) = exp (ik(ζ0y − γ0z)) ,
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where k is the wave number, in the general case ζn = 2πn
kl + sinα , γn =

√
1−

(
2πn
kl + sinα

)2 , Reγn ≥ 0 ,

Imγn ≥ 0 , and ϕ0 = π/2 − α is the incidence angle to the y -axis. We seek the total field as a sum of the
incident and scattered field. We represent the scattered field in the form of a Fourier series with unknown
amplitudes an [14,21,22,27]:

Hx(y, z) = Hi
x(y, z) + sgn(z)

∞∑
n=−∞

an exp (ik(ζny + γn|z|)), z ̸= 0.

The scattered field satisfies the Helmholtz equation outside the strips, the continuity condition of Eq. (2), and
radiation and periodicity conditions. We suppose that the scattered field also satisfies the edge condition near
the infinitely thin strips. Enforcement of the boundary conditions of Eqs. (1) and (2) leads to the dual series
equations for a single period, |y| < l/2 :

∞∑
n=−∞

an exp

(
i
2πn

l
y

)
= 0, |y| ≥ d (for slot), (3)

2ik

σZ

∞∑
n=−∞

an exp

(
i
2πn

l
y

)
+

∞∑
n=−∞

anγn exp

(
i
2πn

l
y

)
= γ0, |y| < d (for graphene strip). (4)

Reduce Eqs. (3) and (4) to the SIEs with additional condition as was done in [21,27] for the PEC case.
We present this technique brie?y here. Let us introduce dimensionless quantities ξ = 2πy/l , κ = kl/(2π) ,

δ = 2πd/l . Using asymptotic behavior for γn ∼ i |n|κ + O(1/|n|) , when n → ∞ , represent it as a sum of

vanishing and nonvanishing terms, γn =
(
γn − i |n|κ

)
+ i |n|κ . Rewrite Eq. (4) as follows:

i

∞∑
n=−∞

|n|
κ
an exp (inψ) +

2ik

σZ

∞∑
n=−∞

an exp (inψ) +

∞∑
n=−∞

an

(
γn − i

|n|
κ

)
exp (inψ) = γ0, |ψ| < δ.

Using the periodic Hilbert operator, P2πG(ψ) = 1
2πPV

π∫
−π

ctg ξ−ψ2 G(ξ)dξ , P2π exp(inψ) = isgn(n) exp(inψ) ,

the nonvanishing term (first series) is transformed to the singular integral. Then the vanishing terms (second
and third series) are collected to the kernel function. Here PV means the Cauchy principal value integral and
G(ξ) is an arbitrary function. Eq. (4) is transformed into a SIE:

1

π
PV

δ∫
−δ

F (ξ)

ξ − ψ
dξ +

1

π

δ∫
−δ

K(ψ, ξ)F (ξ)dξ = iκγ0, (5)

where

an =
1

2πin

δ∫
−δ

F (ξ) exp(−inξ)dξ, (6)

a0 = − 1

π

δ∫
−δ

ξ

2
F (ξ)dξ. (7)
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The kernel function K(ψ, ξ) is

K2π(ψ, ξ) =− κ

2

∞∑
n=−∞
n ̸=0

(
i|n|
κ

− γn

)
exp (in(ψ − ξ))

n

+ iγ0κ
ψ − ξ

2
+

(
1

ψ − ξ
− 1

2
cot

(
ψ − ξ

2

))
+ q(ψ, ξ), (8)

q(ψ, ξ) =

{
2iκπ
σZ , ξ ≤ ψ,
0, ξ > ψ.

Since the series in Eq. (8) converges and function
(

1
ψ−ξ −

1
2 cot

(
ψ−ξ
2

))
has finite limit, when ψ → ξ , the

kernel function K(ψ, ξ) is the regular one for all ψ and ξ ∈ (−π;π) . The appropriate choice of discretization
scheme in the method of discrete singularities provides that ψ−ξ

2 ̸= ±π . Numerical study (see Figure 2) shows
that no difficulties with the stability of the numerical solution are observed when the strip width approaches
the value of the period, 2d→ l , and ψ−ξ

2 → ±π .
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Figure 2. Relative error εM vs. number of nodes, d = 10 µm , f = 2.88 THz (black curve); d = 10 µm , f = 5.88 THz
(red curve); d = 34.99 µm , f = 1 THz (green curve); d = 10 µm , f = 1 THz (blue curve); l = 70 µm , ϕ0 = 900 ,
τ = 1 ps, T = 300 K, µc = 0.5 eV.

