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Abstract: We present a modeling study aiming at the estimation of the parameters of a single neuron model from neural
spiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neural
spiking data will be obtained from point process simulation. The resultant data will be used in parameter estimation
based on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms of
stimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulated
results presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF),
amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison.
The results showed that regardless of the stimulus type, the most effective parameter on the estimation performance
appears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulus
is applied in the estimation.

Key words: Neuron model, neural spiking, firing rate, inhomogeneous Poisson point processes, maximum likelihood
estimation

1. Introduction
Mathematical modeling applied to biological neurons has been a popular research topic for the last 50 years of
neuroscience. Neuron models can fall into various categories such as compartmental, cascade, and black box
models. Compartmental models include single or multiple compartmental types. The famous Hodgkin–Huxley
[1] and a similar but reduced version [2] can be considered as examples of a single compartmental model.
Fitzhugh–Nagumo models [3] may also be classified under the same type. One can consider [4] as an example
of a multicompartmental model. These are quite complicated but realistic biophysical models. If biophysical
features are not that important, one can refer to cascade models. These can be constructed from a combination
of a linear filter and a nonlinearity. These generally address the computational details of the network. These are
known to be studied in research related to visual systems [5–8]. These models are not expected to be as complex
as compartmental models but they do involve a certain level of dynamical features. One can also discuss the
black box models, which generally concentrate on the signal processing capabilities of a neuron. A considerable
percent of such models have statistical features such as the probability distribution of the response given the
stimulus. Examples are [9–12]. Concerning a good review on neuron modeling studies, interested readers can
refer to [13].
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Recently, different approaches in modeling are seen in the literature. It is known from [13] that the signal
processing processes in a biological neuron are stochastic. This randomness comes from the stochasticity of
the ion channels and synaptic processes. Some recent studies such as [14–16] concentrated on the modeling of
channel noise. In addition, the flow of ions through the channels generates electromagnetic fields, which may
form an electromagnetic coupling as this will modulate the membrane potential of postsynaptic neurons [17–19].
These processes are also stochastic and may contribute to the stochasticity of information processing. In [19],
it was also stated that strong magnetic fields generated by the electrical system of the heart can be detrimental
to its operation.

Exposure to external electromagnetic fields may be a source of exogenous disturbance to the electrical
activity of a neuron [20, 21]. That will bring unexpected dynamical responses such as double coherent resonance
[22].

If all the complexity above is not needed or in other words if just the signal processing capabilities
are in consideration (which is a major component of computational neuroscience), other modeling options are
available. These include linear-nonlinear cascades [5–7, 23–25], where a linear filter is coupled with a static
nonlinear map and static feedforward [26] and dynamical recurrent neural networks [27]. Concerning the latter,
we need to stress that the continuous time version of the recurrent neural network (CTRNN) should be used. It
can describe the dynamics of either the membrane potential or firing rate and can be extended to any number
of neurons [28].

Usage of static or dynamical neural networks in the modeling of biological neural networks is met in
the literature. Some studies [29–31] concentrated on the application of a static feedforward neural network to
the modeling of the auditory cortex. Static neural networks do not describe the time-dependent nature of the
operation of a biological neuron (action potentials, refractory regions, etc.). Thus, dynamical recurrent neural
networks seem very suitable to describe the signal processing features of a neural network. One such application
was done in [32] with membrane potentials being the dynamical variables.

Continuous time recurrent neural networks have self-excitatory and/or inhibitory connections, which
can be considered equivalent to an autapse that is a synaptic connection formed between parts of the same
neuron (e.g., dendrites and axon). Autapse connections may recover the signal transduction in the case of
a neurodegenerative disease [33, 34]. In addition, autapse connections may alter or regulate the dynamical
features of a neuron [35–37].

Regardless of the model, the information transmitted is coded in successive bursts of action potentials.
This is especially the case in the sensory neural transmission. This phenomenon is called neural spiking and the
timing of each action potential in the burst is called a spike. The temporal locations of the spikes are believed
to code the information transmitted [38] and thus may be used as time series data in identification of the neuron
parameters. These facts support a theoretical neuroscientist in the following way:

If the neuron is isolated (in other words in vitro), measurement of the membrane potential will not be an
issue; however, its in vivo measurement (when the neuron is alive and functional in the body) will bring many
challenges. Placement of an electrode on the neuron’s membrane will most probably alter its operation, so one
should offer an alternate measurement approach. If an electrode is placed at a location near the neuron, one
will be able to record the temporal locations of each individual action potential (and thus the neural spikes).
The collected data can be used as a time series to train the model in consideration.

In [39] it was stated that neural spiking profiles of sensory neurons largely obey an inhomogeneous Poisson
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process. As an inhomogeneous point process has a well-defined probability mass function as discussed in [40],
an efficient way to perform parameter identification is the maximum likelihood method [41].

