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Abstract: Distributed denial of service (DDoS) attacks pose a severe threat to extensively used web-based services and
applications. Many detection approaches have been proposed in the literature, but ensuring the security and availability
of data, resources, and services to end users remains an ongoing research challenge. Nowadays, the traffic volume of
legitimate users has also increased manifold. A flash event (FE) is a high-rate legitimate traffic situation wherein millions
of legitimate users start accessing a particular network resource, such as a web server, simultaneously. The detection of
DDoS attacks becomes more challenging when DDoS attacks are launched during behaviorally similar FEs. This research
paper proposes a generalized detection system for metrics, based on information theory, capable of detecting different
types of DDoS attacks and FEs. We used publically available MIT Lincoln, CAIDA, and FIFA datasets along with
a synthetically generated DDoSTB dataset to validate the proposed detection algorithm in terms of various detection
system evaluation metrics such as false positive rate, false negative rate, classification rate, and detection accuracy. Such
a generalized detection system would be useful to researchers for validating and comparing various information theory
metrics based solutions.
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1. Introduction
Distributed denial of service (DDoS) attacks are not a new problem for network security professionals. They
have existed for many years now. Legitimate users are deprived of using web-based services and applications
due to such attacks. Even a few minutes of service downtime can lead to not only loss in revenue, but also
intangibles such as loss of customer faith, unfavorable media coverage, and legal actions. Usually, prominent
websites are the prime victims of such attacks. Recently, DDoS attacks caused interruptions in the services of
Twitter, Spotify, and Amazon for almost two hours. Such interruptions in the services lead to huge financial
losses. According to a recent report (https://www.ddosattacks.net/twitter-amazon-other-top-websites-shut-in-
cyber-attack/), revenue losses due to DDoS attacks reached $209 million in the first quarter of 2017, compared to
$24 million for all of 2015. Based on the network traffic rate, DDoS attacks can be categorized into (a) high-rate
DDoS (HR-DDoS) attacks, when the traffic rate is very different from legitimate traffic, and (b) low-rate DDoS
(LR-DDoS) attacks, when the traffic rate is similar or less than legitimate traffic. However, it is comparatively
easy to detect HR-DDoS attacks, as their traffic profile significantly deviates from the legitimate traffic profile.

A flash event (FE), wherein millions of legitimate users try to access a particular computing resource
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such as a website simultaneously, is similar to an HR-DDoS attack [1]. This sudden surge in legitimate traffic
is primarily due to some newsflash happening around the world, like the publishing of an Olympic schedule,
earthquake occurrence, and election results. It causes untimely delivery of responses from a web service, and
thus requires immediate action.

Both DDoS attacks and FEs cause a significant deviation in the packet header features of the network
traffic. Information theory metrics such as entropy or divergence can quickly capture such variations in network
traffic behavior. There are many key advantages of using solutions based on information metrics rather than
other methods: (1) they require fewer packet header features to detect and characterize different types of
network traffic flows, (2) they usually have small time, space, and computational complexity, and (3) they have
fewer storage requirements [2,3]. The existing research has proposed several quarantine solutions to detect
different types of DDoS attacks using diversified information theory metrics, but a generalized detection system
to compare and contrast the effectiveness of this plethora of detection metrics is missing in the literature. The
major contributions of this paper are as follows:

• This paper proposes a generalized detection system for information-theory–based metrics that are capable
of detecting different types of LR-DDoS and HR-DDoS attacks along with FEs.

• The effectiveness of the proposed generalized detection system has been measured in terms of receiver
operating characteristics (ROC) curves and various detection system evaluation metrics such as false
positive rate (FPR), false negative rate (FNR), classification rate, and detection accuracy (also called true
positive rate, TPR).

• The proposed generalized detection system has been used to compare the effectiveness of various information-
theory–based detection metrics. The proposed detection system has been validated using a set of publically
available real datasets and synthetically generated DDoSTB dataset.

The rest of the paper is organized as follows. Section 2 summarizes the related work, Section 3 describes
the background of information theory metrics, Section 4 focuses on proposed detection algorithm, Section 5
discusses the results and performance evaluation, Section 6 compares the results with existing similar works,
and, finally, the concluding remarks are given in Section 7 along with scope for future work.

