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Abstract: Images play an essential part in our daily lives and the performance of various imaging applications is
dependent on the user’s quality of experience. No-reference image quality assessment (NR-IQA) has gained importance
to assess the perceived quality, without using any prior information of the nondistorted version of the image. Different
NR-IQA techniques that utilize natural scene statistics classify the distortion type based on groups of features and then
these features are used for estimating the image quality score. However, every type of distortion has a different impact
on certain sets of features. In this paper, a new feature selection algorithm is proposed for distortion identification
based image verity and integration evaluation that selects distinct feature groups for each distortion type. The selection
procedure is based on the contribution of each feature on the Spearman rank order correlation constant (SROCC) score.
Only those feature groups are used in the prediction model that have majority features with SROCC score greater than
mean SROCC score of all the features. The proposed feature selection algorithm for NR-IQA shows better performance
in comparison to state-of-the-art NR-IQA techniques and other feature selection algorithms when evaluated on three
commonly used databases.

Key words: No-reference image quality assessment, distortion identification based image verity and integration evalu-
ation, feature selection, support vector regression, classification

1. Introduction
With the advancement in digital technology, multimedia content, especially images, have come into widespread
use. Billions of images are shared over the Internet every day [1]. Images are affected by several types of distor-
tion, due to imperfection in image acquisition systems and compression algorithms for storage and transmission.
Therefore, evaluation methods that measure distortion in images have become significant. Image quality assess-
ment (IQA) techniques have been broadly divided into objective and subjective quality measures [2]. Techniques
that focus on finding features to assess the extent of distortion in an image without involving a human observer
are known as objective methods, whereas image quality assessment performed by human observers is known
as subjective evaluation, which is considered a benchmark for image quality evaluation. However, evaluation
of each image by human observers is a laborious task that consumes a large amount of time. Therefore, a
quantitative index that measures image quality is required. These techniques try to estimate the quality score
of an image exclusive of any previous information about the nondistorted version of the image and this is known
as no-reference image quality assessment (NR-IQA) [1, 3–5].
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Natural scene statistics (NSS) have been extensively utilized in NR-IQA techniques, as they work on the
assumption that nondistorted images hold some particular statistical properties that are different from those
of unnatural images [6, 7]. The effect of any type of distortion on an image makes it unnatural, resulting in
changes in NSS properties. The divergence of the natural scene statistics of the image affected by distortion
from the nondistorted image can be exploited to predict the perceived quality score of the image. NR-IQA
is a difficult problem because of varying types of individual distortions and the diversity of content present in
images. In the literature, several NR-IQA techniques based on NSS have been proposed [8–23]. Most NR-IQA
techniques follow a two-step approach, i.e. determination of distortion type affecting the image and estimation
of quality score using regression.

The blind image quality index (BIQI) uses a wavelet transform over three orientations and three scales and
is parameterized by generalized Gaussian distribution (GGD) [24]. The shape parameter and standard deviation
are used to compute the feature vector. A two-step approach using a support vector machine (SVM) classifier
and regression is used in distortion identification based image verity and integration evaluation (DIIVINE) [2],
in which a wavelet transform using steerable pyramids is computed for two scales and along six orientations
to compute NSS features. A discrete cosine transform (DCT) is applied on 5 × 5 blocks of image to extract
smoothness, texture, and edge information to assess the image quality using a Bayesian inference model in [25].
In [26], a codebook representation for no-reference image assessment (CORNIA) is proposed that used raw image
patches to learn a codebook for NR-IQA. A blind/referenceless image spatial quality evaluator (BRISQUE)
used the luminance coefficients of images, which are obtained using the empirical distribution of luminance,
under the assumption that they represent NSS and can gauge the extent to which the image is affected by
distortion [27]. In [1], joint normalization of the Gaussian Mixture (GM) map and Laplacian of Gaussian
(LOG) is employed in an adaptive procedure for the calculation of IQA metrics based on non-Gaussianity (NG),
local Gaussianity (LG), and exponential decay characteristics of NSS. A two-step framework using a curvelet
transform is introduced in [3], where the feature set is based on the maxima of log histograms and the energy
distribution of orientation and scale for the curvelet transform. An NR-IQA that extracts features in the spatial
and spectral domain (SSEQ) is introduced in [4]. Spatial entropy is computed by dividing an image into blocks
of 8×8 and the spectral entropies are computed on the DCT coefficients of the distorted image. In [18], NSS
properties are improved by taking into account the fitting error, which occurs when irregularities in the distorted
image are modeled using parameters for a distribution. In [28], an approach that measures the homogeneity in
a block is proposed, where noise in the image is estimated by automatically locating homogeneous blocks and
an adaptive averaging technique is applied that measures the noise in the image. Spatial contrast and structural
distribution is considered in [29] for evaluating the quality score of images. The structural information variation
metrics between the image gray-scale fluctuation map of the distorted and reference image is computed and
are used as input to a pretrained support vector regression (SVR) model to predict the image quality. In [30],
gradient histogram variation is used under a local transform to form global features for assessing the quality
score of the image. In [8], a convolutional neural network is used for the extraction of features and SVR for
mapping the extracted features to a quality score. An NR-IQA technique based on fragile watermarking and
robust features is presented in [9]. Singular value decomposition is used for watermark extraction and the
performance of IQA techniques is tested on various gray scale and color images.