Identification of neuron parameters is an interesting topic in the theoretical/computational neuro-
science literature. When the membrane potential or firing rate is assumed to be measurable, one can
apply classical minimum mean square (or least squares) methods [42], synchronization [43], and adaptive
Lyapunov+synchronization-based techniques [44]. However, in the case of this research, the collected data are
discontinuous and no amplitude/rate information is available. Thus, methods in the aforementioned references
are not directly applicable. Recently, there have been certain attempts to apply the concept of synchronization
to spiking neurons. The problem can be roughly viewed as the synchronization of two neural spiking processes
by minimizing the interspiking intervals (ISI). One example is [45], which utilizes spike synchrony monitoring
[46] through minimizing the van Rossum distance [47] between two spike trains. The main issue associated with
this approach is the necessity of an intermediate mechanism [48] to compute the van Rossum distance. This
will be a source of increased computational complexity and thus is not preferred in this research.

In this research we will present a simulation-based study aiming at the estimation of the parameters of
a firing rate-based single neuron model. One can summarize the procedure as follows:

1. Given a predefined stimulus (Fourier series, etc.), the model with true parameters will be simulated in a
finite time. The firing rate profile is obtained.

2. Using a method for simulation of inhomogeneous Poisson processes, the expected spiking profile is ob-
tained.

3. Steps 1 and 2 should be repeated several times to obtain adequate statistics.

4. Using a maximum likelihood method, the obtained spike trains will be used to recover the model param-
eters.

5. Different stimuli with various configurations will be examined to obtain a sufficient amount of data for a
comparison.

Studies targeting similar goals can be seen in the literature. Some examples are [29–31]. These work on
a feedforward dynamical static neural network trained from neural spiking datasets. Contrary to those, we will
concentrate on a simple but dynamical model (time-dependent) in this research. This is expected to be a new
contribution to the related computational neuroscience literature.

2. Materials and methods
2.1. The neuron model
We are working on a single neuron model describing the firing rate dynamics [28], which is mathematically
expressed as shown below:

ṙ = −ar + bg(wr + u), (1)

where r(t) is the firing rate in Hz or ( 1
s ), u(t) is the stimulus input, a is an inverse time constant in 1

s , b is
a maximum firing rate parameter, and w is a weight parameter. The function g(x) is a parametrized logistic
sigmoid function as shown below:

g(x) =
1

1 + exp[−c(x− h)]
, (2)
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where c is a slope and h is a soft-threshold parameter. In the above, x = wr + u . The true parameter values
are a = 50 , b = 4000 , w = 0.7 , c = 0.04 , and h = 70 . These parameters are to be recovered in the estimation
procedure. Thus, the parameters to be estimated are θ = [a, b, w, c, h] .

2.2. Stimulus
The stimulus u(t) is the only input to steer the output firing rate of the neuron. Thus, it would be convenient to
use a few different profiles. We are examining three different stimuli. One is a simple exponential stimulus that
has no superimposed components like Forier series. The other two are complicated ones that have superimposed
components. One of those will be modeled as a real Fourier series (FS) and the other will be modeled by
radial basis functions (RBFs). As we will see in the following subsections, the parameters associated with
stimuli are all assigned randomly from a prespecified range. That has two purposes. First of all, we will have
independent stimuli in each trial, which will help increase the content of the information associated with the
neuron parameters in the combined response from different trials. Secondly, in the case that this research is
adapted to an experimental application, the experiment’s subject should be stimulated by a different stimulus
in each iteration. The reason for the latter situation is associated with the attenuated response to the same
stimulus repeated more than a few times.

2.2.1. Phased cosine Fourier series (FS)

Phased cosine Fourier series are periodic functions that are mathematically expressed as shown below:

u(t) =

NU∑
i=1

Ai cos(2π × i× f0 × t+ ϕi), (3)

where Ai is the amplitude and ϕi is the phase angle of the ith component of Eq. (3), f0 is the base frequency
of the stimulus in Hz, and NU is the total number of its components. We said in Section 1 that the trials
should be repeated for obtaining adequate statistics. In order to achieve that, the parameters Ai , ϕi , and
f0 can be randomly assigned. One approach is to draw a value from a uniform distribution as follows:
Ai=unifrnd(0, Amax) , ϕi=unifrnd(−π, π ), and f0=unifrnd(0, fmax) , where unifrnd(a1 ,a2 ) yields a uniformly
distributed random number in the range [a1, a2] .

2.2.2. Exponential stimulus (ES)

Exponential stimuli are very simple stimulus forms that can be expressed as follows:

u(t) = A [1− exp(−αt)] . (4)

As understood above, an exponential stimulus is not periodic. Like Eq. (3), parameters Ai and α are going to
be assigned randomly per each trial. In other words, A=unifrnd(−Amax, Amax) and α=unifrnd(0, αmax) .