2. Related work
Many efficient solutions have been proposed in the literature to combat DDoS attacks using Shannon en-
tropy, generalized entropy, and information-divergence–based metrics for detecting different types of DDoS
attacks [2–6]. For example, Xiang et al. [2] used Renyi’s generalized entropy (GE) and generalized infor-
mation distance (GID) metrics to differentiate an LR-DDoS attack from legitimate traffic. They compute
the information distance (ID) between legitimate traffic and LR-DDoS attack traffic based on packet header
features such as source IP, destination IP, and type of protocol. However, they did not consider detecting
and discriminating between HR-DDoS attacks and FEs, which occur frequently nowadays. Their proposed
algorithm detects LR-DDoS with a reduced FPR as compared to the existing Shannon entropy and Kullbeck–
Leibler (KL) divergence metrics. They validate their proposed approach using real datasets of the MIT Lin-
coln laboratory dataset (https://www.ll.mit.edu/ideval/data/2000data.html) and CAIDA DDoS Attack Dataset
(https://www.caida.org/data/passive/ddos-20070804 dataset.xml).
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This paper has extended their work to detect HR-DDoS attacks and FE traffic as well. Additionally,
the effectiveness of proposed detection algorithm is validated using detection system evaluation parameters of
TPR, FPR, FNR, and classification rate. Further, Bhuyan et al. [3] used the idea of ID between different
sample flows as originally proposed by [2]. They compute extended entropy metric (EEM) on source IP and
incoming packet rate packet header features to detect HR-DDoS attacks. They validate their approach against
real datasets of MIT Lincoln and CAIDA. However, their proposed approach did not consider discriminating
FEs from HR-DDoS attacks, as both types of traffic share many similar behavioral characteristics. Additionally,
in this paper, the results of Renyi’s GE metric have been compared with Shannon and Tsallis entropies, and the
results of Renyi’s generalized divergence metric have been compared with (KL) divergence, Hellinger distance,
total variation distance, and Jenson–Shannon divergence metrics along with detection of FE traffic. Jun et
al. [4] used traffic volume and entropies of destination IP, source port, and the number of packets received
per time window to detect HR-DDoS attacks. Ma et al. [5] calculated the entropy of source and destination
IPs with the Lyapunov exponent to detect HR-DDoS attacks. Nychis et al. [6] used packet header features
of source and destination IPs, ports, flow sizes, and the number of distinct destination/source IPs pairs to
detect DDoS attacks. They observed that there is a strong correlation between the entropies of source and
destination IP addresses and the distributions of port numbers. Some authors have also used a generalized
nonextensive Tsallis entropy for network anomaly detection [7,8]. Basicevic et al. [7] used Tsallis entropy
to detect HR-DDoS attacks. They compared the results of a Tsallis-entropy–based detection scheme with a
Shannon-entropy–based detection scheme in simulation-based experiments. They observed that the Tsallis-
entropy–based detector outperformed Shannon-entropy–based detector and produced a low FPR. Tellbach et
al. [8] used Tsallis entropy to find the correlation between source/destination IP addresses and port numbers.
They observed a strong correlation between source/destination port numbers in the legitimate traffic, but no
strong correlation between source/destination IP addresses and ports in the attack traffic. They used many real
traffic traces and net flow data to validate their detection approach.

The research of DDoS attack detection cannot be complete until we discriminate them from similar-
looking FEs. The problem of discrimination becomes even more crucial when DDoS attacks are launched
during FEs [9]. Many researchers have proposed solutions to discriminate HR-DDoS attacks from FEs using
information theory. Yu et al. [10,11] compute change in entropy rate to discriminate an HR-DDoS attack from
a similar-looking FE. Their proposed method assumes a uniform packet size in attack traffic and calculates a
similarity index between FEs and HR-DDoS attacks. Bhatia et al. [12] compute the correlation of source IP
entropy, change in the rate of new IPs, and distribution of source IPs of incoming traffic to detect different types
of HR-DDoS attacks and FEs. They validate their proposed approach using real datasets from MIT Lincoln
and CAIDA. Bhandari et al. [1] used coefficients of variation to distinguish HR-DDoS attacks from FEs. They
concluded that coefficients of variation among attack profiles are quite similar, but are different between FEs and
legitimate traffic. They used the FIFA World Cup dataset (http://ita.ee.lbl.gov/html/contrib/WorldCup.html)
dataset for representing FE traffic and the CAIDA dataset to represent DDoS attacks. Sachdeva et al. [13] used
cluster entropy in combination with source IP entropy to discriminate DDoS attacks from FEs. They observed
that the traffic cluster entropy drops dramatically during FEs because most of the traffic is generated from
already-visited source networks, whereas the traffic cluster entropy increases in HR-DDoS attacks.

