
Turk J Elec Eng & Comp Sci
(2018) 26: 1747 – 1758
© TÜBİTAK
doi:10.3906/elk-1711-339

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Solving a combined economic emission dispatch problem using adaptive wind
driven optimization

Milena JEVTIĆ1,∗, Nenad JOVANOVIĆ2, Jordan RADOSAVLJEVIĆ3

1Technical Faculty in Bor, University of Belgrade, Bor, Serbia
2High Business School Blace, Blace, Serbia
3Hydropower Plant Jevtic, Zvezdan, Serbia

Received: 25.11.2017 • Accepted/Published Online: 03.04.2018 • Final Version: 27.07.2018

Abstract: In this paper, the adaptive wind driven optimization (AWDO) algorithm is applied for solving the combined
economic emission dispatch (CEED) problem. AWDO is one of the newest hybrid algorithms, which optimizes the
selection of coefficients at each iteration, eliminating the need for tuning the coefficients. The evaluation of AWDO
performances is carried out on the standard IEEE 30-bus test system with 6 generating units and with various cost curve
natures. The results of AWDO use with the test system are compared against the results of use of 3 algorithms: the moth
swarm algorithm, firefly algorithm, and hybrid particle swarm optimization and gravitational search algorithm, which
were proposed in recent literature for solving this problem. The present paper shows that AWDO gives an accurate and
effective solution of the CEED problem and outperforms the other tested algorithms.

Key words: Computational intelligence, heuristic algorithms, power generation dispatch, power system analysis com-
puting, power engineering computing

1. Introduction
One of the key tasks in the planning and operation of a power system is to minimize fuel cost and emission of
pollutants in thermal power plants. This problem is solved as an optimization problem in which the minimization
of functions of fuel cost and emission of pollutants is carried out and it is called the combined economic emission
dispatch (CEED) problem. Minimization of these functions is performed by adjusting the output powers of
generators in the thermal power plants to meet the system load, subject to transmission and operational
constraints. Due to the complexity of the objective functions that take the form of a sum of quadratic, sinusoidal,
and exponential functions, a large number of stochastic nature-inspired metaheuristic algorithms (MAs) to solve
the CEED problem were presented in the literature. In [1] an overview of over 30 MAs proposed in various
published papers for solving the CEED problem was given.

A number of improved MAs that enhance performance in terms of convergence speed, global optimality,
solution accuracy, and algorithm reliability for solving the CEED problem have been proposed [2–4].

In this paper we apply for the first time the adaptive wind driven optimization (AWDO) algorithm [5] for
solving the CEED problem. This MA optimizes its coefficients in each iteration. We carry out the validation
of the AWDO algorithm for solving the CEED problem on a standard IEEE test system with 6 generators and
by comparing the obtained results with the results of the use of other algorithms.
∗Correspondence: mjevtic@tfbor.bg.ac.rs
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2. CEED model
The fuel cost function, Fg(Pg) , of generation unit g in a thermal power plant can be:

(i) a quadratic smooth function, when the valve point loading effect (VPLE) in the thermal power plant is
not taken into account:

Fg (Pg) = ag + bgPg + cgP
2
g , g = 1, 2, . . . , G; (1)

(ii) a more complex, nonsmooth, and nonconvex function when considering VPLE [6]:

Fg (Pg) = ag + bgPg + cgP
2
g +

∣∣dg sin (eg (Pmin
g − Pg

))∣∣ , (2)

where Fg is expressed in $/h; Pg is the real power of generation unit g in MW; G is the total number of
generation units; Pmin

g is a lower loading limit of the generation unit g ; coefficients ag , bg , and cg are
the cost coefficients; and dg and eg are the coefficients for VPLE.

The emission function, Eg(Pg) , of a generation unit g is defined as a sum of quadratic and exponential
functions [7,8]:

Eg (Pg) = αg + βgPg + ηgP
2
g + ξg exp (λgPg) , (3)

where Eg is expressed in t/h and αg , βg , ηg , ξg , and λg are emission coefficients of the generation unit g .
To solve the CEED problem, Eq. (1) or (2) is combined with Eq. (3) using the weighted sum method

[9], i.e.