2.2.3. Radial basis functions (RBFs)

These are weighted sum of basis functions, which can mathematically be expressed as:

u(t) =

NU∑
i=1

AiΦ(|t− ti|), (5)
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where Φ(x) is a basis function, Ai is the amplitude of each component (a weighting factor), and ti is the center
on the time axis. Φ(x) may be in various forms and it will be assumed Gaussian here:

Φ(x) = exp[−(ϵx)2], (6)

with ϵ being a positive constant. Like Eq. (3), parameters Ai , ϵ and ti are going to be assigned randomly in
each trial. Specifically, Ai=unifrnd(−Amax, Amax) , ϵi=unifrnd(0, ϵmax) , and ti=unifrnd(0, Tf ) . In the latter
expression, Tf is the simulation time.

2.3. Simulation of spiking

We obtain the firing rate profile r(t) by integrating Eq. (1). This is in fact an auxiliary variable that is not
available from direct measurement. However, as said in Section 1, one can obtain the temporal locations of
individual spikes from the neuron in vivo. In a simulation, using a firing rate-based model one will be able to
simulate the temporal locations of those spikes by simulating an inhomogeneous Poisson process, the probability
mass function of which is shown below:

Prob [N (t+∆t)−N (t) = k] =
e−λλk

k!
, (7)

where

λ =

∫ t+∆t

t

re (τ) dτ. (8)

In this research, we will implement the local Bernoulli approximation of Poisson processes as described below:

1. Divide the interval of simulation [0, Tf ] into Nf bins each being ∆t long.

2. Sample the firing rate r(t) into Nf bins as ri = r(i∆t) .

3. At instant i draw a number xrand uniformly distributed between [0, 1] .

4. If ri > xrand at t = ti = i∆t we will have a spike; otherwise, we will not have any spike at t = ti .

5. Repeat all steps above and obtain a spike train as S .

6. For each trial k one can record the spike trains as Sk .

2.4. Likelihood methods
In Section 2.3 we presented an approach for simulating neural spiking from firing rate data. That is in fact a
local Bernboulli approximation of inhomogeneous Poisson processes. Mathematically, this is:

Probability that in [t, t+∆t] = a spike
{

exists: r(t)∆t

not to exist: 1− r(t)∆t,
(9)

with r(t) being the firing rate at current instant t . A detailed explanation can be found in [40]. When ∆t

becomes very small or ∆t → 0 , the probability density of seeing Ki spikes in the interval [0, Tf ] will be:

p(Si) = exp
(
−
∫ Tf

0

r(τ)dτ

)
Ki∏
k=1

r(tk). (10)
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In the above, Si denotes the ith spike train and tk denotes the temporal location of the k th spike in Si . As
r(t) is a function of parameters θ one can rewrite the above as follows:

p(Si | θ) = exp
(
−
∫ Tf

0

r(τ, θ)dτ

)
Ki∏
k=1

r(tk, θ). (11)

Suppose that one has Nit number of independent spike trains Si where i = 1 . . . Nit . These can be obtained
from Nit repeated trials. The joint likelihood function can be written as:

p(S1, S2, . . . , SNit
| θ) =

Nit∏
i=1

exp
(
−
∫ Tf

0

ri(τ, θ)dτ

)
Ki∏
k=1

ri(tk, θ). (12)

The computation can be further simplified by taking its natural logarithm and the log-likelihood is obtained:

Lp(S | θ) = ln [(S1, S2, . . . , SNit
| θ)] =

Nit∑
i=1

(
−
∫ Tf

0

ri(τ, θ)dτ

)
Nit∑
i=1

Ki∑
k=1

ln [ri(tk, θ)] , (13)

where ri(t, θ) is the firing rate evaluated at the current value of parameter θ . The maximum likelihood estimate
(MLE) of parameter θ can be found by:

θ̂ML = arg max
θ

[Lp(S | θ)] . (14)

3. Example application

In this section we will utilize the theory presented to estimate the parameters (θ ) of the model in Eq. (1).

3.1. Response to particular stimuli

It will be convenient to see how the neuron in Eq. (1) with the nominal values of its parameters in Section 2.1
responds to the stimuli defined in Section 2.2. One can see a typical example for a Fourier series and exponential
and radial basis function stimuli and their associated responses from the neuron in Figures 1a–1c, respectively.

3.2. Simulation details
In this work our goal is to estimate all parameters from Eqs. (1) and (2), which are θ = [a, b, w, c, h] , respectively.
Their true values are given in Section 2.1. The working principles in the example problem can be described in
a step-by-step fashion as shown below:

1. A single run of simulation will last for Tf = 3 s.

2. The neuron model in Eq. (1) will be simulated at the true value of parameters given in Section 2.1
and firing rate data are stored as rm(t) where m is the current iteration number. At each iteration,
the stimulus parameters in Eqs. (3), (4), and (5) should be modified. In Section 2.2 we discussed three
different stimuli and indicated that their parameters are assigned randomly from a uniform distribution.