The existing research has extensively used real datasets from MIT Lincoln, CAIDA, and FIFA for the
validation of their proposed solutions. Though these datasets are obsolete in the context of today’s high-
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rate traffic, no other benchmark datasets are available for the validation of DDoS-related research [14] to
date. The lack of appropriate recent datasets has shifted the focus of the research community towards real-time
experimental setups to enable the validation of DDoS research against real traffic on a large scale. Further, there
are few detection methods that have collectively focused on detecting LR-DDoS attacks, HR-DDoS attacks, and
FEs; rather, the existing research has used separate datasets to represent normal and attack traffic scenarios.
Thus, there is a need to develop a collective detection mechanism that can detect different types of DDoS attacks
and FEs and that should be validated using a single state-of-the-art dataset.

3. Background of information theory metrics
There are a vast number of applications of information theory in the field of mathematics, statistics, computer
science, physics, neurobiology, and electrical engineering. Recently, information-theory–based metrics have
been used progressively in the network anomaly detection domain of computer science research. In information
theory, information entropy is a measure of the uncertainty associated with a random variable, forming the
basis for distance and divergence measurements between probability densities. Alfred Renyi defined a GE of
order α as follows [15]:

Hα (x) =
1

1 − α
log2

(
n∑

i=1

pαi

)
(1)

for α >= 0 and α ≠ 1. GE highlights the different contributions of the tail and the main proportion of a
probability distribution. GE measures these contributions by using a generalized α parameter called an entropic
index. For α >= 0, GE is more sensitive to frequent events, whereas for α < 0, GE is more sensitive to less
frequent events. Hence, different types of entropies can be derived based on different values of entropic index.
For example, when α = 0, the maximum value of information entropy is reached also known as Hartley entropy,
i.e. H0 (x) = log n . When α→ 1, the Shannon entropy is derived as follows:

H1 (x) = −
n∑

i=1

pilog2pi (2)

When α→ ω , minimum information entropy Hω (x) is reached. There also exists a nonextensive generalized
entropy known as a Tsallis entropy [16] that has been used extensively in network anomaly detection in recent
times and is defined as

H
′

α (x) =
1

α − 1

(
1−

n∑
i=1

pαi

)
(3)

When α → 1, Shannon entropy is derived. This is also a generalized form of entropy similar to GE that also
focuses on different regions of a distribution with increasing value of α order.

For any two discrete probability distributions P = (p1 , p2 ,..., pn) and Q = (q1 , q2 ,..., qn) with
n∑

i=1

pi

=
n∑

i=1

qi , i = 1, 2…, n , GID is defined as

Dα (P ||Q) =
1

1 − α
log2

(
n∑

i=1

pαi q
1−α
i

)
, α ≥ 0. (4)

When α→ 1, the KL divergence metric is derived.
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4. Proposed methodology

We proposed a generalized detection algorithm as shown in Algorithm 1. The proposed detection algorithm
works on the assumption that there is a flow similarity in the case of attack traffic, whereas legitimate network
traffic is highly variable because of its dynamic nature, which causes a significant deviation in the packet header
features of attack traffic from legitimate traffic. We sample the network traffic in each time window Tw and
extract the relevant packet header features. Then we compute a number of information-theory–based metrics
from the probability distributions of sampled network traffic. We compute the thresholds σ1 and σ2 from the
normal baseline behavior of the network. We count the number of packets per Tw to set σ1 , and compute the
ID between normal flows to set σ2 . Initially, we separate the low-rate and high-rate network flows based on n1

in each Tw . Then we calculate the ID between different metric values of legitimate and attack traffic. If ID is
more than σ2 , it is declared attack traffic; otherwise it is declared legitimate traffic.

Algorithm 1 A Proposed Generalized Detection Algorithm
1: Set f as sampling frequency, T as sampling period, Tw as time window size, σ1, σ2 as standard thresholds,

Entropic index = set of optimal values of α .
2: While Tw <= T , analyze the network traffic packets coming from upstream routers.
3: Extract the packet header features:

F ← {srcIP; dstIP; proto; number of pkts (n1)} in each Tw and classify into unique network flows.
4: Compute the probability distributions of these network flows based on srcIP in a Tw .
5: Compute E′ metric from these computed probability distributions for each Entropic index, where E′ =
{GE, Shannon entropy, Tsallis entropy, KL, GID, Hellinger, Jensen–Shannon} .