FE = w
∑Fg(Pg)

g∈G
+(1− w) γ

∑Eg

g∈G
(Pg) , (4)

and then the combined function of Eq. (4) is minimized under system constraints. In Eq. (4), γ is the scaling
factor and w is the weight factor, the value of which is within the limits 0 ≤ w ≤ 1 . The limit w = 1 corresponds
to the minimization of fuel cost only, while the limit w = 0 corresponds to the minimization of pollutant emission
only. By using the scaling factor γ , the biobjective CEED problem is solved as a single-objective problem.

In this minimization process, 2 constraints are satisfied:

(i) the power equality constraint in the transmission system:

∑Pg

g∈G
−PD − Ploss = 0, (5)

where Ploss and PD are the power loss and total load demand, respectively;
(ii) the generator unit capacity constraint:

Pmin
g ≤ Pg ≤ Pmax

g , (6)

where Pmax
g and Pmin

g are maximum and minimum power values of the generator unit g .

The power loss of the transmission system is expressed using B-loss matrices, as follows [9]:

Ploss =
∑∑

j∈G PgBgj

g∈G
Pj +

∑
g∈G

B0gPg +B00, (7)

where B00 , B0g , and Bgj are the coefficients of the B-loss matrices.
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In order to satisfy the constraint of Eq. (5), one of the generators (e.g., generator G) is selected to be a
dependent generator (the slack generator). Then, from Eq. (5), the value of PG is obtained as follows:

PG = PD + Ploss −
∑G−1

g=1
Pg. (8)

By using Eqs. (7) and (8), the values of PG and Ploss are obtained as follows: (i) set the initial value of Ploss :

Ploss = P
(0)
loss =0 in Eq. (8); (ii) calculate the initial value P

(0)
G from Eq. (8) for the initial value P

(0)
loss =0; (iii)

calculate the new value P
(1)
loss from Eq. (7); (iv) check whether the error value ε is below the specified error

tolerance value δ , i.e.

ε =
∣∣∣P (1)

loss − P
(0)
loss

∣∣∣ , ε ≤ δ ; (9)

and (v) obtain the value P
(1)
G from (8) for Ploss = P

(1)
loss . The power equality constraint of Eq. (5) is met if the

condition of Eq. (9) is satisfied. Otherwise, the procedure is repeated. After checking whether the calculated
PG value satisfies the constraint of Eq. (6), the variable P lim

G is defined as follows:

P lim
G =


Pmax
G if PG > Pmax

G

Pmin
G if PG < Pmin

G

PG if Pmin
G ≤ PG ≤ Pmax

G

, (10)

where variable PG is a dependent variable. Thereafter, the new expanded objective function to be minimized
is formed:

FEp = FE + λp

(
PG − P lim

G

)2
, (11)

where the quadratic penalty term with the penalty factor λp is added to the objective function FE of Eq. (4).

3. AWDO
Wind driven optimization (WDO) is a nature-inspired population-based algorithm whose use is widespread
because of its good exploration and diversity properties [10]. For searching the space of possible solutions,
WDO uses the law under which the wind blows, i.e. under which each infinitesimal air parcel (as a member of
a population) moves toward an optimum air pressure location to balance its horizontal pressure. The velocity
and position of each air parcel are updated on each iteration. This iterative process continues until the air
parcels achieve the optimum pressure location to provide the optimum solution. Newton’s second law of motion
is used to express the motion of the air parcel. There are 4 major forces that can either cause the wind
to move in a certain direction or deflect it from its existing path. These forces are the pressure gradient

force, −→F PG = −∇PδV ; the friction force, −→
F F = −ραu⃗; the gravitational force, −→

F G = ρδV g⃗ ; and the Coriolis

force, −→
F C = −2Ω × u⃗, where ∇P is pressure gradient; δV is the finite volume of the air parcel; ρ is air

density for the air parcel; α is the friction coefficient; u⃗ is the velocity vector of the wind; g is gravitational
acceleration; and Ω is the rotation of the earth. The sum of these forces is inserted into Newton’s second law
of motion, which is expressed as follows:

