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Abstract: Nonlocal means (NLM)- and wavelet-based image denoising methods have drawn much attention in image
processing due to their effectiveness and simplicity. The performance of these algorithms varies according to region
characteristics in an image. For example, NLM performs well for smooth regions due to deployment of redundancy
available in images, whereas wavelet-based approaches may preserve key image features by controlling the degree of
threshold for shrinking the noisy coefficients. This paper presents a simple novel approach that estimates an original image
by simply taking the weighted average of the denoised images pixel values obtained by NLM and wavelet thresholding
schemes based on natural characteristics of regions in an image. Extensive simulations on standard images demonstrate
that the proposed approach outperforms the benchmark wavelet-based schemes, NLM and its variants, in terms of peak
signal-to-noise ratio (PSNR(dB)), mean structural similarity metric (MSSIM), and visual quality.
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1. Introduction
Noise is generally produced in digital images/videos during acquisition and transmission process due to im-
perfections in imaging devices and other environmental conditions, respectively. No matter how good digital
imaging devices are, improvement in image quality is always needed in practice [1, 2]. Therefore, manufac-
turers of imaging devices rely on developing efficient and less complex image denoising algorithms to restore
the degraded images. Due to intrinsic connection between denoising and other tasks such as segmentation,
recognition, and tracking, image denoising is still an active and fundamental research problem in the field of
image processing [3].

In the last two decades, several linear and nonlinear filters in spatial and transform domain have been
proposed to resolve the denoising problem effectively [4, 5]. Among them, bilateral filter [6, 7], nonlocal means
(NLM) [8, 9], and wavelet shrinkage methods [10, 11] are widely used due to exploitation of the redundancy
and sparsity in an image, respectively. Tomasi et al. [6] proposed a bilateral filter (BF) in which the weights
are computed based on spatial distance and range or photometric distance to suppress the noise from images.
The denoising performance of BF is very sensitive to photometric distance rather than spatial distance, which is
generally computed directly from the noisy image. Recently, an entropy-based bilateral filter (EBF) is proposed,
where a new range kernel is derived by exploiting the information from the filtered image and its corresponding
method noise [7]. The NLM algorithm utilizes the similarity between the patches in the search region to assign
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weights to pixels in the averaging process [8]. The NLM algorithm is equivalent to bilateral filter, when the
patch size reduces to pixel size. There are several critical issues regarding the NLM algorithm such as patch size,
search region size, weight calculation, smoothing parameter, and computational complexity, which are still being
researched [12]. Several variants of the NLM algorithm have been developed to handle these issues effectively
[13–20]. Wavelet transform has become a popular and efficient tool for image denoising due to its various
properties such as energy compaction, orthogonality, low complexity, and linearity [21]. The performance of
wavelet-based approaches is affected by various parameters such as the choice of wavelets, threshold estimation,
and shrinkage rules. A major part of the literature concerning wavelet-based approaches is devoted to handle
the issue of threshold selection [11], which plays a crucial role in preservation of image details. Several popular
benchmark shrinkage methods such as wiener filtering [22], VisuShrink [23, 24], SUREShrink [25], NeighShrink
[26], BayesShrink [27], NeighSUREShrink [28], LAWML [29], BiShrink [30], IIDMWT [31], IAWDMNC [32],
GIDMNWC [33], and LAPB [34] have been proposed to estimate the threshold for shrinking the noisy wavelet
coefficients.

Generally, NLM-based methods and wavelet-based approaches utilize inter-patch and intra-patch corre-
lations, respectively, for denoising the images. Another class of patch-based image denoising techniques such
as Nonlocal Bayes (NL-Bayes) [35], block matching in three dimensions (BM3D) [36], and data adaptive dual
domain denoising (DA3D) [37] have been developed, which exploit both intra-patch and inter-patch correlations
to provide significantly improved denoising performance. However, the computational complexity of these al-
gorithms is very high due to their iterative nature. At each iteration, the nonlocal self similarity in the filtered
image is utilized to effectively estimate the sparse coefficients for better performance. As these algorithms
require a large number of parameters for effective denoising, tunning these parameters is a challenging task for
these algorithms. Furthermore, it is observed that these methods do not provide promising denoising results
for texture images due to lack of redundancy in the regions containing image details [38]. Therefore, it is de-
sirable to develop a denoising technique that can perform well for texture images and does not have very high
complexity.