3. Firing rate data rm(t) are used to generate neural spikes Sm in the mth run using the methodology
defined in Section 2.3. These data will be used to compute the likelihood. The number of spikes will be
Km at the mth run.
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Figure. The response of the neuron in Eq. (1) to stimuli defined in Section 2.2. First row has the stimuli whereas second
has the responses. a) Fourier series stimulus (Section 2.2.1) with amplitude Ai = 25 , f0 = 1.25 Hz, and phases uniformly
distributed between [−π, π] radians. NU = 5 . b) Exponential stimulus (Section 2.2.2) with amplitude A = 100 and
slope α = 0.8 . c) Radial basis function stimulus (Section 2.2.3) with Ai = 25 , ϵ = 2 , and ti ordered and randomly
assigned from a set uniformly distributed in the range [0, Tf ] .

4. Repeat the simulation Nit times to obtain a large set of independent spikes (so that broader statistical
information content is obtained).

5. The spiking data needed by Eq. (13) will be obtained at the 4th step. However, the firing rate component
of Eq. (13) should be computed at the current iteration of the optimization.

6. Run an optimization algorithm that computes the firing rate at the current iterated value of the parameters
but the spikes from Step 4.

The nominal data associated with the current problem are given in Table 1. The table presents all varied data
describing the performed simulations.

3.3. Presentation of the results
In this section, the results of the parameter estimation study are presented. The tabulated data will show
the variation of mean estimated values θ̂ = [â, b̂, ŵ, ĉ, ĥ] of parameters θ = [a, b, w, c, h] , percent estimation

errors ∆i = 100 θi−θ̂i
θi

, and standard deviation of the estimates (σi = σ(θ̂i)) against relevant varying stimulus
parameters. Results are grouped according to the stimulus type (Fourier series, Eq. (3); exponential, Eq. (4);
or radial basis functions, Eq. (5)).
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Table 1. Typical data related to the simulation scenario. In the case that there are multiple values associated with each
parameter, all of them are presented in the table. If a parameter is associated with one or more stimuli then relevant
equation number(s) are indicated next to the definition of the parameter.

Parameter Symbol Value
Simulation time Tf 3 s
Number of trials Nit 25, 50, 100, 200, 400
# of components in stimulus [(3) and (5)] NU 5, 10, 20, 30, 40, 50
Method of optimization N/A Interior-point gradient descent (MATLAB)
# of true parameters Size(θ) 5
Maximum stimulus amplitude Amax 25, 50, 100, 200, 400
Maximum base frequency [(3)] fmax 1, 2, 5, 10, 20 Hz
Maximum value of parameter α [(4)] αmax 0.1, 0.2, 0.5, 1, 2, 5, 10
Maximum value of parameter ϵ [(5)] ϵmax 0.1, 0.2, 0.5, 1, 2

3.3.1. Results of estimation under Fourier series stimulation (Tables 2a–h)

The variation of the mean estimated values are shown in Table 2a (versus sample size Nit ), in Table 2c (versus
stimulus component count NU ), in Table 2e (versus maximum amplitude Amax ), and in Table 2g (versus the
maximum base frequency fmax ).

The variation of the standard deviation and percent errors of estimates are shown in Table 2b (versus
sample size Nit ), in Table 2d (versus stimulus component count NU ), in Table 2f (versus maximum amplitude
Amax ), and in Table 2h (versus the maximum base frequency fmax ).

3.3.2. Results of estimation under exponential stimulation (Tables 3a–3f)

The variation of the mean estimated values are shown in Table 3a (versus sample size Nit ), in Table 3c (versus
maximum amplitude Amax ), and in Table 3e (versus parameter αmax ).

The variation of the mean estimated values are shown in Table 3b (versus sample size Nit ), in Table 3d
(versus maximum amplitude Amax ), and in Table 3f (versus parameter αmax ).

3.3.3. Results of estimation under radial basis function stimulation (Tables 4a–4h)

The variation of the mean estimated values are shown in Table 4a (versus sample size Nit ), in Table 4c (versus
stimulus component count NU ), in Table 4e (versus maximum amplitude Amax ), and in Table 4g (versus
parameter ϵmax ).

The variation of the standard deviation and percent errors of estimates are shown in Table 4b (versus
sample size Nit ), in Table 4d (versus stimulus component count NU ), in Table 4f (versus maximum amplitude
Amax ), and in Table 4h (versus the maximum exponential decay limit ϵmax ).