All of the abovementioned NR-IQA techniques have used the same feature set for all distortion types to
predict the quality of an image. However, each individual distortion type exhibits distinct characteristics, which
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cannot be modeled using the same feature set. Therefore, distinct features for each individual distortion type
should be selected. In this paper, a new feature selection algorithm is proposed, for the NSS based DIIVINE
technique. DIIVINE is a two-step approach, i.e. distortion type soft classification followed by regression for IQA
using the same features for each distortion type. The proposed technique differs from the DIIVINE algorithm
in two aspects. Firstly, DIIVINE uses soft classification for prediction of the image quality score, whereas the
proposed method uses hard classification for determination of the distortion type. Secondly, a feature selection
module is added in the proposed method, which selects distinct features for each distortion type based on the
mean value of the Spearman rank ordered correlation coefficient (SROCC) score. Recently, feature selection
algorithms based on SROCC, linear correlation coefficient (LCC), Kendall correlation coefficient (KCC), and
root mean squared error (RMSE) are proposed for NR-IQA [31], but the proposed algorithm is different from
those algorithms in three aspects. First, the proposed feature selection is distortion specific, i.e. it selects
different features for each distortion type, whereas the feature selection algorithms in [31] select the same
features over all distortion types. Second, the proposed method performs feature selection based on five groups
of statistical features, i.e. scale and orientation selective features, orientation selective statistics, correlation
across scales, spatial correlation, and across orientation statistics. Only those feature groups are selected that
have majority features with SROCC score greater than the mean SROCC score, which is computed over all the
features, i.e. the bin size for feature selection is equal to the number of features in a particular feature group.
In comparison, the algorithms in [31] perform feature selection on individual features, i.e. the bin size is equal
to one feature. This has the disadvantage of losing inherent and detail information present in the whole feature
group that can contribute to the overall performance and results in degradation of performance. Third, the
selection of feature group seems logical since DIIVINE extracts features as groups, and so whether individual
features in a feature group are utilized or discarded, all the features in a group have to be extracted, which does
not contribute towards the reduction of execution time. The major contributions of the proposed method are
as follows:

1. The proposed method helps in reducing the number of features used for NR-IQA, which makes the
technique fast and efficient.

2. The feature selection improves the quality score prediction and shows better correlation with the mean
observer score.
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Figure 1. Block diagram of the proposed NR-IQA model using feature selection algorithm and regression.
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The remainder of the paper is structured as follows. Section 2 describes the proposed methodology in detail.
Experimental results and evaluations are reported in Section 3 followed by the conclusion in Section 4.

2. Proposed methodology
The block diagram of the proposed method for NR-IQA using feature selection algorithm is shown in Figure 1;
it uses a three-step approach. Firstly, NSS based DIIVINE features are computed using a Gaussian scale
mixture (GSM) and generalized Gaussian distribution (GGD). These features are used to determine the type
of distortion affecting the image using an SVM classifier. In the second step, feature selection is performed for
each distortion type based on mean SROCC score. Finally, a pretrained regression model, which is distortion
specific, is utilized to predict the quality score of the image. Each step is explained in detail below.