As the computational complexity of the NLM- and wavelet-based methods is much less than that of
the patch-based denoising methods such as NL-Bayes, BM3D, and DA3D, this paper aimed at combining the
best features of the NLM- and wavelet-based methods for effective image denoising. The performance of the
NLM algorithm and wavelet thresholding approaches varies from pixel to pixel lying in different regions of an
image. This paper presents a simple approach to estimate the original image pixel values by taking the weighted
average of the denoised pixel values obtained by the NLM algorithm and some popular shrinking methods to
reduce the artifacts. It assigns the weights to the denoised pixel values based on the region characteristics. The
rest of the paper is organized as follows: a) The NLM algorithm is explained briefly in Section 2. b) Popular
wavelet thresholding schemes such as BayesShrink and NeighShrink are discussed in Section 3. c) The proposed
algorithm is presented in detail in Section 4. d) The experimental results and the choice of parameter settings
are highlighted in Section 5. e) Finally, our conclusion is presented in Section 6.

2. Nonlocal means algorithm (NLM)

Let ui and vi be pixel values at location i in clean and noisy images U and V , respectively. The noisy image
contains i.i.d Gaussian noise η with distribution N (0, σ2) and it can be modeled as:

vi = ui + ηi. (1)
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In the NLM algorithm [14], the estimated clean image pixel value ûi is obtained by taking the weighted average
of all noisy pixels in a predefined search region Si of size S × S as follows:

ûi =
∑
jϵSi

w′
i,j vj , (2)

where the parameters w′
i,j are obtained as:

w′
i,j =

e−
∥v(Ni)−v(Nj)∥

2
2

2P2h2∑
jϵSi

e−
∥v(Ni)−v(Nj)∥22

2P2h2

. (3)

The coefficients w′
i,j represent the similarity between the local patches v(Ni) and v(Nj) of size P ×P centered

at pixels i and j in the search region Si of size S × S , respectively, which is computed by using the squared
euclidean distance or norm ∥.∥22 . The weights calculated in the search region using Eq. 3 ensure that∑

jϵSi
w′

i,j = 1 . The smoothing parameter is generally chosen as h = k′σ , which depends on the standard
deviation σ of Gaussian noise and some scaling constant k′ . Parameter values such as S = 21 , P = 7 , and
k′ = 0.75 are taken in the NLM algorithm [14] to denoise the images. The main assumption of the NLM
algorithm is patch regularity, which can be typically found in natural images but not in highly textured images.
The NLM algorithm performs well for low noise levels, but it produces blurring and noise halo effects near image
details at large noise levels.

3. Wavelet thresholding schemes

By performing the discrete wavelet transform (DWT) on noisy image V , the noisy wavelet coefficients v(i) can
be modeled as:

v(i) = u(i) + η(i), (4)

where v(i) and u(i) denote ith noisy and noise-free wavelet coefficients, respectively. DWT is a multiresolution
tool which decomposes the image into various frequency subbands denoted as LLK , LHk′ , HLk′ , and HHk′ ,

where k′ = 1, 2, 3 . . . ..K represents the resolution level and K indicates the coarsest level. The subband LLK

represents the low frequency or approximation subband at resolution scale K , while LHk′ , HLk′ , and HHk′

represent the horizontal, vertical, and diagonal details subbands of the image at resolution scale k′ , respectively.
The subband HH1 denotes the high frequency subband obtained using the first decomposition level, which is
the most noisy subband among all subbands.

In the wavelet domain, the small- and large-magnitude wavelet coefficients correspond to noise and key
signal details, respectively. To recover the signal with important details and less noise, the noisy wavelet
coefficients are generally modified using an appropriate threshold. Choosing a small threshold value results
in noisy signal, whereas a large threshold value leads to oversmoothing of the signal. Therefore, the selection
of the appropriate threshold for wavelet shrinkage process is a very challenging task in wavelet-based image
denoising algorithms. The selected threshold must be data-driven to take into account the information about
region structures. The most popular data-driven thresholding schemes such as BayesShrink and NeighShrink
are described as follows:
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3.1. BayesShrink

Chang et al. [27] proposed the BayesShrink algorithm, which estimates the adaptive data-driven threshold
derived in the Bayesian framework to modify noisy wavelet coefficients using soft thresholding. The estimated
threshold obtained by the BayesShrink method is defined as follows:

T
(i)
B =

σ̂2

σ̂
(i)
u

, (5)

where σ̂2 and σ̂
(i)
u represent the estimated noise variance and signal standard deviation, respectively. The signal

variance is estimated by taking the neighboring coefficients in a local window ri of size w×w centered on noisy
wavelet coefficient i . The original signal wavelet coefficients are estimated by applying adaptive threshold
defined according to soft thresholding rule [27] as follows:

û(i) = sgn
(
v(i)

)
.max

((
|v(i)| − T

(i)
B

)
, 0
)
, (6)

where û(i) denotes the estimated noise-free wavelet coefficient and sgn(x) returns the sign of the parameter x .