4. Discussion and conclusion
4.1. Evaluation of this research
In this paper, we performed a theoretical study aiming at input-output modeling of a single neuron from
discrete neural spiking data. The model of Eq. (1) receives an external stimulus u(t) and generates the
instantaneous firing rate r(t) of the neuron. As one does not have a continuous set of data, one will not be able
to implement neural network training algorithms such as minimum mean square estimation (MMSE). Knowing
that neural spiking events obey an inhomogeneous Poisson process (driven by the firing rate of the neuron in
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Table 2. The variation of the mean estimated values (â, b̂, ŵ, ĉ, ĥ) of the parameters in Eqs. (1) and (2), their associated
standard deviations [σa, σb, σw, σc, σh] , and percent estimation errors [∆a,∆b,∆w,∆c,∆h] varying against increasing
sample size Nit , stimulus component count NU , maximum amplitude Amax , and maximum base frequency limit fmax .
The simulation is performed under Fourier series stimulation as shown in Eq. (3). The variation is shown in column-wise
order. The test conditions are described in the relevant subtables.

(a) Estimated value vs. Nit (NU = 5 , Amax = 100 , fmax = 5)

Nit â b̂ ŵ ĉ ĥ
25 49.6702 3962.26 0.713055 0.0404492 69.8123
50 49.7277 3947.2 0.699566 0.0408769 69.2398
100 49.5803 3952.05 0.692783 0.0407338 69.2864
200 49.8278 3985.21 0.697807 0.0402862 69.8498
400 49.8216 3979.05 0.685709 0.040575 69.2888

(b) Standard deviations and percent errors vs. Nit (NU = 5 , Amax = 100 , fmax = 5)
Nit σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 3.2523 250.25 0.14982 0.003113 4.4974 0.65963 0.94344 1.8651 1.123 0.26812
50 1.93 169.95 0.12203 0.0030545 4.4771 0.54461 1.32 0.06205 2.1924 1.086
100 1.6148 143.73 0.10262 0.0020419 3.426 0.83947 1.1988 1.031 1.8346 1.0195
200 1.2223 109.96 0.067439 0.0014433 2.2846 0.34442 0.36975 0.31327 0.7156 0.21459
400 0.81524 77.634 0.040126 0.0011569 1.5265 0.35688 0.52364 2.0416 1.4374 1.016

(c) Estimated value vs. NU (Nit = 100 , Amax = 100 , fmax = 5)

NU â b̂ ŵ ĉ ĥ
5 49.5803 3952.05 0.692783 0.0407338 69.2864
10 50.0618 4021.98 0.737201 0.0389883 72.1104
20 50.2957 4011.24 0.696211 0.0412647 69.2391
30 49.9352 4009.47 0.745973 0.0403041 72.1552
40 49.7945 4004.43 0.691043 0.0443499 70.4688
50 50.062 3996.12 0.650736 0.0441861 67.2971

(d) Standard deviations and percent errors vs. NU (Nit = 100 , Amax = 100 , fmax = 5)
NU σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
5 1.6148 143.73 0.10262 0.0020419 3.426 0.83947 1.1988 1.031 1.8346 1.0195
10 1.2628 113.85 0.080338 0.0020276 2.8458 0.1236 0.54953 5.3145 2.5293 3.0149
20 1.4673 137.45 0.11413 0.005243 5.6506 0.59134 0.28103 0.54135 3.1618 1.087
30 1.6828 125.26 0.16482 0.0050525 4.9211 0.12962 0.23669 6.5676 0.76025 3.0788
40 1.3203 124.3 0.20294 0.0075247 6.9202 0.41096 0.11065 1.2796 10.875 0.6697
50 1.8944 136.79 0.18859 0.0082924 7.6774 0.12399 0.096927 7.0377 10.465 3.8612

(e) Estimated value vs. Amax (Nit = 100 , NU = 5 , fmax = 5)

Amax â b̂ ŵ ĉ ĥ
25 49.4921 3884.35 0.730901 0.0404005 69.0571
50 49.5848 3921.27 0.707979 0.0404341 69.3344
100 49.5803 3952.05 0.692783 0.0407338 69.2864
200 49.6737 3970.31 0.68331 0.0411265 69.2959
400 49.8511 3986.75 0.669525 0.042103 69.0208

(f) Standard deviations and percent errors vs. Amax (Nit = 100 , NU = 5 , fmax = 5)
Amax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 3.6609 753.82 0.17617 0.0026882 7.0928 1.0158 2.8913 4.4144 1.0012 1.3471
50 1.3613 168.99 0.064836 0.0016451 2.8031 0.83045 1.9682 1.1399 1.0852 0.95092
100 1.6148 143.73 0.10262 0.0020419 3.426 0.83947 1.1988 1.031 1.8346 1.0195
200 1.2751 103.02 0.10666 0.0026259 4.0119 0.65263 0.74219 2.3842 2.8163 1.0058
400 1.0805 86.904 0.13438 0.0041455 5.3532 0.29771 0.33133 4.3536 5.2576 1.3988

(g) Estimated value vs. fmax (Nit = 100 , NU = 5 , Amax = 100)

fmax â b̂ ŵ ĉ ĥ
1 49.407 3947.7 0.682244 0.0406495 69.1084
2 50.2906 4018.33 0.714426 0.0399609 70.3308
5 49.5803 3952.05 0.692783 0.0407338 69.2864
10 50.0735 4005.05 0.711637 0.040597 70.2946
20 49.9281 3984.12 0.695925 0.0410583 69.507