2.1. Feature extraction
A loose wavelet transform that extracts features over two scales and six orientations (0o , 30o , 60o , 90o , 120o ,
150o ) is applied on images to obtain 12 subbands. The subbands of natural images have Gaussian distribution.
A Gaussian scale mixture as given in [32] is used along with generalized Gaussian distribution to model the
non-Gaussainity of distorted images. A GSM is calculated as

Y ≡ z · U, (1)

where Y is an N -dimensional random vector, U is a Gaussian random vector with zero mean and standard
deviation σU , z is a mixing multiplier, and ≡ represents equality in distribution. The vector Y models the
marginal and joint statistics of the subbands. The density of Y is obtained by

pY (y) =

∫
1

(2π)
N
2 |z2C

1
2

U |
exp(−Y TC−1

U Y

z2
)pZ(z)dz, (2)

where CU is the covariance of the zero mean Gaussian random vector. The 12 subbands are further used to
calculate five group of features, i.e. scale and orientation selective features containing 12× 2 = 24 features that
are obtained on 12 subbands to compute 2 parameters on each subband, i.e. variance and shape, orientation
selective statistics consisting of 7 features where 6 features are obtained for shape parameters across 2 scales
and at 6 orientations and the 7th feature is obtained for the shape information from statistics across subbands,
correlation across scales consists of 12 features that are obtained by computing the correlation between the
high pass and low pass filter over each of the 12 subbands, spatial correlation has 30 features that are obtained
by fitting the joint distribution of coefficients present at chess board distance to a third order polynomial,
across orientation statistics containing 6C2 = 15 features that are obtained on the coarsest level by computing
the structural correlation. All these feature groups are concatenated to create a feature vector of length
24 + 7 + 12 + 30 + 15 = 88 . The details of the five groups of features are given below.

2.1.1. Scale and orientation selective features (f1 − f24 )

This set of features is obtained by applying GGD to each of the 12 subbands. The choice of applying GGD is
justified by the fact that in the absence of any distortion the scale and orientation selective features exhibit a
Gaussian distribution, which is affected when an image is distorted. GGD is defined as

fX(x;µ, σ2, ζ) = ae−[bx−µ]ζ , xϵℜ (3)
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where µ and σ2 represent the mean and variance of x respectively, ζ is the shape parameter (ζ = 1 means

Laplacian distribution, ζ = 2 means Gaussian distribution), a = bζ
2Γ( 1

ζ )
, b = 1

σ (
Γ( 3

ζ )

Γ( 1
ζ )
)

1
2 , and Γ(·) is calculated

as

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0 (4)

The wavelet subbands have zero mean and are only affected by variance and the shape parameter. Therefore,
scale orientation features are calculated on the variance and shape parameter of the subbands separately.

2.1.2. Orientation selective statistics (f25 − f31 )

Digital images are inherently multiscale in nature and there exists a relationship between subbands at the same
orientation but across different scales [2]. A GGD is well suited for the given objective and is used to increase
the variation between the Gaussian distribution of each distortion type. GGD fit is used on all the coefficients
of the subbands stacked together and only the shape parameter ζ is computed because standard deviation and
mean do not contribute any information to the quality score.

2.1.3. Correlation across scales (f32 − f43 )

In the human visual system, the retinal ganglion cells possess the properties of filtering that can compute
responses resembling the difference of Gaussian (DOG). This property can also help in enhancing high frequency
features, which represent edges [33, 34]. Therefore, it is rational to assume the existence of a relationship between
the high pass and band pass responses of an image [2]. These dependencies are captured by comparison of high
pass band and low pass band correlations. A windowed structural correlation between the high pass and low
pass components is calculated as

ρ =
(2σxy + C2)

(σ2
x + σ2

y + C2)
, (5)

where σxy is the cross covariance between the band pass and high pass bands windowed regions, σ2
x and σ2

y

denote the variances over the respective windowed regions, and C2 is a constant, which stabilizes the output.
The filters use a Gaussian window of 15×15 with σ = 1.5 . The correlation across scales is calculated for each of
the 12 subbands. The Gaussian window of different sizes has been used to extract edge and detail information
from images for the purpose of IQA in state-of-the-art IQA techniques [35–39] with different Gaussian window
sizes, i.e. 7× 7 , 8× 8 , 11× 11 and 17× 17 etc., which are all state-of-the-art. The window size of 17× 17 is
chosen because it gave the best results for DIIVINE [2].