Eq. (3) give rise to additional conditions, which provides the unique solution of Eq. (5):

1

π

δ∫
−δ

F (ξ)dξ = 0. (9)

4. Infinite periodic grating above perfectly electric conducting plane
In the case of the structure represented in Figure 1b, we seek the total field as follows:

Hx(y, z) = exp (ik(ζ0y − γ0(z + h))) + exp (ik(ζ0y + γ0(z + h))) +H±(y, z), (10)

where exp (ik(ζ0y − γ0(z + h))) is an incident field, exp (ik(ζ0y + γ0(z + h))) is a field reflected by the PEC
plane, H±(y, z) is a field scattered by the grating, “+” corresponds to the field above the grating, z > 0 , and
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“–” corresponds to the field under the grating, −h < z < 0 . Scattering by the grating field may be represented
as follows:

H+(y, z) =

∞∑
n=−∞

cn exp (ik(ζny + γnz)), z > 0,

H−(y, z) =− i

∞∑
n=−∞

cn
cos (kγn(z + h))

sin (γnkh)
exp (ikζny),−h < z < 0, (11)

where cn are unknown amplitudes. In Eqs, (10) and (11) we take into account the boundary conditions on the
PEC plane. Using Eqs. (1) and (2), dual series equations may be obtained for a single period:

∞∑
n=−∞

cn (1 + i cot(γnkh)) exp (ikζny) = 0, |y| ≥ d (for slot), (12)

ik

σZ0

∞∑
n=−∞

cn (1 + i cot(γnkh)) exp (ikζny) + ik

∞∑
n=−∞

γnCn exp (ikζny) = 2kγ0 sin (γ0kh) exp(ikζ0y), |y| < d

(for graphene strip). |y| < d (13)

To reduce Eqs. (12) and (13) to the SIEs, introduce the following function:

Dn = cn (1 + i cot(γnkh)) ,

and introduce dimensionless quantities. Then Eqs. (13) and (13) are

∞∑
n=−∞

Dn exp (iny) = 0, |y| ≥ d (for slot),

2

σZ0

∞∑
n=−∞

Dn exp (iny) +

∞∑
n=−∞

2γn
1 + i cot (γnkh)

Dn exp (iny) = −4iγ0 sin (γ0kh) ,

|y| < d (for graphene strip).

Taking into account asymptotic behavior for 2γn
1+i cot(γnkh)

∼ i |n|κ + O(1/|n|) , when n → ∞ , as in Section 2 we

may obtain SIEs with additional conditions in the form of Eqs. (5) and (9):

1

π
PV

δ∫
−δ

F (ξ)

ξ − ψ
dξ +

1

π

δ∫
−δ

K(ψ, ξ)F (ξ)dξ = 4κγ0 sin (γ0kh), (14)

1

π

δ∫
−δ

F (ξ)dξ = 0.
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To obtain the expression for the kernel function and for coefficients Dn we may substitute 2γn
1+i cot(γnkh)

instead

of γn in Eq. (8) and substitute Dn instead of an in Eqs. (6) and (7):

K2π(ψ, ξ) =− κ

2

∞∑
n = −∞
n ̸= 0

(
i|n|
κ

− 2γn
1 + i cot (γnkh)

)
exp (in(ψ − ξ))

n

+
iκγ0

1 + i cot (γ0kh)

ψ − ξ

2
+

(
1

ψ − ξ
− 1

2
cot

(
ψ − ξ

2

))
+ q(ψ, ξ),

Dn =
1

2πin

δ∫
−δ

F (ξ) exp(−inξ)dξ, n ̸= 0,

D0 =− 1

π

δ∫
−δ

ξ

2
F (ξ)dξ.

Solution of Eqs. (5), (9), and (14) may be obtained by the method of discrete singularities [17–20].

