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Abstract: The image reconstruction algorithm of diffuse optical tomography (DOT) is based on the diffusion equation
and involves both the forward problem and inverse solution. The forward problem solves the diffusion equation using
the finite element method for calculating the transmitted light distribution under the condition of presumed light source
and optical coefficient. The inverse solution reconstructs the optical property coefficient distribution using Newton’s
method. The work within this study develops an image reconstruction algorithm for frequency-domain DOT. A numerical
simulations approach to light propagation in the tissue is conducted, while the optical property is reconstructed employing
data around the boundary. We implement different designated simulation cases, including different contrast ratios of
absorption and reduced scattering coefficient of inclusion with respect to the background used for verifying the results
of the forward problem and the developed reconstruction algorithm. Reconstruction results indicate that the quality of
reconstructed images can be effective for screening breast cancer.
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1. Introduction
Diffuse optical tomography (DOT) refers to the imaging of biological tissue in the diffusive regime by using near-
infrared (NIR) light [1]. Typically, the goal of DOT is to accurately estimate the distribution of optical properties
in a tissue volume from noninvasive optical measurements on the surface of the medium [2]. Furthermore, its
clinical application for imaging breast cancer is beginning to demonstrate functional information, such as oxy-
hemoglobin and de-oxyhemoglobin, for screening [3,4]. As is known, NIR DOT produces low-resolved images,
which limits its further clinical application due to highly scattered photon fields. In addition, an NIR DOT focus
in regards to two issues, a forward measurement system [5] and a reconstruction algorithm [6,7], was primarily
related to a measuring device and numerical computation software, respectively. Hence, the low-resolution
drawback due to the ill-posed nature of the inverse problem can be improved by either a novel hardware
design such as using multimodality, optical fibers optimization around the tissue boundary, or an innovative
computational approach such as constraints in the image reconstruction, introducing prior information, varying
parameters, or filtering techniques [8].

The circular array [9,10] is the most popular model geometry for imaging the breast in two dimensions,
which drew researchers’ attention. Some studies have been developed for two-dimensional image reconstruction
to reflect a better understanding. Various algorithms can be utilized to estimate optical properties in DOT
techniques. The decision of these algorithms is based on the photon propagation model, optimization scheme,
measurement type, and geometry. A system using a multiwavelength scheme was applied to reconstruct better-
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quality images such as a low cross-talk or high-contrast separability between the embedded tumor and the
background [11,12]. Furthermore, the optimization of wavelength [13] to determine proper spectral ranges
was developed, and the laser wavelengths’ determination has a strong effect on maximizing optical properties
accuracy [14].

Multimodality schemes have also been proposed for medical applications or clinical trials. Diffuse optical
imaging along with coregistered X-ray systems generated a better performance between the functional and
structural contrasts [15,16], with integration of an ultrasound probe and an NIR DOT for the solid lesion
detection [17–19], or employed a combination of nuclear magnetic resonance imaging/magnetic resonance
imaging (NMR imaging/MRI) and NIR imaging systems to be implemented an image guided for reconstructing
NIR DOT [20,21], where such a hybrid imaging scheme was examined with an NIR image reconstruction
algorithm usually incorporating a priori structural information provided by X-ray imaging, ultrasound imaging,
or MRI systems.

On the other hand, to provide accurate information of the tissue, several studies were conducted.
Reducing the imaging artifact in measurements due to probe-tissue coupling, patient and probe motions, and
tissue heterogeneity were investigated by an automated method of outlier removal, data selection, and filtering
for DOT [22]. In the discussion of wavelength optimization with a selection from commercial laser diodes to
obtain more information of chromophores [14] and to allow bulk parameter recovery from measured spectra, a
set of libraries based on a numerical model of the domain being investigated was developed as opposed to the
conventional approach of using an analytical semiinfinite slab approximation, which was shown to introduce
boundary effects [23].

In this study, we present the implementation of a finite element-based algorithm to provide forward
calculation for the image reconstruction process. Due to the ill-posed nature of the inverse problem, Tikhonov
regularization (TR) is utilized to stabilize the reconstruction results. Based on the algorithm, preliminary
simulation results for reconstructing optical properties (such as absorption and reduced scattering coefficient)
in the tissue are illustrated.