2.1.4. Spatial correlation (f44 − f73 )

Natural images are extremely structured and variation in the spatial correlation structure of images is gradual [2].
When an image is affected by distortion, the natural structure is also disturbed regardless of the distortion
type. The disturbance in the structure is recorded by using the joint empirical distribution pXW (x,w) , which
is approximated by using the chess board distance ℵτ

8(i, j) at spatial locations i and j and is given as

ρ(τ) =
epXW (x,w)[(X − epX(x)[X])τ − (W − epW (w)[W ])]

σXσW
, (6)
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where ρ(·) estimates the correlation between X and W , τ is the distance, epX(x)[X] represents the expected
value of X and its marginal distribution is given by pX(x), epW (w)[W ] represents the expected value of W and
its marginal distribution is given as pW (w) , and epXW

(x,w)[X] is the expected value of the joint distribution
of x and w .

2.1.5. Across orientation statistics (f74 − f88 )

This group of features is obtained by utilizing six wavelet subbands at the coarsest level. The correlation
across orientation is obtained by selecting two subbands out of six at a time, which leads to 15 combinations.
Structural correlation as given in Eq. (6) is calculated by using a window of 15× 15 on all the 15 combination
of subband pairs.

Once feature extraction is performed, the next step is to classify the distortion type affecting the image.
Any classifier can be used with the proposed methodology. In this work, an SVM classifier is selected because
it has been shown to work well on high dimensionality data [2]. Let (xi, yi)(1<i<M) be the set of M training
samples for the SVM classifier, where xi is the ith instance of a M ×D feature vector, yi is the ith instance
of a M × 1 label vector such that yi ∈ {+1,−1} , D is the feature set for one instance, and M is the total
number of input samples. The aim of the SVM classifier is to obtain an optimum hyperplane so that all the
samples that belong to one class should be on one side of the hyperplane and the samples that belong to the
second class should be on the other side [40]. SVM is mathematically modeled as

f(x) = sgn(

M∑
i=1

αiyik(xi, x) + b1), (7)

where k(xi, x) is the kernel function satisfying Mercer’s theorem. Mercer’s theorem states that there exists a
mapping such that k(xi, x) = Φ(xi).Φ(x) , where, Φ(·) is the mapping of x to the feature space, b1 is the bias
value, and αi are the Lagrange multipliers, which maximize the function in Eq. (8).

W (α) =

M∑
i=1

αi −
1

2

M∑
i,j=1

αiαjyiyjΦ(xi)Φ(x). (8)

The input to the pretrained SVM classifier model is the DIIVINE features and the output is the distortion
type. The LibSVM package is used to perform SVM classification, with a radial basis kernel function [41].

2.2. Feature selection
In this paper, the main aim is to select features based on SROCC, which are used to train and test the SVM
regression model. Each distortion type affects images in different manner, i.e. Gaussian blur (GB) causes loss of
edge information in the image, whereas images distorted with JPEG show distortion in the form of blockiness.
As each distortion affects different characteristics of the image, it is not rational to use the same set of features
for assessing the quality score of the image. In order to select features for each distortion type, the SROCC
score is obtained against each individual feature. The SROCC is denoted by rs and is calculated as

rs = 1− 6Σd2i
n(n2 − 1)

, (9)
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Figure 2. Differential SROCC of a single image for each distortion type. Column (a): distorted images, column
(b): Differential SROCC.
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where di represents the difference between paired ranks and n represents the total number of cases. SROCC
score measures the coherence between the mean observer score and predicted quality score. A value close to
1 suggests superior performance. Hence, we select the feature group with the majority of the features having
SROCC score greater than the mean SROCC score of all the features. Figure 2 shows the differential SROCC of
each feature for different types of distortion. Differential SROCC is computed by taking the difference of SROCC
score of each feature of the distorted image and the mean value of SROCC computed over training images.
From Figure 2, it is clear that features have positive and negative values of differential SROCC for each type of

Algorithm 1: Feature Group Selection
Input :

1. DIIVINE features F = f1 − f88 of all images belonging to distortion type D.

2. Difference mean opinion score (DMOS) score of each image.

3. Length of each feature group: LFG = {24, 7, 12, 30, 15};

Output: FG = feature group selected for distortion type D
1 for i=1 to 88 do
2 Initialize to zero
3 A = Array of thousand elements
4 B = Array of eighty eight elements
5 for j=1 to 1000 do
6 Randomly Select
7 80% images for training
8 20% images for testing
9 Q = Predicted quality score

10 A(1, j ) = SROCC(Q,DMOS) using Eq. (9)
11 end
12 B(1, i) = median of A
13 end
14 µ = Mean value of B
15 for k = 1 to 88 do
16 if B(1, k) > µ then
17 F0(1, k) = 1;

18 else
19 F0(1, k) = 0;

20 end
21 end
22 ind = 1;

23 for l=1 to 5 do
24 if sum(F0(1, ind : ind+ LFG(1, l)− 1) > LFG(1, l)/2) then
25 FG(1, l) = 1;

26 else
27 FG(1, l) = 0;

28 end
29 ind = ind+ LFG(1, l);

30 end
31 return FG ;
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distortion. Features having positive values of differential SROCC contribute to enhancing the performance of
the NR-IQA technique, whereas features having negative values of differential SROCC contribute in degrading
the performance of the NR-IQA technique. The proposed feature selection method is explained in Algorithm 1.