6: Calculate the ID between respective E′ metric values of current network flow and normal traffic flow in
each Tw , i.e. ID = |E′C – E′N | .

7: If n1 > σ1 then
8: Traffic may be HR-DDoS or FE.
9: If ID > σ2 then

10: Declare the traffic HR-DDoS.
11: Else
12: Declare the traffic FE.
13: End if
14: Else
15: Traffic may be LR-DDoS or legitimate.
16: If ID > σ2 then
17: Declare the traffic as LR-DDoS.
18: Else
19: Declare the traffic legitimate.
20: End if
21: End if
22: Increment Tw and goto Step 2.

We compute the set of E′ metrics on α -order from 1 to 15. The threshold σ1 is the standard deviation
in traffic rate and σ2 is the standard deviation in the ID values between legitimate traffic flows computed
by analyzing the baseline behavior of the network without attack. We used the calibration of FPR and FNR
curves for selecting the optimal value of tolerance factor (as described in detail in next section), which are
then used to compute the optimal threshold values. The value of entropic index parameter α can be adjusted
according to the dynamic network behavior as per requirements to improve the detection rate using reduced
FPR as described by Xiang et al. [2] or by computing the coefficients of correlation as done by Berezinski et
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al. [17]. ID is defined as the difference in the detection metric values of attack and normal traffic flows. For
GE metric, ID is computed as |E′C – E′N | . ID can also be computed for divergence-based metrics in a similar
pattern. However, for computing divergence-based metrics, the number of source IPs in both the probability
distributions need to be normalized within a Tw . The greater the ID between two network traffic flows, the
higher the detection efficiency.

We have used the same packet header features for computing the detection metrics as used by [2,3]. We
choose Tw = 10 s with a sampling period of 300 s. We have chosen a time window size where we get the
minimum value of standard deviation of GE or GID metric while computing the both metrics on normal traffic,
i.e. without attack.

5. Performance evaluation
We replayed the traffic traces of the MIT Lincoln, CAIDA, and FIFA datasets in an emulation-based DDoSTB
testbed. Both LR-DDoS and HR-DDoS attack scenarios were taken from the CAIDA dataset, the FE traf-
fic profile was taken from day 66 of the FIFA World Cup dataset, and a normal traffic profile was taken
from the MIT Lincoln dataset. The DDoSTB testbed was composed of a hybrid of real systems and em-
ulated systems, as shown in Figure 1. We deployed 75 physical nodes organized in three clusters, with
25 computers running Ubuntu and Windows OS instances per cluster, 3 physical routers, 3 L2 switches, 2
L3 switches, and a two-processor 8 core Linux server that acts as victim web server. We used the CORE
(http://www.nrl.navy.mil/itd/ncs/products/core) emulator to increase the number of nodes. The idea is to
mix normal, LR-DDoS, and HR-DDoS attack traffic profiles into a single state-of-art DDoSTB dataset. This
dataset is then used to validate the proposed detection algorithm. More information about performing real
experiments using DDoSTB testbed can be found in [18].

The ID values between different types of network traffic flows for CAIDA and DDoSTB datasets calculated
using various entropy metrics, such as Renyi’s GE, Shannon entropy, and Tsallis entropy, are shown in Tables 1
and 2, respectively, and are plotted in Figures 2 and 3, respectively. Here, ID1 , ID2 , and ID3 represent the ID
values in legitimate versus LR-DDoS attack traffic, legitimate versus HR-DDoS attack traffic, and HR-DDoS
attack traffic versus FE traffic, respectively. The ID in legitimate traffic versus LR-DDoS attack traffic remains
lower than the ID in HR-DDoS attack traffic versus legitimate traffic. This is due to the similarity between
traffic rates of LR-DDoS attack traffic and legitimate traffic. The ID values between Shannon and Renyi’s GE
metric increases with increase in α -order for LR-DDoS attacks and FEs. However, no such pattern was found
while computing ID values using Tsallis entropy. The ID values of legitimate versus LR-DDoS attack using
Renyi’s GE metric remained in the range from 0.42 to 0.56 in the CAIDA dataset and from 0.11 to 0.39 in
the DDoSTB dataset. For legitimate versus HR-DDoS attack traffic, the ID values remained in the range from
2.66 to 9.03 in CAIDA dataset and from 8.39 to 11.81 in DDoSTB dataset. The ID values between HR-DDoS
attack versus FE traffic remained in the range from 0.52 to 2.57 in the CAIDA dataset and from 1.97 to 4.38
in the DDoSTB dataset. The results clearly show that Renyi’s GE metric is able to magnify the ID between
legitimate versus attack traffic and HR-DDoS attacks versus FEs, as compared to Shannon and Tsallis entropy
metrics.