3.2. NeighShrink

The NeighShrink image denoising algorithm proposed by Chen et al. [26] provides neighborhood-dependent
threshold by exploiting the local correlation between the wavelet coefficients in a subband. Suppose S2

i is the
sum of the squared noisy coefficients in a local window (ri) of size w × w centered on each noisy wavelet
coefficient i for a particular subband, which is defined as:

S2
i =

∑
jϵri

(v(j))2. (7)

The shrinkage of noisy wavelet coefficients using the threshold T
(i)
N can be expressed as:

û(i) = T
(i)
N v(i), (8)

where û(i) is the estimated noise-free wavelet coefficient, and the NeighShrink threshold T
(i)
N is given as:

T
(i)
N =

(
1− λ2

S2
i

)
+

, (9)

where λ is the universal threshold whose value is given by λ = σ
√
2 ln (M) and (a)+ is equal to max(0, a) . The

main drawback of this algorithm is that the parameters such as fixed threshold λ and local window size are not
data-driven, which provides a biased estimate of the mean square error (MSE). Dengwen et al. [28] proposed
the Neigh-SUREShrink method that improves the performance of the NeighShrink algorithm by selecting the
optimal threshold and local window size based on Stein’s unbiased risk estimator (SURE) principle. This
principle estimates the MSE between the estimated and original wavelet coefficients.
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(c)(b)(a) (d)

Figure 1. Denoised Barbara image using various denoising methods at σ = 30 : a) clean, b) NLM, c) BayesShrink, and
d) NeighShrink.

4. Proposed approach
4.1. Motivation
In order to highlight the limitations of the NLM- and wavelet-based methods, the denoised results obtained
by using the NLM [14], BayesShrink [27], and NeighShrink [26] algorithms at σ = 30 for the standard
Barbara image are presented in Figure 1. It was observed that the NLM algorithm performs well for smooth
regions mostly, but it produces more blurring effects near the image details. Wavelet-based schemes like
BayesShrink and NeighShrink produces many artifacts in smooth regions of an image due to overthresholding
of coefficients. However, they may preserve image details due to control on thresholding the noisy wavelet
coefficients. Therefore, the performance of NLM algorithm and wavelet thresholding approaches may vary from
pixel to pixel lying in different regions of an image. The core idea of the proposed algorithm is to take the
weighted average of the denoised pixel values obtained by NLM and wavelet thresholding schemes, where the
weights are adaptively selected on the basis of natural characteristics of local regions. This ensures that the
filtering capabilities of both methods are effectively combined to further improve the denoising performance.

4.2. Fusion of NLM- and wavelet-based approaches

Suppose that DNi
and DWi

are the denoised pixel values obtained by applying the NLM algorithm [14]
and wavelet thresholding approach BayesShrink [27]/NeighShrink [26] on noisy image, respectively. The final
estimated image pixel value can be obtained by using the following expression:

Di = wiDNi + (1− wi)DWi , (10)

where wiϵ[0, 1] is the weight assigned to ithdenoised pixel value, which is estimated by the NLM algorithm.
A natural image usually contains both homogeneous (e.g., smooth) and heterogeneous (e.g., textures) regions,
which can be characterized by using local features. Figure 2 illustrates various smooth and texture regions,
respectively. In Figure 2a, region-1 and region-2 are purely smooth regions, whereas Figure 2b represents
two different types of regions with high texture: 1) an artificial generated region-1, and 2) a natural texture
region-2 obtained from the Baboon image. Now, to get the basic estimate of these regions, the NLM [14] and
BayesShrink [27] algorithms are applied on noisy image for σ = 30 . The denoised image pixel values obtained
using the NLM and BayesShrink methods are weighted by weights w and 1 − w , respectively, to obtain the
final denoised image D . The variation of MSE with respect to weight w is also analyzed for various regions
at σ = 30 in Figures 2c and 2d. For smooth regions, it was observed that the MSE between the original and
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Figure 2. Variation in MSE with respect to weight w for various regions using Eq. (10).

estimated regions decreases as the value of weight w increases. It means that the estimated pixel value by the
NLM algorithm must be given higher weight in comparison with the BayesShrink method to minimize the MSE
for smooth regions. Similarly, the MSE decreases first and then increases as the value of weight w increases
for texture regions. Moreover, the weight w required to ensure minimum MSE in this case is less as compared
to that in Figure 2c. This implies that the wavelet-based algorithm must be given higher weight (1 − w) in
comparison with the NLM. Thus, the combination of the NLM and BayesShrink can reduce MSE for a suitable
value of w , which should be selected according to region characteristics.