2.3. SVM regression
The feature groups are selected for each distortion type using the proposed Algorithm 1. The third and last step
is to predict the quality score using distortion specific regression models. Each distortion specific regression
model is trained using the feature groups having a majority of the features with SROCC score above mean
SROCC value, i.e. each distortion type will have different features as input for the regression model. The SVM
regression Ψ(y) is given by

Ψ(y) = βα(y) + c1, (10)

where y is denoted as the input vector, α(y) is the feature vector space, and β is the weight for the corresponding
input. The transformation α(·) relates the input vector to the feature space. If the training data are given
by {yi ,xi} , where yi is the ith input pattern, xi is the corresponding target value and c1 denotes the bias.
The objective of SVM regression is to estimate Ψ(y) such that the error between the target value and Ψ(y) is
minimized. All computations in SVM are performed using kernel function k(m) . The vector space does not
have to be constructed explicitly when the inner product is computed using a kernel function. An L dimensional
radial basis function with R centers is given as

k(y) = ΣR
n=1βi

1

(2π)
|l|
2 σL

i

exp(−||y − ci||
2σ2

i

) + b2, (11)

where ci is the ith Gaussian basis function center that has a standard deviation of σi , the weight of the ith

Gaussian basis function is represented as βi , and b2 is a constant.

3. Experimental results
3.1. Evaluation criteria and implementation details
The proposed methodology is based on machine learning techniques of classification and regression. Therefore,
it requires training and calibration to predict image quality score. The dataset is split into nonoverlapping
sets for training and testing. Images selected for training are not present in the test images, which negates the
performance bias. The training set comprises 80% randomly selected images and the test set consists of the
remaining 20% images. The training and testing are repeated 1000 times to predict the mean observer score
and the median results are presented for performance evaluation. The support vector regression parameters c

and γ are optimized for each NR-IQA technique using a grid search. Generally SROCC and linear correlation
constant (LCC) are utilized to measure the performance of NR-IQA techniques. The linear correlation constant
is given by

rl =

n∑
i=1

(xi − x̄)(yi − ȳ))√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)

, (12)

where xi and yi are the MOS and predicted quality score of images respectively, the mean values of xi and yi

are represented by x̄ and ȳ respectively, and n is the total number of samples.
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3.2. Databases
In this work, the proposed methodology is tested on three of the most commonly used subjective IQA databases,
i.e. LIVE [42], TID2008 [43], and CSIQ [44]. The LIVE database contains 29 nondistorted/reference images
with five distortion types. There are 779 distorted images of varying degree in the LIVE database. The distorted
images are categorized into five types of distortions namely GB, white noise (WN), JPEG2000 (JP2K) com-
pression, JPEG compression, and fast fading (FF). The TID2008 database contains 25 nondistorted/reference
images with 17 type of distortions, i.e. WN, additive noise in color components (ANC), spatially correlated noise
(SCN), masked noise (MN), high frequency noise (HFN), impulse noise (IN), quantization noise (QN), GB, im-
age denoising (ID), JPEG, JP2K, JPEG transmission errors (JTE), JPEG2000 transmission errors (JP2KTE),
noneccentricity pattern noise (NEPN), local block-wise distortions of different intensity (LBDI), mean shift
(MS), and contrast change (CC). The reference images are distorted at 4 different levels of each individual
type of distortion. The image quality assessment is performed by observers from Ukraine, Finland, and Italy.
Eight hundred experiments were performed, during which 256, 000 quality assessments were carried out. The
evaluation on the TID2008 is done by more than 800 observers belonging to different social categories such as
tutors, students, and researchers. The CSIQ database contains images with five distortion types. There are a
total of 30 nondistorted/reference images and 866 distorted images. The images were shown to 35 observers
on a LCD monitor with a resolution of 1920× 1200 . A total of 5000 individual image quality assessments were
performed to calculate the mean observer score.