ρa⃗ =
∑−→

Fi, (12)

where a⃗ is acceleration, and then the velocity and position displacement of each air parcel are computed. The
procedure for this computation begins as follows: (i) make a substitution, a⃗ = ∆u⃗/∆t and, for simplicity, set
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∆t = 1 and δV = 1; (ii) write ρ in terms of the pressure P from the ideal gas law: P = ρRT, where R is the
universal gas constant and T is the temperature; (iii) insert the forces in Eq. (12) and, after editing Eq. (12),
write the following equation:

∆u⃗ = g⃗ +

(
−∇P

RT

Pcur

)
− αu⃗+

(
−2Ω× u⃗RT

Pcur

)
, (13)

where Pcur is the pressure of the current location. In WDO the velocity difference ∆u⃗can be written as
∆u⃗ = u⃗new−u⃗cur,where u⃗cur and u⃗new are velocities at the current iteration and the next iteration, respectively.

The values of g⃗ and ∇P are written in terms of position x⃗ of the parcel: g⃗ = |g|
(
0⃗− x⃗cur

)
and ∇P =

|Popt − Pcur| (x⃗opt − x⃗cur) [10], where opt and cur are optimal and current values. After updating Eq. (13),
the following is obtained:

u⃗new = (1− α) u⃗cur + g⃗ +

(
−∇P

RT

Pcur

)
+

(
−2Ω× u⃗RT

Pcur

)
. (14)

The following additional substitutions are performed in Eq. (14): (i) the expression −2Ω × u⃗RT , which
represents the influence of the Coriolis force, is replaced by c? u⃗other dim

cur , where c is a new constant expressed
as c = −2ΩRT and u⃗other dim

cur is velocity of another randomly chosen dimension of the same air parcel; (ii)
actual pressure Pcur is replaced by rank i [10]. Finally, after these substitutions, the velocity update equation
becomes:

u⃗new = (1− α) u⃗cur − gx⃗cur +

(
RT

∣∣∣∣1i − 1

∣∣∣∣ (x⃗opt − x⃗cur)

)
+

(
cu⃗other dim

cur

i

)
. (15)

When the velocity u⃗new is calculated, the equation of updating the position will be:

x⃗new = x⃗cur + (u⃗new∆t) , (16)

where x⃗cur is the current position of the air parcel, x⃗new is the new position in the next iteration, and∆t is
the time step, which is set to t= 1.

When applying WDO, the user adjusts the coefficients α ,g , RT, and c in order to adapt the algorithm
to the given problem. In some cases, the user can set the coefficients insufficiently precisely, which reduces the
efficiency of the algorithm. AWDO removes this possible drawback of WDO. AWDO is a hybrid algorithm con-
sisting of WDO and an evolutionary algorithm, the covariance matrix adaptation evolution strategy (CMAES)
[11], which optimizes the above 4 coefficients in each iteration and selects a set of new values. CMAES is suitable
for use because it does not require the setting of its coefficients by the user and the size of the population of
CMAES is the same as that of WDO. Also, CMAES has a high speed [11]. Fast CMAES is incorporated in
AWDO because the additional process of optimizing coefficients can slow down the algorithm. CMAES was
described in detail in [11].

WDO starts with initialization and with randomly generating the velocity and position of the air parcel.
The next step is to evaluate the pressure for each air parcel, update velocity and position, and check the velocity
limits. Then the values of pressure and coefficients α ,g , RT, and care entered into CMAES. CMAES optimizes
the coefficients and selects a new set of coefficient values and returns them to WDO. In this way, the iterative
process takes place in such a way that WDO performs the updating of the position and velocity, and CMAES
optimizes the coefficients. Figure 1 shows the flowcharts of AWDO and CMAES.
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Figure 1. Flowcharts of AWDO (a) and CMAES (b).