5. Numerical results
Denote reflection, transmission, and absorbance coefficients as R , T , and A . They correspond to the power of
the reflected field, the power of the transmitted field, and the absorbed power of the incident field. We use such
graphene parameters as relaxation time τ , chemical potential µc , and temperature T .

5.1. Validation of results: infinite periodic grating

The convergence of the method was highlighted in many works (see, for example, [1,19,22,26,28]). The method
of the solution provides the algebraic convergence with increasing matrix dimension. We can introduce the
relative error of the reflection coefficient as follows:

εM = |T (R)− T (2R)| / |T (2R)| ,

where M is the number of nodes in the quadrature rule or dimension of the matrix after discretization of Eqs.
(5) and (9) by the method of discrete singularities. The dependences of εM vs. M are represented in Figure
2. The values of parameters are taken as follows: two curves are plotted near the first (f = 2.88 THz) and
second (f = 5.88 THz) plasmon resonance; to check the stability of the algorithm when ψ−ξ

2 → ±π we take
strip width as almost equal to the period, d = 34.99 µm ; for comparison one curve is also plotted for the value
of frequency f = 1 THz. As one can see, the number of interpolation nodes that one should take is mainly
defined by the value of the normalized strip width kd : with the parameter kd increasing, the number of nodes
should also be increased.

To validate the results for the infinite periodic grating we compare them with results for the finite grating.
Here we use the methodology that was successfully proposed in [9]. Suppose that the field scattered by the
finite grating is expressed via a Fourier integral with known spectral function C(ξ) [1]:

Hs
x(y, z) = sgn(z)

∞∫
−∞

C(ξ) exp(ikξy + ikγ(ξ)|z|)dξ,
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where γ(ξ) =
√
1− ξ2 , Reγ ≥ 0 , and Imγ ≥ 0 . Then the transmission, reflection, and absorption coefficients

of the finite grating of N strips may be written as follows [9]:

TN = 1 +
πζ

kdN sinϕ0

π∫
0

(C(− cos(ϕ)) sinϕ)
2
dϕ−Re (C(cosϕ0)) ,

RN =
πζ

kdN sinϕ0

π∫
0

(C(− cos(ϕ)) sinϕ)
2
dϕ,

AN = 1− TN −RN ,

where ζ = 2d/l . The relative deviation may be expressed as:

δT = |TN − T | / |T | .

The results are presented in Figure 3. The results correlate well with each other. As was reported in [9], the
difference is observed near the Rayleigh anomalies (zoomed in on in Figure 3a). As an example, Figure 3b
represents relative deviation only for the transmission coefficient.
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Figure 3. Comparison with finite grating, d = 10 µm , l = 70 µm , ϕ0 = 900 , τ = 1 ps, T = 300 K, µc = 0.5 eV.
a) Dependences of reflection (black curves), transmission (red curves) and absorbance (green curves) vs. frequency for
finite gratings of N = 10 strips (dashed curves), N = 40 strips (dotted curves) and infinite grating (solid curves); b)
dependences of δT (f) vs. frequency.

5.2. Validation of results: infinite periodic grating above a perfectly electric conducting plane

To validate results for the infinite periodic grating above the PEC plane in the case when only one fundamental
plane wave can propagate, kl << 2π , ϕ0 = 900 , we use complex reflection r = a0 and transmission t = 1− a0

coefficients of the infinite grating. Taking into account that t = 1−r , one may obtain relations between Fourier
amplitudes of the reflected field C and field between the grating and the plane D and E (see Figure 4 for
notations):

C = r + teD = r + eD − reD, (15)
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Figure 4. Notations for the periodic grating above the PEC plane.