The output of experiments performed in the LIVE, CSIQ, and TID2008 databases is the image quality
score of images that are computed by taking the average of individual perceptual quality scores for each image,
as assessed by human observers. The LIVE and CSIQ databases provide the difference mean opinion score
(DMOS), which represents the difference between the perceptual quality of pristine and distorted versions of
the image and a lower value of DMOS suggests higher image quality. The TID2008 database provides MOS
scores, which means a higher value of MOS suggests higher image quality. The range for DMOS values of the
LIVE database is between 0 and 100 , where 0 suggests the highest and 100 represents the worst image quality.

Table 1. Group of DIIVINE features selected by the proposed algorithm for each distortion type for LIVE database.

Distortion Type
Feature Group JP2K JPEG WN GB FF
Scale and orientation selective subband coefficients
(f1 − f24)

− − 24 24 24

Orientation selective subband coefficients
(f25 − f31)

7 7 7 7 −

Correlation across scales
(f32 − f43)

12 − 12 − −

Spatial correlation across subbands
f44 − f73)

30 30 − − −

Across orientation statistics
(f74 − f88)

− − 15 15 15

Total Features Used 49 37 58 46 39
Percentage reduction in features
as compared to DIIVINE

44.3% 57.9% 34.1% 47.72% 55.68%
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The range for MOS of TID2008 is between 0 and 10 , where 10 represents the highest and 0 represents the
lowest image quality. The CSIQ database consists of DMOS scores ranging between 0 and 9 , where a value
close to 0 suggests higher and 9 suggests lower image quality.

3.3. Performance of the feature selection algorithm
The proposed method utilizes feature selection, which is explained in Algorithm 1. Only those feature groups
are selected for a distortion type that have majority features with SROCC score greater than mean SROCC, for
image quality evaluation. The groups of features selected for NR-IQA of each individual distortion type for LIVE
databases the using proposed feature selection algorithm are summarized in Table 1. The mean SROCC score
for the selection of the group of features for each distortion type is obtained by taking the average of individual
feature SROCC scores over all three databases, i.e. the same group of features is used for performance evaluation
over all the databases. It is evident that the maximum features selected are 58 for WN and minimum number
of features selected are 37 for JPEG, which is 34.1% and 57.9% less than the total number of features used in
the DIIVINE algorithm.

Table 2. Performance comparison of the proposed scheme for individual distortion types on the LIVE, TID2008, and
CSIQ databases.

IQA
Database

Distortion
Type

BIQI
[24]

BLINDS II
[25]

BRISQUE
[27]

DIIVINE
[2]

CORNIA
[26]

M3
[1]

CurveletQA
[3]

SSEQ
[4]

Improved
NSS [18]

S
[31]

SLKR
[31] Proposed

LIVE

JP2K 0.7849 0.9258 0.9175 0.8418 0.9271 0.9283 0.8914 0.8692 0.9350 0.7921 0.8210 0.9335
JPEG 0.8801 0.9500 0.9655 0.8926 0.9437 0.9659 0.8370 0.8627 0.9310 0.8211 0.8421 0.9659
WN 0.9157 0.9477 0.9789 0.9617 0.9608 0.9853 0.9700 0.9064 0.9860 0.8814 0.9205 0.9887
GB 0.8367 0.9132 0.9479 0.8792 0.9553 0.9395 0.9340 0.9251 0.9560 0.8012 0.8414 0.9681
FF 0.7023 0.8736 0.8854 0.8202 0.9103 0.9008 0.8153 0.8384 0.9080 0.7511 0.8011 0.9020