CMAES belong to the class of evolutionary algorithms. The population of individuals is a set of solutions
to a given optimization problem. The iteration starts with sampling λ candidate solutions, x i ∈RN , from
a multivariate normal distribution:

xi = N (m, σ2C) (17)

where m is distribution mean, σ is the step-size,N is the problem dimension, and C∈RN xN is the covariance
matrix. The step-size control prevents premature convergence and allows fast convergence. Matrix C can be
broken apart into its eigenvectors, B, and eigenvalues, D, as in:

C = BD2BT . (18)

After sampling, the candidate solutions x i are evaluated on the objective (fitness) function f to be minimized.
All x i,1:λ are sorted according to fitness and their best number µ (typically µ ≈ λ/2) is used to compute the
mean m of the next iteration (t+1) as follows:

mt+1 =

µ∑
i=1

wix
t
i, (19)

where wi is the recombination weight of the ith best candidate solution:

wi =
log2(µ+ 0.5)− log2(i)

µ∑
j=1

(log2(µ+ 0.5)− log2(j))

for i = 1, 2, ..., µ. (20)
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After calculating wi , the effective number of children µeff is calculated as

µeff = (

µ∑
i=1

w2
i )

−1. (21)

Next, the conjugate evolution path pσ and the step-size are updated:

pt+1
σ = (1− cσ) · ptσ +

√
cσ(2− cσ) ·

√
µeff

σt
(Ct)−1/2(mt+1 −mt), (22)

σt+1 = σt exp

(
cσ
dσ

( ∥∥pt+1
σ

∥∥
E ∥N (0, I)∥

− 1

))
, (23)

where cσ is the learning rate for the step-size control:

cσ =
µeff + 2

N + µeff + 3
, (24)

dσ is damping factor for step-size control:

dσ = 1 + 2max

(
0,

√
µeff − 1

N + 1
− 1

)
+ cσ, (25)

and E ∥N (0, I)∥ is expected value of
∥∥pt+1

σ

∥∥ :

E ∥N (0.I)∥ ≈
√
N

(
1− 1

4N
+

1

21N2

)
. (26)

Finally, the covariance matrix is updated, where the evolution path pc is updated first:

pt+1
c = (1− cc) · ptc +

√
cc(2− cc) ·

√
µeff

σt
(mt+1 −mt), (27)

Ct+1 = (1− ccov) · Ct +
ccov
µeff

pt+1
c

(
pt+1
c

)T
+

(
1− 1

µeff

)
ccov

(σt)
2

µ∑
i=1

wi

(
xt+1
i −mt

) (
xt+1
i −mt

)T
, (28)

where cc is the learning rate for the rank-one update of the covariance matrix:

cc =
4

N + 4
, (29)

and ccov is the learning rate for the update of the covariance matrix [11]:

ccov =
1

µeff

2(
N +

√
2
)2 +

(
1− 1

µeff

)
min

(
1,

2µeff − 1

(N + 2)
2
+ µeff

)
. (30)
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4. Simulation results
The proposed AWDO algorithm is tested on the standard IEEE 30-bus 6-generator system with total load
demand of 283.4 MW, and with NOx emission. The results obtained using the proposed AWDO algorithm
are compared with the results of the implementation of 3 other well-established algorithms: the moth swarm
algorithm (MSA) [12], firefly algorithm (FA) [13], and hybrid particle swarm optimization and gravitation
search algorithm (PSOGSA) [14], which have better performance than other algorithms presented in the existing
literature for solving the CEED problem [1,15].

The AWDO, MSA, FA, and PSOGSA are implemented in the MATLAB 2011b computational environ-
ment and run on a platform of 2.20 GHz with 3.0 GB RAM. The coefficients used for the simulations are
presented in Table 1. The best results of the simulations are obtained after 30 runs. The testing was carried
out in 2 cases of the CEED problem: (i) without VPLE (Case I) and (ii) with VPLE (Case II). The power loss
in the system is considered in both cases. The specified error tolerance value is δ = 10−6 MW. The B-loss
matrices, the emission coefficients, and fuel cost coefficients are taken from [9] (see Appendix). In this paper,
a scaling factor γNOx

of 1000 ($/t) is used. Minimization is carried out with 3 values of weight factor: w = 1
(fuel cost minimization), w = 0 (emission minimization), and w = 0.5 (minimization of fuel cost and emission,
simultaneously). The maximum, minimum, and standard deviation values for cases of application of AWDO,
MSA, FA, and PSOGSA to the test system (Case I) are shown in Table 2. From the results seen in Table 2, it is
evident that the minimum values of the fuel cost and emission are the same for all 4 algorithms. However, the
standard deviations of the results obtained by using AWDO are by far the smallest compared to the standard
deviations obtained by using the other 3 algorithms (between 1.2372e-11 for minimization of the fuel cost and
3.6654e-13 for minimization of the emission).