According to the above introduction, the organization of this paper is as follows. In Section 2, we describe
the forward problem of DOT and light propagation is modeled; in addition, we state the inverse solution for
image reconstruction and the estimation of optical properties in tissue. Subsequently, the simulation results of
the forward problem and inverse solution are demonstrated in Section 3, where discussions are provided as well.
Finally, some remarks and conclusions of the study are stated in Section 4.

2. Forward and inverse models
Estimating the distribution of the optical properties in tissue through the light propagation around a model
boundary is the aim of DOT. A forward model is needed to show the relation between light radiance distribution
on the tissue boundary and the exact optical properties for the objective of determining the reconstructed optical
properties’ images.

The inverse problem in image reconstruction for DOT is nonlinear but we can linearize this nonlinear
problem by using first-order Taylor series and this can be done iteratively using Newton’s method as shown
in the following discussion, and then the nonlinear image reconstruction problem can be solved by a series of
linear steps. However, these linear steps involve the Jacobian matrix, which needs to be constructed explicitly.

To express the above explanations in theory, a forward problem in DOT is first described in Section 2.1,
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and then the use of the regularization method in an inverse problem is explained in Section 2.2, where TR is
presented. Following that, the approach implemented in the numerical way is described in Section 2.3.

2.1. Forward problem
Time harmonic light propagation in tissues can be described by the well-known diffusion equation when tissues
act as a highly scattering medium:

∇·D∇Φ(r,ω)−
(
µa−

iω

c

)
Φ(r,ω)= −S0 (r,ω) (1)

where Φ(r,ω) is the radiance, ω is the light modulation frequency, D is the diffusion equation, µa is the
absoption coefficient, c is the wave speed in the medium, and S0 (r,ω) is the source term. The diffusion
coefficient D can be written as:

D=
1

3 [µs (1− g) + µa]
=

1

3 (µ′
s + µa)

(2)

where µs is the scattering coefficient, g is average cosine of the scattering angle, and µ
′

s is the reduced scattering
coefficient.

The use of the finite element method (FEM) to model the diffusion equation is attractive due to the
flexibility in terms of geometry and the ability to preserve the nonlinear relationship between the measurements
and optical properties in the diffusion equation. In order to simulate the light propagation by diffusion equation,
we first must define the light source S0 (r, ω) , boundary condition, and optical coefficients µa and µ

′

s in the
model. In this study, the mixed boundary condition [24] is implemented as in Eq. (3). The FEM can be divided
into two steps. First, the boundary condition is substituted into a weak form. Secondly, the Galerkin method
along with a boundary condition is implemented:

−D∇Φ.n̂ = αΦ, (3)

where α is a term that incorporates reflection as a result of refractive-index mismatch at the boundary and n̂

is the unit vector normal to the boundary. Thus, the following discrete equations in a matrix form,[
Abb

ij − αBbb
ij AbI

ij

AIb
ij AII

ij

]{
Φb

j

ΦI
j

}
=

{
Sb

j

SI
j

}
(4)

can be obtained. Here, b is the boundary node and l is the internal node. Obviously, the forward solution, Φ ,
can be evaluated with Eq. (4).

2.2. Inverse solution
Since the goal of DOT is to reconstruct the optical coefficient maps of the tissue, we can estimate this distribution
by minimizing the misfit differences of data model,

χ2 = ∥∆Φ∥22 =
∥∥∆ΦM −∆ΦC

∥∥2
2

(5)

which is minimal, where ΦM is the measured photon density around the medium being investigated and ΦC

is the computed model data from solving the diffusion equation with the current estimated optical properties.
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These data-model misfit differences can then be minimized by solving J∆χ = ∆Φ iteratively, where J =[
∂ΦC/∂µa ∂Φ

C/∂D
]

is the Jacobian matrix, i.e. the rate of change of model data with respect to optical
parameters, and ∆χ denotes the optical coefficient update vector [∆µa;∆D] at each iteration.