(h) Standard deviations and percent errors vs. fmax (Nit = 100 , NU = 5 , Amax = 100)
fmax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
1 2.3076 177.21 0.10161 0.0022874 3.8233 1.1861 1.3074 2.5366 1.6238 1.2737
2 1.9963 152.46 0.071988 0.0018978 2.7653 0.58122 0.45823 2.0609 0.097849 0.47261
5 1.6148 143.73 0.10262 0.0020419 3.426 0.83947 1.1988 1.031 1.8346 1.0195
10 1.3089 133.4 0.088437 0.0024846 3.2786 0.14693 0.12615 1.6625 1.4925 0.42088
20 1.7063 147.19 0.089058 0.0021409 2.9289 0.14378 0.39702 0.58207 2.6458 0.70427
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Table 3.The variation of the mean estimated values (â, b̂, ŵ, ĉ, ĥ) of the parameters in Eqs. (1) and (2), their associated
standard deviations [σa, σb, σw, σc, σh] , and percent estimation errors [∆a,∆b,∆w,∆c,∆h] varying against increasing
sample size Nit , maximum amplitude Amax , and maximum decay limitαmax . The simulation is performed under
exponential stimulation as shown in Eq. (4). The variation is shown in column-wise order. The test conditions are
described in the relevant subtables.

(a) Estimated value vs. Nit (αmax = 1 , Amax = 100)

Nit â b̂ ŵ ĉ ĥ
25 55.4146 4584.33 0.687265 0.0408969 69.843
50 46.3121 3782.76 0.683699 0.0407907 69.4424
100 50.7409 4164.19 0.693567 0.0401297 70.3082
200 42.3099 3383.26 0.699526 0.0401604 69.7471
400 41.8393 3312.65 0.710735 0.0401126 69.6292

(b) Standard deviations and percent errors vs. Nit (αmax = 1 , Amax = 100)
Nit σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 33.576 2780.2 0.29593 0.0047745 8.8051 10.829 14.608 1.8193 2.2422 0.22436
50 27.174 2321 0.20602 0.0034566 6.0301 7.3757 5.4311 2.3288 1.9767 0.79662
100 21.275 1870 0.14486 0.0022326 3.6764 1.4817 4.1047 0.91903 0.32427 0.44035
200 14.448 1153.6 0.098932 0.001727 2.993 15.38 15.418 0.067761 0.40091 0.36131
400 8.9178 681.02 0.063656 0.0011323 1.9523 16.321 17.184 1.5335 0.28149 0.52971

(c) Estimated value vs. Amax (αmax = 1 , Nit = 100)

Amax â b̂ ŵ ĉ ĥ
25 50.6207 4724.06 0.778068 0.0422222 71.3822
50 51.3891 4542.35 0.798141 0.0396399 72.6516
100 50.7409 4164.19 0.693567 0.0401297 70.3082
200 50.3099 4044.74 0.661934 0.0409667 68.6142
400 45.6164 3653.08 0.637799 0.0415122 67.5289

(d) Standard deviations and percent errors vs. Amax (αmax = 1 , Nit = 100)
Amax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 25.526 2812.3 0.62184 0.0085827 34.759 1.2414 18.102 11.153 5.5556 1.9745
50 24.95 2202.1 0.39529 0.0028729 10.685 2.7782 13.559 14.02 0.90014 3.7881
100 21.275 1870 0.14486 0.0022326 3.6764 1.4817 4.1047 0.91903 0.32427 0.44035
200 18.043 1487.2 0.11115 0.0023031 4.242 0.61984 1.1186 5.4381 2.4167 1.9797
400 15.264 1240.4 0.1398 0.0026473 4.903 8.7672 8.673 8.8858 3.7806 3.5301

(e) Estimated value vs. αmax (Amax = 100 , Nit = 100)

αmax â b̂ ŵ ĉ ĥ
0.1 51.6784 4643.79 0.809648 0.0436627 70.8784
0.2 51.5378 4868.04 0.781444 0.040371 73.8027
0.5 51.3628 4172.82 0.724197 0.0399298 70.6699
1 50.7409 4164.19 0.693567 0.0401297 70.3082
2 49.8163 4023.17 0.667447 0.0407077 69.133
5 47.3915 3790.83 0.668843 0.0408237 68.7438
10 46.0624 3687.45 0.675668 0.040657 68.9123