Table 1. The coefficients of algorithms that apply to the test system.

AWDO MSA FA PSOGSA
N T α, g,RT , c N T Nc N T α βmin γ N T G0 α C1 C2

50 200 optimized 50 200 6 50 200 0.25 0.2 1 50 200 1 10 2 2

Table 2. Min, max, and SD values of the results and iteration times obtained by using AWDO, MSA, PSOGSA, and
FA for the test system (Case I).

Algorithm AWDO MSA PSOGSA FA

Minimization
Min 605.99837 605.99837 605.99837 605.99837

for w = 1
Max 605.99840 605.99841 643.19300 606.40143
SD 1.2372e-11 9.2426e-06 13.9840 0.0736
Iteration time (s) 4.64440 6.37231 3.09460 7.17510

Minimization
Min 0.194179 0.194179 0.222654 0.194179

for w = 0
Max 0.194179 0.194179 0.194179 0.194179
SD 3.6654e-13 2.2373e-06 6.3959 1.1483e-05
Iteration time (s) 6.84278 8.47069 2.86218 8.79489

Minimization SD 2.74563-11 2.4235e-06 8.6575 6.9793e-08
for w = 0.5 Iteration time (s) 5.35274 7.07522 3.12065 7.70115
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The best solutions for the power outputs, emission, and fuel cost obtained by using AWDO for w = 1,
w = 0, andw = 0.5 are given in Table 3.

Table 3. The best solutions obtained by using AWDO.

Generation Case I Case II
w = 1 w= 0 w= 0.5 w = 1 w= 0 w = 0.5

P1 (MW) 12.09691 41.09250 22.55426 5.01518 41.09250 5.00000
P2 (MW) 28.63120 46.36678 35.45564 11.62726 46.36678 18.61854
P3(MW) 58.35573 54.44194 57.00525 83.44629 54.44194 80.05706
P4 (MW) 99.28542 39.03737 74.53983 74.03373 39.03737 74.81317
P5 (MW) 52.39702 54.44590 54.82118 79.19164 54.44590 77.91437
P6(MW) 35.18992 51.54851 41.55653 30.08590 51.54851 28.95097
Fuel cost ($/h) 605.99837 646.20700 612.25279 635.82242 728.66748 638.92308
NOx (ton/h) 0.220729 0.194179 0.203570 0.226734 0.194179 0.222780
Ploss (MW) 2.55619 3.53300 2.53270 1.87934 3.53300 1.95412
Iter.time (s) 4.6444 6.8428 5.3527 7.3134 6.9214 5.8684

The convergence characteristics of the proposed AWDO and those of MSA, FA, and PSOGSA for
minimization of fuel cost considering VPLE (Case II) are illustrated in Figure 2. From Figure 2, it can be seen
that ascending speeds are high at the beginning for all 4 algorithms, which shows the high convergence. However,
AWDO can achieve an optimal solution after a smaller number of iterations than the other 3 algorithms. Thus,
AWDO is demonstrated to have a better convergence property in comparison with the MSA, PSOGSA, and
FA.
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Figure 2. Comparative convergence characteristics of AWDO, MSA, FA, and PSOGSA in the case of minimization of
fuel cost considering the VPLE.

Table 4 shows a comparison of the best solutions for the fuel cost and NOx emission obtained by using
AWDO, MSA, PSOGSA, and FA considering VPLE (Case II). It can be seen that AWDO gives the best results
for minimal cost and an equal value of minimal emission compared to the other 3 algorithms. The minimal
power losses, in the case of application of AWDO, are better or very close to those of the other 3 algorithms.
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From the results seen in Table 4 it follows that the value of fuel cost obtained by using AWDO is 0.0529 $/h
less than the value obtained by using the MSA, 0.0163 $/h less than the value obtained by the PSOGSA, and
0.0370 $/h less than the value obtained by the FA. Therefore, AWDO can result in better economic effects than
the MSA, PSOGSA, and FA. Lower fuel cost (Table 4) and smaller standard deviation (Table 2) of evaluation
values result in a higher quality solution of AWDO than the other 3 algorithms.