However, solving this inverse problem of I∆χ = ∆Φ usually runs into the difficulty of an ill-conditioned
problem as the number of model parameters (optical coefficients here) increases. Alternatively, TR is introduced
to remedy such an issue. In TR, the inverse problem in DOT is formulated as an optimization of the damped
least-squares problem [25]: {

∥I∆χ−∆Φ∥22 + λ2 ∥∆χ∥22
}
, (6)

where λ is a regularization parameter. One can minimize this damped least-squares problem by iteratively
solving the following update equation: (

IT I + λ2I
)
∆χ = IT∆Φ (7)

2.3. Image reconstruction for DOT
In this study, the numerical computation was implemented in the model using repeated iteration. The flowchart
for image reconstruction is shown in Figure 1. First, we assumed the distribution of optical properties in the
model, and then the corresponding light source intensity was obtained in the forward calculation. The FEM
solved the diffusion equation to obtain the light intensity and phase shift of the measurement nodes around
boundary. As explained in Section 2.2, we calculated the solution of the diffusion equation and least-squares
minimization error function (χ2) as the criteria. If the error was greater than the initial estimation, then the
inverse problem would be employed. In the inverse problem, we obtained optical properties’ update values for
each node. Then the optical properties obtained above were applied to the forward problem calculation, and
the error was obtained again. These processes would be repeated until the stop criterion was met.

Start

Initial estimation

( , )

Forward 
computation

∆Φ = ΦM - ΦC

Solution 
converged?

End

Experiment 
measurement data

Update Jacobian 
matrix

Regularization

Update

∆

∆

Inverse problem

No

Yes

ΦM

ΦC

Figure 1. Flowchart for image reconstruction of DOT.
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3. Results and discussion
This section describes how to produce simulated data as well as image reconstruction results. In order to test
the image reconstruction algorithm, the simulation was employed first by using model information in the testing
model. According to the actual shape of the breast and internal physiological information, we first had to assume

the absorption (µa) and reduce scattering
(
µ

′

s

)
coefficients in the model. Then we used the FEM to simulate

light distribution in the model and light intensity at the boundary. In addition, there were multiple light
sources and measurement nodes for image reconstruction. In this study, we used a circular array as the model
geometry with diameter of 80 mm. It was assumed that there were 16 light sources and 16 measurement nodes
distributed along the boundary; therefore, there were 256 (= 16×16) measurements in total for reconstruction.
To obtain simulated data, we used a group of finite element mesh with 4225 nodes and 8192 triangle elements
for the inverse solution. The model geometry along with the light source and detector arrangement are shown
in Figure 2a, while Figure 2b depicts the inclusion location inside the model.

(b)(a)

 

Light Source

Detector

Figure 2. Model geometry to (a) show the arrangement of light sources (in red) and detectors (in green) on the boundary
and (b) demonstrate the inclusion location.

Moreover, we assumed that µa and µ
′

s of the background in the model geometry were 0.01mm−1 and
1mm−1 , respectively. We tried to simulate the model with different optical properties for the same size and
location of inclusion, as shown in Table 1. Figures 3a–3d show the light radiance distribution for light sources 1,
5, 9, and 13, respectively. As can be seen, the light intensity was distributed well inside the model through our
simulation. Forward solutions where predicted boundary data (intensity and phase) are plotted for homogeneous
and inhomogeneous areas for µa = 0.02mm−1and µ

′

s = 0.89mm−1 of inclusion are shown in Figure 4a for
light source 1, as well as Figure 4b, Figure 4c, and Figure 4d for light sources 5, 9, and 13, respectively. On
the other hand, Figures 5a–5d depict the predicted boundary data for µa = 0.02mm−1and µ

′

s = 2mm−1 of
inclusion. The modulation frequency was selected to be 100MHz .

Figures 4a–4d and 5a–5d indicate the differences of light intensity and phase shift between homogenous
and inhomogeneous areas where a single light source was applied. As predicted, the boundary data were affected
by light source and inclusion position as well as optical properties of inclusion. These results of the forward
solution prove the forward problem algorithm, promising to obtain simulation data for the image reconstruction
next step.
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Table 1. Different designated simulation cases with µa = 0.01mm−1 and µ
′
s = 1mm−1 of the background for single

inclusion.