The variation of ID values using information divergence metrics such as Renyi’s GID and KL metrics
between different types of network traffic for CAIDA and DDoSTB datasets are shown in Figures 4 and 5.
The ID in legitimate traffic versus LR-DDoS attack traffic using Renyi’s GID metric remained in the range
of 0.89 to 13.80 in the CAIDA dataset and from 0.1 to 0.49 in the DDoSTB dataset. For legitimate traffic
versus HR-DDoS attack traffic, it remained in the range from 0.41 to 2.82 in the CAIDA dataset and from
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Figure 1. Distributed denial of service testbed.
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Figure 2. Temporal variation in ID values of Renyi’s GE
metric in the CAIDA dataset.

Figure 3. Temporal variation in ID values of Renyi’s GE
metric in the DDoSTB dataset.
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Table 1. Comparison of entropy metrics in detecting DDoS attacks and FEs in the CAIDA dataset.

Entropy Legitimate LR-DDoS ID1 HR-DDoS ID2 FE ID3

Shannon α = 1 2.65 3.11 0.46 11.68 9.03 9.11 2.57

Renyi’s GE

α = 2 1.61 2.03 0.42 6.93 5.32 5.91 1.02
α = 5 1.41 1.92 0.51 4.62 3.21 5.14 0.52
α = 10 1.31 1.86 0.55 4.07 2.76 4.68 0.61
α = 15 1.29 1.85 0.56 3.95 2.66 4.57 0.62

Tsallis

α = 2 0.79 0.84 0.06 0.96 0.17 1.00 0.04
α = 5 0.25 0.25 0.0 0.25 0.0 0.25 0.0
α = 10 0.11 0.11 0.0 0.11 0.0 0.11 0.0
α = 15 0.07 0.07 0.0 0.09 0.0 0.09 0.0

Table 2. Comparison of entropy metrics in detecting DDoS attacks and FEs in the DDoSTB dataset.

Entropy ID1 ID2 ID3

Shannon α = 1 0.22 11.81 4.38

Renyi’s GE

α = 2 0.11 9.54 2.97
α = 5 0.19 8.76 2.15
α = 10 0.28 8.51 2.01
α = 15 0.39 8.39 1.97

4.91 to 5.93 in the DDoSTB dataset. The ID values in HR-DDoS attack versus FE traffic remained in the
range from 0.54 to 3.79 in the CAIDA dataset and from 4.5 to 6.91 in the DDoSTB dataset. The entropy
values are high in the case of FE traffic, similar to the situation of a HR-DDoS attack. However, in the case of
divergence-based metrics, as the probability distributions of FE traffic are similar to those of legitimate traffic,
it results in less divergence values in FE versus legitimate traffic. Further, as given in Table 3, Renyi’s GID
metric elicits a greater ID between different types of network flows than other statistical distance measures like
KL divergence, Hellinger distance [19], and Jensen–Shannon distance [20] in CAIDA and DDoSTB datasets
according to different entropic index parameters.
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Figure 4. Temporal variation in ID values of Renyi’s GID
metric in the CAIDA dataset.

Figure 5. Temporal variation in ID values of Renyi’s GID
metric in the DDoSTB dataset.

Further, to validate the effectiveness of the proposed detection algorithm, we have used various detection
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Table 3. Comparison of divergence metrics in detection DDoS attacks and FEs in the CAIDA and DDoSTB datasets.

Divergence Measure CAIDA dataset DDoSTB dataset
ID1 ID2 ID3 ID1 ID2 ID3

KL 0.89 0.41 0.54 0.1 4.91 4.5
Hellinger 0.36 0.71 0.26 0.13 2.34 1.71
Jensen–Shannon 0.09 0.32 0.25 0.01 1.74 1.34
GID at α = 2 5.53 1.88 2.43 0.24 5.18 5.81
GID at α = 5 9.21 2.48 3.20 0.29 5.73 6.61
GID at α = 10 11.09 2.72 3.65 0.37 5.89 6.82
GID at α = 15 13.80 2.82 3.79 0.49 5.93 6.91