4.3. Determination of region characteristics

To assign weight w to the denoised pixel as defined in Eq. (10), the characterization of image regions is
required, which can be accomplished by some local features that can effectively distinguish regions having
different characteristics in an image. For example, the local variance can be employed to capture the change in
gray levels in a local neighborhood.

σ2
Ωi

=
1

n× n

∑
jϵΩi

(vj − vi)
2
. (11)

The small and large values of local variance indicate smooth and texture regions, respectively. Assume that a
local neighborhood Ωi of size n × n is centered on pixel i in the noisy image. The change in the gray levels
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in the local window Ωi is expressed above, where vi denotes the local mean for pixel i . Figure 3 shows the

(a) (b) (c)

Figure 3. Variance map of Barbara image: a) clean, b) σ = 20 , and c) σ = 30.

variance map of clean and noisy Barbara image for different noise levels σ = 20 and 30 . It can be observed that
the black and white regions correspond to smooth and texture regions in the map, respectively. The change in
the gray levels of the variance map reflects the change in local characteristics of various regions of the image.
The weight wi is obtained by normalizing the variance map of an image. Let σ2

max and σ2
min be minimum and

maximum local variances in a variance map of image. To obtain wi , the normalization of the variance map can
be done as:

wi =
σ2
max − σ2

Ωi

σ2
max − σ2

min

. (12)

It means that the denoised pixel lying in the region having a small variance gets more weights. Similarly, a
pixel lying in the regions having a large variance is less weighted in Eq. 11. Figure 4 shows the block diagram
of the proposed algorithm.

5. Experimental results

The performance of the proposed approach is measured qualitatively and quantitatively in terms of peak
signal-to-noise ratio (PSNR(dB)), mean structural similarity index measure (MSSIM) [39], and visual quality,
respectively, by performing extensive simulation on various natural1 and texture2 images of size 256× 256 for
different noise levels σ = 20 , 30 , 40 , and 50 as shown in Figures 5 and 6. Various spatial and transform domain
state-of-the-art methods like the entropy-based bilateral filter (EBF) [7], NLM algorithm [14] and its recent
variant [17], wavelet shrinkage methods such as BayesShrink [27], NeighShrink [26], and NeighSUREShrink
[28] are considered in the proposed approach. The parameter settings of these state-of-the-art methods are
taken as suggested by their corresponding authors. For the NLM algorithm [14], the size of the search region
and patch are taken as 21 × 21 and 7 × 7 , respectively. The value of scaling constant k′ in the smoothing
parameter (h = k′σ) is chosen as 0.75. The number of the decomposition levels is four and the wavelet family
for all wavelet-based approaches is symlet (sym8). The size of local neighborhood is chosen as n = 7 to

1Available link: https://www.cs.cmu.edu/~cil/v-images.html
2Available link: http://www.ux.uis.no/ tranden/brodatz.html
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Figure 4. Block diagram of the proposed algorithm
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f) Couple g) Bridge h) Lena i) Jetplane j) Hill

Figure 5. Various standard natural images used in all experiments

obtain the variance map of an image. The NLM algorithm is combined with the BayesShrink, NeighShrink,
and NeighSURE methods to improve their performance. Recent methods like the EBF and ANLM are also
combined with the NeighSUREShrink algorithm to enhance the performance. Tables 1 and 2 show the denoising
results of various combinations of benchmark techniques in terms of PSNR(dB) and MSSIM for various images
at different noise levels, respectively. It was observed that the performance of the NLM algorithm deteriorates
at high noise levels, especially for standard texture images such as Baboon, Cartoon, and Bridge, whereas the
wavelet-based approaches like NeighShrink and NeighSUREShrink perform better than NLM for these images at
high noise levels. As the performance of these methods varies from region to region in an image, it is improved
by exploiting the corresponding weighted denoised pixel values. The weight is changed dynamically on the
basis of region characteristics. The NLM+BayesShrink algorithm achieves better performance than the NLM-
and wavelet-based shrinkage methods with a PSNR gain of 0.2–1.0 dB for almost all images at various noise
levels. The combination of NLM with NeighSUREShrink yields promising denoising results at high noise level
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σ > 30 . Similarly, the combination of EBF and ANLM with the wavelet shrinkage methods provides significant
improvement in their performance. To judge the visual quality of the denoised images, three sample images
with different characteristics viz. Lena, Baboon, and Peppers selected from Figure 5 are shown in Figures 7–9
for σ = 30 . It was observed that the artifacts produced by the NLM and other wavelet methods can be reduced
by combining these approaches on the basis of region characteristics. It can be concluded that the combination
of NLM, EBF, and ANLM with the wavelet methods preserves the important image details effectively.