TID2008

WN 0.5368 0.6314 0.8603 0.7130 0.5941 0.9338 0.8722 0.8256 0.9150 0.6714 0.6823 0.9146

GB 0.8878 0.9176 0.9059 0.8824 0.8941 0.9263 0.8475 0.8376 0.8960 0.8415 0.8531 0.9557
ANC 0.1962 0.7282 0.5230 0.4235 0.2090 0.6250 0.5910 0.6470 0.7320 0.3014 0.3213 0.8873
SCN 0.6992 0.8345 0.7790 0.7285 0.7185 0.7880 0.7790 0.8150 0.7932 0.6641 0.6823 0.8745
MN 0.1935 0.3597 0.2990 0.3310 0.3610 0.3697 0.4960 0.5130 0.6125 0.2910 0.2935 0.7797
HFN 0.6071 0.8523 0.8360 0.7754 0.7970 0.8546 0.8650 0.8250 0.8141 0.6921 0.7243 0.8494
IN 0.0168 0.6681 0.8040 0.6792 0.5870 0.7766 0.6970 0.6910 0.7183 0.5514 0.6513 0.7987
QN 0.6771 0.7899 0.6870 0.5935 0.7290 0.8161 0.8370 0.8010 0.7918 0.5161 0.5521 0.8973
ID 0.7896 0.7568 0.5030 0.5563 0.7270 0.8742 0.7250 0.8760 0.8734 0.3814 0.5239 0.8735
JPEG 0.8996 0.8853 0.9103 0.9033 0.9099 0.8812 0.8475 0.8075 0.9010 0.8714 0.8856 0.9342
JP2K 0.8147 0.9118 0.9044 0.9103 0.9290 0.9068 0.8737 0.8722 0.8990 0.9001 0.9069 0.9635
JPEGTE 0.5565 0.2572 0.2580 0.3042 0.5990 0.7492 0.4070 0.6380 0.7290 0.2214 0.2563 0.6591
JP2KTE 0.5499 0.7590 0.7260 0.6775 0.6570 0.7072 0.7360 0.7260 0.8174 0.6012 0.6521 0.8468
NEPN 0.1655 0.0842 0.2170 0.1781 0.1590 0.1999 0.1940 0.2242 0.3242 0.1004 0.1423 0.4333
LBD 0.0992 0.3763 0.1990 0.1865 0.0190 0.3293 0.3190 0.3270 0.4161 0.1448 0.1624 0.5904
MES 0.0097 0.1595 0.2190 0.1575 0.1870 0.2397 0.1290 0.2373 0.3732 0.0914 0.1120 0.3977
CC 0.4263 0.0883 0.0890 0.1276 0.2680 0.2988 0.2260 0.3520 0.3609 0.0756 0.1023 0.5325

CSIQ

JP2K 0.7573 0.8870 0.8934 0.8692 0.8950 0.9406 0.7582 0.8120 0.9450 0.8012 0.8421 0.9430
JPEG 0.8384 0.9115 0.9253 0.8843 0.8845 0.9328 0.7152 0.8283 0.9280 0.8015 0.8734 0.9364
WN 0.6000 0.8863 0.9310 0.8131 0.7980 0.9172 0.9466 0.9123 0.8810 0.7914 0.8039 0.9622
GB 0.8160 0.9152 0.9143 0.8756 0.9006 0.9070 0.7982 0.8318 0.8880 0.8610 0.8641 0.9108

Hit count 0 1 0 0 1 4 1 0 2 0 0 17

3.4. Performance comparison

The proposed methodology is compared with 11 state-of-the-art NR-IQA techniques, namely DIIVINE [2],
BLINDS II [25], BRISQUE [27], BIQI [24], CORNIA [26], M3 [1], improved NSS [18], SA_IQA [29], S [31], and
SLKR [31]. Table 2 shows the individual performance comparison of the proposed methodology for the LIVE,
TID2008, and CSIQ databases, which validates the better performance of the proposed method. Table 2 also
demonstrates that the proposed method performs better than state-of-the-art NR-IQA techniques and feature

2173



NIZAMI et al./Turk J Elec Eng & Comp Sci

selection algorithms over a majority of the distortion types. The proposed technique performs best for three
out of five, 12 out of 17, and two out of four distortion types on the LIVE, TID2008, and CSIQ databases,
respectively. The hit count and bold face values in Table 2 show the number of times a NR-IQA technique is
ranked top. It can also be observed that the proposed method performs best with a hit count of 17 , which is
much higher than the best hit count of 4 for state-of-the-art NR-IQA techniques.

Table 3 shows the overall performance of the proposed method on individual IQA databases and the
average performance on all three databases. It is evident that the performance of the proposed method is better

Table 3. Overall performance comparison of the proposed scheme in terms of median value of SROCC and LCC for the
LIVE, TID2008, and CSIQ databases.