Case
Inclusion Inclusion

µa (mm−1) µ
′

s (mm−1)diameter location
(mm) (x, y mm)

A1 15 –20, 0 0.02/0.025/0.03 0.89
A2 15 –20, 0 0.02 2/2.5/3

(a) (b) (c) (d)
 

-20                        -15                      -10                       -5                         0

Figure 3. Radiance distribution for light sources (a) 1, (b) 5, (c) 9, and (d) 13.

In order to avoid inverse crime [26], we utilized different numbers of elements and nodes in the forward
and inverse models, as shown in Figures 6a and 6b, respectively. To obtain reconstructed images in this study,
we used a group of finite element mesh with 817 nodes and 1536 triangle elements for the inverse solution.

Figures 7 and 8 demonstrate simulated reconstructions of both the absorption and the reduced scattering
images and the corresponding comparisons between exact and estimated reconstruction line profiles for different
contrasts of µa but the same µ

′

s , respectively. The reconstructed images and line profiles with different contrasts
of µ′

s but the same µa are shown in Figure 9 and 10, respectively. Comparing Figures 7 and 9, the reconstructed
images show that greater inclusion contrast in the exact condition, with higher differences between inclusion
and background for reconstructed results. Also, Figures 8 and 10 provide a more detailed assessment of these
images by circular profiles through the inclusion center with a radius of 15 mm. We found for case A1 that with
the greater µa of inclusion in the exact condition, the greater µ

′

s for inclusion with respect to the background
in the reconstructed image was even overestimated. Otherwise, underestimation occurred for µa . Furthermore,
underestimation of the optical properties’ reconstructed images for each contrast ratio in case A2 occurred.

Additionally, we simulated simultaneously the conditions given in Table 2. These cases were specified
with the optical-property values of µ

′

s = 0.89mm−1 and µa = 0.02, 0.025 and 0.03mm−1 for the right, top,
and left inclusion in case B1, respectively. On the other hand, we computed a µa = 0.02mm−1 and µ

′

s = 2, 2.5

and 3mm−1 for the right, top, and left inclusion in case B2, respectively. The reconstructed images with three
inclusions shown in Figure 11 clearly demonstrate that µa and µ

′

s reconstructed can be obtained by use of the
algorithm in this study. Furthermore, Figure 12 depicts the circular profiles of image assessments through the
three inclusion centers with a radius of 15 mm. Obviously, case B2 has higher contrast compared with case B1.
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Figure 4. Computed light intensity and phase shift for µa = 0.02mm−1 and µ
′
s = 0.89mm−1 of inclusion: light

sources (a) 1, (b) 5, (c) 9, and (d) 13.

Table 2. Same caption as Table 1 but for three different inclusion locations and contrasts.

Case
Inclusion Inclusion

µa (mm−1) µ
′

s (mm−1)diameter location
(mm) (x, y mm)

B1 15 20, 0/0, 20/–20, 0 0.02/0.025/0.03 0.89
B2 15 20, 0/0, 20/–20, 0 0.02 2/2.5/3
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Figure 5. Same caption as Figure 4 but for µa = 0.02mm−1 and µ
′
s = 2mm−1 of inclusion.

(a) (b)
 

Figure 6. Finite element meshes of (a) the forward model and (b) the inverse model.
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Figure 7. Simulated reconstructions of both the absorption and reduced scattering images for case A1.
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Figure 8. Comparison between exact (dotted line) and estimated (solid line) reconstruction line profiles with an inclusion
radius of 15 mm for case A1.