In order to judge the efficacy of the proposed method for texture images, its performance is also compared
with a patch-based denoising method. The performance of the proposed approach and BM3D algorithm [36]
is tested for Baboon and randomly chosen texture images from Brodatz texture album as shown in Figure
6. BM3D method is the most effective and current state-of-the-art image denoising algorithm, which provides

(a) (b) (c) (d)

Figure 6. Various texture images: a) Baboon and b) Brodatz album (D40, D74, and D112)

promising denoising results for images having large redundancy. As most of the patch-based methods are based
on BM3D framework, the performance of the proposed approach is here compared with the BM3D algorithm.
Table 3 shows the denoising results of the proposed approach (ANLM+NeighSURE) and BM3D for natural
and texture images at different noise levels in terms of PSNR(dB). As shown in Table 3, the proposed approach
obtains a PSNR gain of 0.2–0.5 dB for σ ≥ 30 over BM3D method. Figure 10 depicts the visual quality of
the denoised images by the proposed approach and BM3D method. It was clearly observed that the proposed
approach is suitable for filtering texture images and is also computationally less expensive compared to BM3D.

Table 4 shows the comparison of the computational complexities involved in the implementation of the
NLM, wavelet-based, BM3D methods, and the proposed method, where M , S , and P indicate the total number
of pixels in an image, search region size, and patch size, respectively. N2 denotes the total number of similar
patches in a group in the BM3D algorithm. OT2D

and OT3D
are the arithmetic operations required to perform

2D and 3D transform on group of similar patches, respectively [36]. Generally, the patch and search region
sizes used for BM3D are larger than those in NLM. For example, P = 7 , S = 21 for NLM and P = 8 , S = 39

for BM3D imply the higher computational complexity. Moreover, BM3D is iterative in nature, which further
increases its complexity involved in its implementation.

6. Conclusion
This paper presents a simple and novel approach which preserves the key image details by fusion of the de-
noised pixel values obtained through spatial and transform domain techniques based on region characteristics.
Experimental results show that the denoising performance of EBF, NLM, its variants, and wavelet-based ap-
proaches can be further improved by applying the proposed approach. The PSNR gain achieved by combination
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Table 1. Denoising results (PSNR(dB)) of the proposed algorithm and other benchmark techniques for various images
at different noise levels.

Methods σ Barbara Baboon Peppers Boats Cartoon Couple Bridge Lena Jetplane Hill
20 27.2439 24.5938 29.3576 26.5448 24.5743 26.3391 25.5228 28.6974 27.7715 26.8383

NLM 30 24.9526 21.9845 27.2262 24.4503 22.1873 23.9063 23.4884 26.3736 25.7334 24.6260
[14] 40 23.0126 20.7786 25.3432 22.8733 20.3857 22.4268 22.2542 24.7014 23.8238 23.5105

50 21.7849 20.1770 23.9479 21.8564 18.7532 21.6211 21.4224 23.3432 22.6452 22.6364
Bayes- 20 26.3027 23.9405 28.4353 26.4888 24.4139 26.3124 25.6710 27.7755 27.2894 26.6361
Shrink 30 24.0951 22.0428 26.0026 24.2347 21.8509 23.9688 23.5516 25.4311 24.8188 24.4502
[27] 40 22.6004 20.8324 24.0241 22.6301 20.0196 22.4464 22.2423 23.4353 23.0565 23.0224

50 21.4184 19.9482 22.4872 21.4690 18.6744 21.2653 21.0021 22.1626 21.7772 21.8852
Neigh- 20 26.6063 24.1324 29.0161 26.9380 24.4462 26.6387 25.8515 28.3103 27.6387 27.0586
Shrink 30 24.5247 22.3752 26.5195 24.8069 21.9915 24.2644 24.0337 25.9497 25.4568 25.1262
[26] 40 23.1195 21.2157 24.7938 23.3077 20.2418 23.0698 22.7670 24.4371 23.9192 23.7659