system evaluation metrics as defined in [21], such as TPR, FPR, FNR, and classification rate, along with ROC
curves. TPR measures the fraction of attack events that have been detected correctly, whereas classification
rate is the ratio of truly classified events to the total occurred events. FPR measures the effectiveness of the
detection system, whereas FNR measures the detection system reliability. The variation in tolerance factor k

has been used to quantify FPR and FNR, which assist in making decisions on the optimal value of information
distance thresholds. The point where both the curves intersect can be used to select the optimal threshold values.
Figures 6a and 6b depict the ideal value of tolerance factor for Renyis’ GE and GID metrics, respectively, on
different α order. For α = 5, the FPR and FNR curves intersect at tolerance factor = 1 in the case of Renyi’s
GE metric, whereas they intersect at tolerance factor = 5 in the case of Renyi’s GID metric. The trade-off
between FPR and detection rate in terms of ROC curves for Renyi’s GE and Renyi’s GID metrics is shown
in Figures 6c and 6d, respectively. The ROC curve clearly depicts that, with an increase in FPR, TPR also
increases, i.e. if we compromise on FPR, a better TPR can be achieved and vice versa. The classification rate
of these metrics is shown in Figures 6e and 6f. At α = 5, the proposed detection system produces a TPR of
80%, FPR = 0.01, and classification rate of 93% using GE metric at tolerance factor = 1, whereas it achieves a
TPR of 95%, FPR = 0.01, and classification rate of 94.6% at tolerance factor = 5. The TPR and classification
rate of information-theory–based generalized metrics increased with α order. The divergence-based metrics
also produced better results than corresponding entropy metrics. It may be because divergence-based metrics
consider the divergence between individual values of a probability distribution, whereas entropy summarizes
the skewness or dispersion of a probability distribution into a single value and hence neglects changes within a
time window.

6. Comparison with existing work

The results of our proposed generalized detection system are compared with existing prominent work in this
domain. Xiang et al. [2] also used information-theory–based Renyi’s GE and GID metrics to detect LR-DDoS
attacks with low FPR, whereas our proposed detection system can detect different types of DDoS attack scenarios
along with the detection of FEs traffic. Further, Bhuyan et al. [3] extended the idea of [2] to formulate EEM
to compute the difference between legitimate and HR-DDoS attacks. They proposed a lightweight detection
system that is capable of detecting HR-DDoS attacks, but they did not consider detecting FEs and LR-DDoS
attacks. Our proposed detection algorithm can detect FEs and HR-DDoS attacks with 100% TPR, more than
in the proposed scheme (99%). Ma et al. [5] used Lyapunov exponents between legitimate and attack traffic
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Figure 6. a. Tradeoffs between FNR and FPR of Renyi’s GE metric. b. Tradeoffs between FNR and FPR of Renyi’s
GID metric. c. ROC curve of Renyi’s GE metric. d. ROC curve of Renyi’s GID metric. e. Classification rate of Renyi’s
GE metric. f. Classification rate of Renyi’s GID metric.

to compute the ID between the two. Our proposed generalized detection system achieves higher TPR (100%)
in detecting HR-DDoS attacks than in the proposed scheme (98.56%). Yu et al. [10,11] used Shannon entropy
to detect HR-DDoS attacks and FEs based on packet size and ID, but their proposed system did not consider
the detection of different types of DDoS attacks. Sachdeva et al. [13] computed Shannon’s entropy metric to
detect FEs and HR-DDoS attack traffic. However, we obtained a better TPR (95%) in case of GID metric than
in their proposed scheme (82%). Further, Behal et al. [22] proposed using novel, highly convergent generalized
φ -entropy and φ -divergence metrics for detecting DDoS attacks and FEs, but these metrics are computationally
expensive. These metrics produced high TPR, but with high FPR values.
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7. Conclusion and future scope
DDoS attacks pose a critical threat to web-based services and applications. It is crucial to detect such attacks
in time to ensure timely delivery of these web services and applications to potential users. This paper has
proposed a generalized detection system for the collective detection of LR-DDoS and HR-DDoS attacks along
with FEs for analyzing the behavior and performance of various information theory metrics. Divergence-based
metrics produced greater ID than entropy-based metrics, which led to the higher TPR and classification rate
of these metrics. ID-based detection systems also outperformed entropy-based detection systems. As part of
future work, the authors shall (1) propose a state-of-art DDoS defense framework that would be able to mitigate
the impact of ongoing DDoS attacks and FEs with minimum collateral damage and (2) impart more efforts to
generate near to real synthetic datasets.
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