We also provided a quantitative assessment for the reconstructed images between the FD proposed in this
study and continuous wave (CW) [27] DOT using the structural similarity (SSIM) index [28]. The images in
Figures 13 and 14 show the competitive performance of the CW algorithm for image reconstruction compared
with the FD algorithm in Figures 7 and 9. Table 3 presents the evaluation results from calculating the SSIM
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Figure 10. Same caption as Figure 8 but for case A2.

index for all images shown in Figures 7, 9, 13, and 14, where a numerical approach is used for assessing the
quality of the reconstructed image when compared with the actual image of DOT through the whole parts. The
image quality assessment in Table 3 verifies that the reconstructed optical property images using FD enhance
the recovery of inclusion through considerable improvement in the inclusion contrast.
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Figure 11. Same caption as Figure 7 but for three different inclusion locations and contrasts.
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Figure 12. Same caption as Figure 8 but with three different inclusion locations.

4. Conclusions
In this study, a FEM-based image reconstruction algorithm of a DOT system has been proposed in the FD.
Furthermore, Newton’s method and TR are employed in the image reconstruction to improve the reconstructed
images. For verifying the developed reconstruction algorithm, different designated simulation cases with different
contrast ratios were used. According to image reconstruction results, they indicate that the reconstruction
algorithm is feasible for breast examination for revealing the embedded tumor, where a tumor of 15 mm in
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Figure 13. Same caption as Figure 7 using CW.
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Figure 14. Same caption as Figure 7 but for case A2 using CW.
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Table 3. Image quality evaluation with SSIM index for FD and CW.

µ
′

s = 0.89mm−1 µa = 0.02mm−1

µa
SSIM

µ
′

s

SSIM
FD CW FD CW

0.02mm−1 0.485 0.472 2mm−1 0.712 0.700
0.025mm−1 0.483 0.472 2.5mm−1 0.689 0.671
0.03mm−1 0.479 0.468 3mm−1 0.634 0.613

diameter embedded in the model can be distinguished from the background. Overestimation or underestimation
of optical properties’ contrast occurred and could not be accurately determined; however, it remains effective
for breast screening. Additionally, the SSIM index allows the image quality assessment for FD in this study
and CW. The computational times of both methods for each iteration were similar, approximately 7–8 s, due
to equal Jacobian matrix dimensions. Furthermore, it is expected that the image reconstruction algorithm here
can be applied for experimental data, although the results displayed in this study have concentrated on the
reconstructed images from simulated data.

References

[1] Bhowmik T, Liu H, Ye Z, Oraintara S. Dimensionality reduction based optimization algorithm for sparse 3-D image
reconstruction in diffuse optical tomography. Sci Rep-Uk 2016; 6: 22242.

[2] Wang B, Wan W, Wang Y, Ma W, Zhang L, Li J, Zhou Z, Zhao H, Gao F. An Lp (0 ≤ p ≤ 1)-norm regularized
image reconstruction scheme for breast DOT with non-negative-constraint. Biomed Eng Online 2017; 16: 32.

[3] Gibson A, Dehghani H. Diffuse optical imaging. Philos T R Soc A 2009; 367: 3055-3072.

[4] Leff DR, Warren OJ, Enfield LC, Gibson A, Athanasiou T, Patten DK, Hebden J, Yang GZ, Darzi A. Diffuse
optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Tr 2008; 108: 9-22.

[5] Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine: I. Experimental techniques. Phys Med Biol 1997;
42: 825-840.

[6] Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image reconstruction in diffuse optical
tomography. Philos T R Soc A 2009; 367: 3073-3093.

[7] Arridge SR, Schotland JC. Optical tomography: forward and inverse problems. Inverse Probl 2009; 25: 123010.

[8] Chen LY, Pan MC, Pan MC. Implementation of edge-preserving regularization for frequency-domain diffuse optical
tomography. Appl Optics 2012; 51: 43-54.

[9] Bi B, Han B, Han W, Tang J, Li L. Image reconstruction for diffuse optical tomography based on radiative transfer
equation. Comput Math Method M 2015; 2015: 286161.

[10] Chen LY, Pan MC, Pan MC. Flexible near-infrared diffuse optical tomography with varied weighting functions of
edge-preserving regularization. Appl Optics 2013; 52: 1173-1182.

[11] Uludag K, Steinbrink J, Villringer A, Obrig H. Separability and cross talk: optimizing dual wavelength combinations
for near-infrared spectroscopy of the adult head. Neuroimage 2004; 22: 583-589.