E = t+ reD = 1− r + reD, (16)

D = eE, (17)

where e = exp(ikh) . Figure 5 shows plots for the reflected power obtained from Eq. (14) (asterisks) and from
the rigorous solution of Eq. (13). Good agreement is observed up to kh = 2π when ±1 plane waves are excited
and scalar Eqs. (15), (16), and (17) are not valid.
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Figure 5. Dependences of reflection vs. frequency for infinite gratings above the PEC plane, d = 10 µm , l = 70 µm ,
h = 70 µm , ϕ0 = 900 , τ = 1 ps, T = 300 K. (a) µc = 0 eV; (b) µc = 0.1 eV; (c) µc = 0.3 eV; (d) µc = 0.5 eV. Solution
of SIE (solid line) and solution of Eq. (14) (asterisks).
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5.3. Numerical analysis

Figure 6 shows dependences of the reflection, transmission, and absorbance coefficients vs. frequency of the
infinite periodic grating for different values of chemical potential µc . With chemical potential increasing, the
resonances shift to the greater values of frequency. The reflectance near plasmon resonances becomes more
pronounced. A different situation is observed if one places the PEC plane below the grating (see Figure 5
or Figure 7). Figures 7a–7d show the results of calculations for the infinite grating above the PEC plane for
different values of chemical potential µc and distance between the grating and the plane h . Since A = 1−R ,
we represent only reflected power. In the case of the single grating one may observe a significant increase in
absorbance near plasmon resonances. In the case of the grating above the plane there are such values of distance
h that absorbance is almost absent over the whole considered frequency range including bands near plasmon
resonances, where reflectance is almost 1, R ≈ 1 (see Figure 7d, h = 52 µm) . However, for certain values of h
and µc , almost total absorbance occurs, A ≈ 1 (see Figures 7b and Figure 7c near the first plasmon resonance).
Moreover, shifts in resonance frequencies are observed.
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Figure 6. Dependences of reflection (solid curves), transmission (dashed curves), and absorbance (dotted curves) vs.
frequency for infinite gratings, d = 10 µm , l = 70 µm , ϕ0 = 900 , τ = 1 ps, T = 300 K. (a) µc = 0 eV; (b) µc = 0.1 eV;
(c) µc = 0.3 eV; (d) µc = 0.5 eV.

To demonstrate the features of the field behavior we calculated total magnetic field distribution near the
plasmon resonance and the Rayleigh anomaly frequency. Figure 8 is plotted for the infinite periodic grating near
the first plasmon resonance frequency, f = 2.88 THz, and near the Rayleigh anomaly frequency f = 4.285 THz,
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Figure 7. Dependences of reflection vs. frequency for infinite gratings above the PEC plane, h = 20 µm (black curves),
h = 52 µm (red curves), h = 70 µm (green curves), d = 10 µm , l = 70 µm , ϕ0 = 900 , τ = 1 ps, T = 300 K.
a) µc = 0 eV; b) µc = 0.1 eV; (c) µc = 0.3 eV; (d) µc = 0.5 eV.
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Figure 8. Total near field distribution (component |Hx(y, z)|) for the infinite periodic grating, d = 10 µm , l = 70 µm ,
ϕ0 = 900 , τ = 1 ps, T = 300 K, µc = 0.5 eV, near a) the plasmon resonance, f = 2.88 THz, and b) the Rayleigh
anomaly, f = 4.85 THz.
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µc = 0.5 eV. Figure 9 is plotted for the infinite periodic grating above the PEC plane near the first plasmon
resonance for f = 2.88 THz and for two values of h = 52 µm and h = 2d = 20 µm . Value h = 52 µm

corresponds to the grating-plane resonance case when R ≈ 1 .
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Figure 9. Total near field distribution (component |Hx(y, z)|) for the infinite periodic grating above the PEC plane
near the plasmon resonance, f = 2.88 THz, d = 10 µm , l = 70µm , ϕ0 = 900 , τ = 1 ps, T = 300 K, µc = 0.5 eV, a)
h = 20 µm , b) h = 52 µm .

6. Conclusions
In this paper, a rigorous solution of diffraction by the infinite periodic graphene grating and graphene grating
above a PEC is obtained. The results of comparison with finite grating and of comparison with results obtained
from scalar equations for the case when only one dominant plane wave may propagate are presented for
validation.

We studied the scattering and absorption characteristics for different values of chemical potential and
distance between the grating and the plane. Variety of surface plasmon resonances in the THz range was
demonstrated. In the presence of the PEC plane the grating-plane resonances appear. Here one can observe
almost total reflection without absorbance, even near the plasmon resonance frequencies.
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