(f) Standard deviations and percent errors vs. αmax (Amax = 100 , Nit = 100)
αmax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
0.1 26.546 2753 0.57792 0.012047 37.267 3.3568 16.095 15.664 9.1567 1.2549
0.2 27.461 2306.2 0.51004 0.0045518 17.032 3.0756 21.701 11.635 0.92758 5.4324
0.5 23.97 1981.3 0.19326 0.0026688 4.6969 2.7256 4.3205 3.4567 0.17539 0.95704
1 21.275 1870 0.14486 0.0022326 3.6764 1.4817 4.1047 0.91903 0.32427 0.44035
2 19.494 1593.7 0.14595 0.0024702 4.5219 0.36749 0.57914 4.6504 1.7692 1.2386
5 16.986 1343.5 0.11264 0.0021599 3.8037 5.217 5.2293 4.451 2.0594 1.7946
10 13.461 1099 0.12594 0.002484 4.4121 7.8752 7.8137 3.476 1.6424 1.5539

consideration), point process likelihood functions can be derived for a maximum likelihood estimation procedure.
In this research, we compare the results of a maximum likelihood estimation of the neuron model stimulated by
three different stimuli. Those are modeled by a phase cosine Fourier series (Eq. (3)), by exponential functions
(Eq. (4)), and by radial basis functions (Eq. (5)). In order to evaluate the performance of our methodologies
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Table 4. The variation of the mean estimated values (â, b̂, ŵ, ĉ, ĥ) of the parameters in Eq. (1) and (2), their associated
standard deviations [σa, σb, σw, σc, σh] , and percent estimation errors [∆a,∆b,∆w,∆c,∆h] varying against increasing
sample size Nit , stimulus component count NU , maximum amplitude Amax , and maximum exponential decay limit
ϵmax . The simulation is performed under radial basis stimulation as shown in Eq. (5). The variation is shown in
column-wise order. The test conditions are described in the relevant subtables.

(a) Estimated value vs. Nit (ϵmax = 1 , Amax = 100 , NU = 5)

Nit â b̂ ŵ ĉ ĥ
25 47.4994 3786.42 0.623158 0.0432567 66.8859
50 46.8557 3736.35 0.630123 0.0422188 67.2313
100 47.7897 3807.87 0.666921 0.0411835 68.2491
200 48.376 3866.56 0.687372 0.0404378 69.3467
400 48.192 3859.11 0.67995 0.0404762 69.2331

(b) Standard deviations and percent errors vs. Nit (ϵmax = 1 , Amax = 100 , NU = 5)
Nit σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 16.568 1335 0.27757 0.0063837 10.563 5.0012 5.3396 10.977 8.1418 4.4487
50 8.1304 659.67 0.1423 0.0038269 5.8373 6.2887 6.5913 9.9824 5.547 3.9553
100 7.3164 579.78 0.096433 0.0022259 3.5297 4.4207 4.8032 4.7255 2.9587 2.5013
200 4.8891 399.2 0.06561 0.0018656 2.6633 3.248 3.3359 1.804 1.0945 0.93332
400 3.2943 259.34 0.045889 0.0011839 1.8678 3.6161 3.5222 2.8643 1.1905 1.0956

(c) Estimated value vs. NU (ϵmax = 1 , Nit = 100 , Amax = 100)

NU â b̂ ŵ ĉ ĥ
5 47.7897 3807.87 0.666921 0.0411835 68.2491
10 50.1875 3993.74 0.706247 0.0403806 69.7851
20 54.1888 4324.32 0.672623 0.0408096 69.025
30 51.0134 4073.77 0.715367 0.0400908 70.7323
40 54.7428 4371.69 0.724818 0.0397978 70.8009
50 49.2361 3935.07 0.672783 0.0409923 69.5051

(d) Standard deviations and percent errors vs. NU (ϵmax = 1 , Nit = 100 , Amax = 100)
NU σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
5 7.3164 579.78 0.096433 0.0022259 3.5297 4.4207 4.8032 4.7255 2.9587 2.5013
10 9.7434 758 0.13708 0.0027047 5.4608 0.375 0.15649 0.89244 0.95143 0.30706
20 8.0929 648.87 0.10876 0.0026352 4.3537 8.3777 8.1081 3.911 2.0239 1.3929
30 6.5797 516.32 0.12683 0.0024758 4.8838 2.0267 1.8442 2.1953 0.22704 1.0461
40 9.1035 708.08 0.13055 0.0024886 5.2001 9.4856 9.2923 3.5454 0.50539 1.1441
50 6.9541 554.97 0.13048 0.0028784 4.8343 1.5278 1.6232 3.8882 2.4808 0.70705

(e) Estimated value vs. Amax (ϵmax = 1 , Nit = 100 , NU = 5)

Amax â b̂ ŵ ĉ ĥ
25 52.5307 4551.35 0.662925 0.0404999 71.2279
50 49.9751 3998 0.676728 0.0406683 69.1362
100 47.7897 3807.87 0.666921 0.0411835 68.2491
200 46.685 3729.4 0.643105 0.0415325 67.5437
400 48.6872 3885.46 0.62935 0.0424042 66.771