Table 4. Comparison of the best solutions for the test system (Case II) using AWDO (1), MSA (2), PSOGSA (3), and
FA (4).

Algorithm
Optimization for w= 1 Optimization for w= 0 Optimization for w= 0.5
Fuel cost Emission Ploss Fuel cost Emission Ploss Fuel cost Emission Ploss

($/h) (t/h) (MW) ($/h) (t/h) (MW) ($/h) (t/h) (MW)
1 635.82242 0.226734 1.879 728.66748 0.194179 3.533 638.92308 0.222780 1.954
2 635.87530 0.226533 1.882 728.66962 0.194179 3.533 639.11337 0.222607 1.962
3 635.83871 0.226902 1.880 728.66748 0.194179 3.533 639.11517 0.222590 1.961
4 635.85945 0.227061 1.878 728.66693 0.194179 3.533 638.79420 0.222911 1.950

The results obtained by AWDO for the test system along with corresponding data from the literature
(Case I) are summarized in Table 5. As can be seen in Table 5, AWDO provided better values for the minimum
fuel cost in regard to the values obtained by the algorithms proposed in [16–20] as well as ones that are the same
as the results obtained by the algorithms from [1] and [15]. The minimum values of NOx emission calculated
by AWDO are the same as the associated results reported in [1] and [15] or better than the results in [16–20].

Table 5. A comparison of the best solutions for the fuel cost and NOx emission (Case I).

Algorithm
Optimization for w= 1 Optimization for w= 0 Optimization for w= 0.5
Fuel cost Emission Fuel cost Emission Fuel cost Emission
($/h) (t/h) ($/h) (t/h) ($/h) (t/h)

AWDO 605.99837 0.220729 646.20700 0.194179 612.25279 0.203570
MSA [1] 605.99837 0.220728 646.20486 0.194179 612.25190 0.203571
PSOGSA [15] 605.99837 0.220728 646.20838 0.194179 612.25222 0.203571
FA [1] 605.99837 0.220728 646.20731 0.194179 612.25302 0.203570
MBFA [16] 607.6700 0.2198 644.4300 0.1942 616.496 0.2002
MOPSO [17] 607.7900 0.2193 644.7400 0.1942 615.000 0.2021
PSO [18] 607.8400 0.2192 642.9000 0.1942 - -
DE [19] 608.0658 0.2193 645.0850 0.1942 - -
MODE/PSO [20] 606.0073 0.2209 646.0243 0.1942 - -

Randomness is one of properties of stochastic metaheuristic algorithms because the initialization of the
population is carried out with random numbers. Table 6 shows the frequency of attaining the fuel cost within
different iteration ranges out of 30 runs for Case II. From Table 6 it can be seen that AWDO is robust and most
consistent in comparison with other algorithms.

Figure 3 shows the histograms that represent a frequency of results obtained after 30 runs of algorithms
over fuel cost function with VPLE (case II). From Figure 3 it can be seen that AWDO has the smallest dispersion
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Table 6. Frequency of convergence of attaining fuel cost for Case II out of 30 runs.

Iteration AWDO MSA PSOGSA FA
0–10 0 7 12 2
10–20 1 3 9 2
20–30 2 1 2 0
30–50 27 0 1 9
5–100 0 0 3 17
100–200 0 19 3 0

and largest frequency of results and the PSOGSA follows the normal distribution. The Q-Q plots (graphical
presentations of the differences between quartiles from results observed and those from the normal distributions)
for AWDO and PSOGSA are presented in Figure 4 and they confirm the property of normality for PSOGSA.
Detailed statistical analysis of the algorithms’ behavior can be performed using parametric and nonparametric
tests [21] and that will be the subject of our future work. Figure 3 and Figure 4 are obtained by using the
statistical software package SPSS.