[12] Wu HY, Filer A, Styles I, Dehghani H. Development of a multi-wavelength diffuse optical tomography system for
early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies. Biomed Opt Express
2016; 7: 4769-4786.

[13] Eames ME, Wang J, Pogue BW, Dehghani H. Wavelength band optimization in spectral near-infrared optical
tomography improves accuracy while reducing data acquisition and computational burden. J Biomed Opt 2008; 13:
054037.

2299



MUDENG et al./Turk J Elec Eng & Comp Sci

[14] Chen LY, Pan MCheng, Yan CC, Pan MChun. Wavelength band optimization in spectral near-infrared optical
tomography improves accuracy while reducing data acquisition and computational burden. Appl Optics 2016; 55:
5729-5737.

[15] Zhang Q, Brukilacchio T, Li A, Stott J, Chaves T, Hillman E, Wu T, Chorlton M, Rafferty E, Moore R et al.
Coregistered tomographic X-ray and optical breast imaging: initial results. J Biomed Opt 2005; 10: 024033.

[16] Yuan Z, Zhang Q, Sobel ES, Jiang H. Tomographic X-ray-guided three dimensional diffuse optical tomography of
osteoarthritis in the finger joints. J Biomed Opt 2008; 13: 044006.

[17] Holboke M, Tromberg B, Li X, Shah N, Fishkin J, Kidney D, Butler J, Chance B, Yodh A. Three-dimensional
diffuse optical mammography with ultrasound localization in a human subject. J Biomed Opt 2000; 5: 237-247.

[18] Zhu Q, Tannenbaum S, Hegde P, Kane M, Xu C, Kurtzman S. Noninvasive monitoring of breast cancer during
neoadjuvant chemotherapy using optical tomography with ultrasound localization. Neoplasia 2008; 10: 1028-1040.

[19] Jiang Z, Piao D, Xu G, Ritchey JW, Holyoak GR, Bartels KE, Bunting CF, Slobodov G, Krasinki JS. Trans-
rectal ultrasound-coupled near-infrared optical tomography of the prostate part ii: experimental demonstration.
Opt Express 2008; 16: 17505-17520.

[20] Ntziachristos V, Yodh A, Schnall M, Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign
breast lesions. Neoplasia 2002; 4: 347-354.

[21] Dehghani H, Pogue B, Brooksby B, Srinivasan S, Paulsen K. In: 3rd IEEE International Symposium on Biomedical
Imaging: Nano to Macro; 6–9 April 2006; Arlington, VA, USA. New York, NY, USA: IEEE. pp. 682-685.

[22] Vavadi H, Zhu Q. Automated data selection method to improve robustness of diffuse optical tomography for breast
cancer imaging. Biomed Opt Express 2016; 7: 4007-4020.

[23] Guggenheim JA, Bargigia I, Farina A, Pifferi A, Dehghani H. Time resolved diffuse optical spectroscopy with
geometrically accurate models for bulk parameter recovery. Biomed Opt Express 2016; 7: 3784-3794.

[24] Arridge SR, Schweiger M, Hiraoka M, Delpy DT. A finite element approach for modeling photon transport in tissue.
Med Phys 1993; 20: 299-309.

[25] Pogue BW, Geimer S, McBride TO, Jiang S, Osterberg UL, Paulsen KD. Three-dimensional simulation of near-
infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction. Appl
Optics 2001; 40: 588-600.

[26] Jiang M, Zhou T, Cheng J, Cong W, Wang G. Image reconstruction for bioluminescence tomography from partial
measurement. Opt Express 2007; 15: 11095-11116.

[27] Liu Y, Su J, Lin ZJ, Teng S, Rhoden A, Pantong N, Liu H. Reconstructions for continuous-wave diffuse optical
tomography by a globally convergent method. J Appl Math Phys 2014; 2: 204-213.

[28] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural
similarity. IEEE T Image Process 2004; 13: 600-612.

2300


	Introduction
	Forward and inverse models
	Forward problem
	Inverse solution
	Image reconstruction for DOT

	Results and discussion
	Conclusions