(f) Standard deviations and percent errors vs. Amax (ϵmax = 1 , Nit = 100 , NU = 5)
Amax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
25 17.935 1506.5 0.2107 0.0027386 5.571 5.0614 13.784 5.2964 1.2499 1.7541
50 11.047 882.24 0.13237 0.0029216 5.0519 0.049768 0.050047 3.3246 1.6707 1.234
100 7.3164 579.78 0.096433 0.0022259 3.5297 4.4207 4.8032 4.7255 2.9587 2.5013
200 5.952 470.71 0.12241 0.0027892 4.9509 6.63 6.7649 8.1278 3.8312 3.509
400 6.0185 478.06 0.21211 0.0052963 8.6267 2.6256 2.8636 10.093 6.0105 4.6129

(g) Estimated value vs. αmax (Amax = 100 , Nit = 100 , NU = 5)

ϵmax â b̂ ŵ ĉ ĥ
0.1 46.6119 3726.73 0.670111 0.0408556 68.759
0.2 46.5827 3726.27 0.667673 0.0409112 68.6946
0.5 47.7759 3819.34 0.701089 0.0402121 69.9108
1 47.7897 3807.87 0.666921 0.0411835 68.2491
2 51.692 4123.9 0.713619 0.0400674 70.3015
5 50.1343 4002.4 0.701113 0.0401714 69.8546

(h) Standard deviations and percent errors vs. αmax (Amax = 100 , Nit = 100 , NU = 5)
ϵmax σa σb σw σc σh ∆a % ∆b % ∆w % ∆c % ∆h %
0.1 9.1783 723.5 0.082712 0.0023445 3.5077 6.7761 6.8317 4.2699 2.139 1.7729
0.2 9.2347 731.65 0.086881 0.0024571 3.7252 6.8346 6.8432 4.6181 2.278 1.8649
0.5 8.1156 641.87 0.096607 0.002191 3.8242 4.4481 4.5165 0.15555 0.53015 0.12749
1 7.3164 579.78 0.096433 0.0022259 3.5297 4.4207 4.8032 4.7255 2.9587 2.5013
2 8.6288 679.33 0.12459 0.0027523 4.8754 3.384 3.0975 1.9455 0.16848 0.43076
5 6.8289 552.16 0.11242 0.0022092 4.0536 0.26858 0.059928 0.15901 0.42845 0.20766 2311
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we repeated the simulations with different sample sizes Nit and various stimulus parameters such as stimulus
component counts NU , maximum amplitude Amax , maximum exponential decay αmax , and maximum value of
the RBF parameter ϵmax . The obtained results can be summarized as shown below:

1. Regardless of the stimulus, standard deviations (or variances) of the estimates have a decreasing behavior
with increasing sample size Nit . There are no such definite patterns for percent estimation errors (Tables
2b, 3b, and 4b).

2. In simulations where stimuli are modeled by Fourier series and radial basis functions, the stimulus
component count NU does not seem to have a considerable effect on the estimation performance (Tables
2d and 4d).

3. For Fourier series stimulus, it appears that base frequencies lower than 5 Hz can generate slightly lower
variance estimates; however, there is no considerable influence (Table 2h).

4. Regardless of the stimulus type, increasing the maximum amplitude parameter Amax leads to a moderate
level of improvement of the estimation performance (variance decreases). However, this situation changes
when Amax exceeds the 100–200 range (Tables 2f, 3d, and 4e).

5. In the simulations that involve exponential stimuli, the maximum value of exponential decay parameter
αmax also has a moderate effect on the estimation performance. Results suggest that it should be 5 or
lower (Table 3f).

6. In the radial basis function stimulated cases, the ϵmax parameter also has a moderate improvement on
the estimation performance. As it increases, the variances of the estimates slightly decrease (Table 4g).

7. Overall, among three different stimuli, the smallest variance of the estimates is obtained when a Fourier
series stimulus is used in the estimation procedure. This can be understood when the standard deviations
are compared from the tables.

4.2. Future work
It would be interesting to extend the approaches presented in this work to different types of models. One
example may be the utilization of this research in the parametric identification of the Hindmarsh–Rose model
[49]. That generates a series of bursts depending on the current injected (input). After a certain level of current
injection, the Hindmarsh–Rose model will be trapped in a Hopf bifurcation [50] condition and repetitive bursts
will appear. The frequency of bursting will depend on the injected current, so a slowly varying current will yield
a frequency modulation. If noise corrupts the input, individual action potentials will appear at random locations.
If the temporal locations of the peaks of those action potentials are recorded, these can form neural spiking
data and the method presented in Section 2.4 can be applied to identify the parameters of an Hindmarsh–Rose
model (at least partially). Studies working on a similar idea seem very limited in the literature. Thus, this
should be an interesting new project. In addition, a Hindmarsh–Rose model with that setting can be used as a
data generator for other models, e.g., a more complicated version of the model in Eq. (1).
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