660655650645640635

25

20

15

10

5

0

Mean = 
638.5651759

Std. Dev. = 
5.366130915

N = 30

Histogram for AWDO

700680660640

F
re

q
u

en
cy

10

8

6

4

2

0

Histogram for PSOGSA

Mean = 
661.4405450

Std. Dev. = 
15.5765247

N = 30

Normal

Fuel cost

665660655650645640635

F
re

q
u

en
cy

F
re

q
u

en
cy

12

10

8

6

4

2

0

Fuel cost  

Mean = 
644.4275476

Std. Dev. = 
9.45304937

N = 30

Fuel cost

665660655650645640635

F
re

q
u

en
cy

20

15

10

5

0

Fuel cost
 

Mean = 
640.9757845

Std. Dev. = 
7.31951874

N = 30

Histogram for MSA Histogram for FA

Figure 3. Histograms of frequency of results obtained using algorithms AWDO, PSOGSA, MSA, and FA over fuel cost
function considering VPLE (Case II).
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Figure 4. Q-Q plots for PSOGSA and AWDO on fuel cost function considering VPLE.

5. Conclusion
In this paper the AWDO algorithm is proposed to solve the multiobjective CEED problem with nonconvex and
nonsmooth functions and with the nonlinearities of VPLE and Ploss. The multiobjective function is converted
into a single-objective function by means of the weighted sum method. The proposed algorithm for solving
the CEED problem was tested on the IEEE 30-bus 6-generator test system. The testing was carried out in
all cases of the CEED problem: (i) optimization of fuel cost only; (ii) optimization of pollutant emission only;
(iii) optimization of cost and emission, simultaneously; (iv) without VPLE; (v) with VPLE. The power loss in
the system is considered in all cases. The AWDO is an adaptive algorithm and it optimizes the coefficients
in each iteration, which improves the process of the global optimal solution search. The results obtained from
the proposed AWDO algorithm are compared with the results of implementation of the 3 other well-established
algorithms, MSA, PSOGSA, and FA, which have better performance than other algorithms presented in the
existing literature for solving the CEED problem. The simulation results show that the proposed AWDO
gives best results for fuel cost and equal value of emission as the other 3 implemented algorithms. Therefore,
AWDO can result in better economic effects. The standard deviation of results is much smaller in the case of
AWDO than in the case of other algorithms. AWDO can achieve an optimal solution after a smaller number of
iterations than the other 3 algorithms, which results in its better convergence property. Finally, the comparison
of the numerical results, the convergence profiles, and the statistical analysis of results confirm the robustness,
effectiveness, and superiority of the proposed AWDO algorithm for solving the CEED problem with different
functions.
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Appendix

Table A1. The b-loss matrıces for the test system [9].

Matrices Matrix elements

B



0.1382 −0.0299 0.0044 −0.0022 −0.0010 −0.0008

−0.0299 0.0487 −0.0025 0.0004 0.0016 0.0041

0.0044 −0.0025 0.0182 −0.0070 −0.0066 −0.0066

−0.0022 0.0004 −0.0070 0.0137 0.0050 0.0033

−0.0010 0.0016 −0.0066 0.0050 0.0109 0.0005

−0.0008 0.0041 −0.0066 0.0033 0.0005 0.0244


B0

[
−0.0107 0.0060 −0.0017 0.0009 0.0002 0.0030

]
B00 [0.00098573]

Table A2. Fuel cost coeffıcıents, NOx emission coeffıcıents, and generation limits for the test system [9].

g ag bg cg αg βg ηg ξg λg Pmin
g Pmax

g

1 10 200 100 4.091e-2 –5.554e-2 6.490e-2 2.0e-4 2.857 5 150
2 10 150 120 2.543e-2 –6.047e-2 5.638e-2 5.0e-4 3.333 5 150
3 20 180 40 4.258e-2 –5.094e-2 4.586e-2 1.0e-6 8.0 5 150
4 10 100 60 5.326e-2 –3.550e-2 3.380e-2 2.0e-3 2.0 5 150
5 20 180 40 4.258e-2 –5.094e-2 4.586e-2 1.0e-6 8.0 5 150
6 10 150 100 6.131e-2 –5.555e-2 5.151e-2 1.0e-5 6.667 5 150
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