IQA
Technique

LIVE TID2008 CSIQ Average
SROCC LCC SROCC LCC SROCC LCC SROCC LCC

PSNR [45] 0.8890 0.8821 0.8789 0.8611 0.9292 0.8562 0.8978 0.8687

SSIM [46] 0.9486 0.9464 0.9032 0.9087 0.9362 0.9347 0.9345 0.9342

BIQI [24] 0.8084 0.8250 0.8438 0.8704 0.7598 0.8353 0.7995 0.8384

DIIVINE [2] 0.8816 0.8916 0.8930 0.9038 0.8697 0.9010 0.8800 0.8974

BLINDSII [25] 0.9302 0.9366 0.8982 0.9219 0.9003 0.9282 0.9131 0.9305

CORNIA [26] 0.9466 0.9487 0.8990 0.9347 0.8845 0.9241 0.9151 0.9373

BRISQUE [27] 0.9430 0.9468 0.9357 0.9391 0.9085 0.9356 0.9298 0.9414

M3 [1] 0.9511 0.9551 0.9369 0.9406 0.9243 0.9457 0.9390 0.9488

CurveletQA [3] 0.8875 0.9030 0.8602 0.8713 0.8045 0.7657 0.8534 0.8496

SSEQ [4] 0.8793 0.8899 0.8357 0.8577 0.8461 0.8707 0.8583 0.8762

Improved NSS [18] 0.9470 0.9500 0.9200 0.9260 0.9050 0.9250 0.9267 0.9361

SA_IQA [29] 0.9658 0.9667 0.8452 0.8660 0.9322 0.9392 0.9273 0.9347

S [31] 0.8094 0.8111 0.8211 0.8101 0.8137 0.8070 0.8147 0.8094
SLKR [31] 0.8452 0.8432 0.8319 0.8321 0.8458 0.8512 0.8410 0.8421
Proposed 0.9615 0.9623 0.9420 0.9512 0.9381 0.9459 0.9455 0.9531

Table 4. Comparison of proposed scheme in terms of number of features and execution time.

NR-IQA Average Number Execution Average Average
Technique of features used Time (s) SROCC LCC
BIQI [24] 18 0.076 0.7995 0.8384

DIIVINE [2] 88 28.20 0.8800 0.8974

BLINDSII [25] 24 123.9 0.9131 0.9305

CORNIA [26] 20, 000 3.246 0.9151 0.9373

BRISQUE [27] 36 0.176 0.9298 0.9414

M3 [1] 40 0.101 0.9390 0.9488

CurveletQA [3] 12 1.670 0.8875 0.8496

SSEQ [4] 12 2.680 0.8793 0.8762

Improved NSS [18] 56 0.332 0.9267 0.9361

SA_IQA [29] 81 1.570 0.9273 0.9347

S [31] 21 19.93 0.8147 0.8094
SLKR [31] 34 20.12 0.8410 0.8421
Proposed 58 21.09 0.9455 0.9531
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than that of the state-of-the-art NR-IQA techniques. Furthermore, the proposed method performs equivalent
to a full reference-IQA like PSNR and SSIM, which requires a nondistorted version of the image to estimate
the perceived quality. The S [31] and SLKR [31] feature selection algorithms S and SLKR [31] perform even
worse than the DIIVINE NR-IQA technique because the S and SLKR algorithms perform feature selection on
individual features, which has the disadvantage of losing inherent and detail information present in the whole
feature group that can contribute to the overall performance and results in degradation of performance.

Table 4 compares the average number of features used and the execution time in seconds for different NR-
IQA techniques. The proposed method reduces the average number of DIIVNE features by 34.1% and results in
better performance in terms of higher SROCC and LCC scores as compared to DIIVINE. The proposed method
also reduces the execution time by more than 25.2% when compared to DIIVINE. The proposed method takes a
longer time to compute the quality score than BIQI [24], CORNIA [26], BRISQUE [27], M3 [1], curveletQA [3],
SSEQ [4], improved NSS [18], SA_IQA [29], S [31], and SLKR [31], but gives better performance in terms of
average SROCC and LCC to predict the MOS.

4. Conclusion
Conventional NR-IQA techniques extract features to determine distortion type and then these features are used
by the regression model to estimate the quality score of the image. An algorithm for feature selection is proposed
in this paper, where different feature groups are selected for each distortion type. Only those feature groups are
selected whose SROCC score is greater than the mean SROCC value of all extracted features using majority
voting. The proposed method is evaluated over the LIVE, TID2008, and CSIQ databases. It is evident from the
results that the predicted quality score using the proposed method shows high correlations with the subjective
quality score represented by mean observer score. The proposed methodology shows better performance than
the current NR-IQA techniques and other feature selection algorithms in terms of SROCC and LCC. The
proposed method not only improves the estimation of quality score but also reduces the execution time and
computational expense of the system as compared to the DIIVINE NR-IQA technique.
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