50 22.1862 20.4819 23.7053 22.2224 19.0219 21.9695 21.8131 23.2262 22.7148 23.7309
Neigh- 20 26.8736 25.0630 29.0918 26.9890 24.7591 26.7789 26.1803 28.3316 27.7531 27.1566
SURE 30 24.8201 22.9705 26.7006 24.8696 22.0566 24.5389 24.2146 26.1621 25.5990 25.3200
[28] 40 23.3757 21.6576 25.2844 23.5868 20.3344 23.0333 23.0695 24.8565 24.2928 24.1484

50 22.3771 20.6505 24.0400 22.6460 19.0432 22.4329 22.1723 23.9590 23.3374 23.3400
20 26.0645 23.7197 30.1631 27.1219 25.1682 26.4524 26.0230 28.9914 28.6759 27.4069

EBF 30 24.1690 22.0060 27.7618 25.2301 22.5956 24.6988 24.5716 26.8529 26.3852 25.7501
[7] 40 22.8799 21.3972 25.8573 23.7020 20.9926 23.3813 23.3494 25.3329 24.7210 24.6005

50 22.0223 20.7750 24.2769 22.8222 19.6744 22.3711 22.6090 24.1810 23.5327 23.6025
20 28.0449 24.9454 30.3218 27.6758 26.5315 27.2806 26.5018 29.3185 28.7853 27.7593

ANLM 30 25.3881 22.8371 27.8523 25.6903 23.8045 24.8399 24.4957 27.1589 26.6434 25.6720
[17] 40 23.8092 21.6338 26.0200 23.8823 21.7591 23.3684 23.1281 25.5799 24.8859 24.3764

50 22.6072 20.8913 24.4808 22.8429 20.0833 22.3992 22.2841 24.3370 23.6256 23.3958
NLM 20 27.6323 24.8066 29.7476 27.0484 25.2815 26.8573 25.9617 29.0153 28.2594 27.3106
+ 30 25.3102 22.4456 27.6144 25.0500 22.7765 24.5829 24.0616 26.7797 26.1221 25.2605
Bayes- 40 23.5237 21.3505 25.7919 23.5911 20.8564 23.1750 22.9491 25.2615 24.3838 24.2165
Shrink 50 22.3867 20.6471 24.4826 22.5892 19.4061 22.3975 22.0587 23.8902 23.2964 23.2436
NLM 20 27.5536 24.5589 29.8038 26.9709 25.3367 26.7017 26.059 28.9656 28.2210 27.3215
+ 30 24.9536 22.3812 27.3929 24.9363 22.6694 24.4901 24.2668 26.5067 25.8509 25.3175
Neigh- 40 23.4130 21.4820 25.6268 23.5286 20.5856 23.1648 22.9886 24.9148 24.1793 24.1237
Shrink 50 22.3407 20.6664 24.4010 22.5254 19.2460 22.3112 22.1093 23.7532 22.9555 23.2531
NLM 20 27.4659 25.1602 29.7464 27.3120 24.9707 27.0779 26.4179 28.8638 28.1103 27.4535
+ 30 25.4071 23.0267 27.4770 25.1305 22.4470 24.7556 24.4807 26.7220 26.0973 25.6135
Neigh- 40 23.7602 21.7512 25.9220 23.6971 20.8199 23.3854 23.2716 25.2877 24.5094 24.3956
SURE 50 22.5790 20.8786 24.6369 22.7698 19.3919 22.4971 22.3414 24.2721 23.4290 23.6513
EBF 20 26.8116 24.7388 30.3447 27.5388 25.6938 26.9671 26.3935 29.1830 28.7531 27.7083
+ 30 24.8972 23.0062 27.9297 25.4953 23.0384 25.0506 24.8674 27.0655 26.6173 26.0406
Neigh- 40 23.5667 21.8170 26.1607 24.1576 21.1677 23.7723 23.6686 25.5176 24.9251 24.8338
SURE 50 22.6316 21.0689 24.9269 23.0909 19.8472 22.8358 22.8162 24.4909 23.8574 24.0022
ANLM 20 28.1952 25.2399 30.4014 27.7964 26.6283 27.4528 26.6506 29.4072 28.7745 27.8875
+ 30 25.3541 23.1236 27.9667 25.8124 23.7637 25.0811 24.7064 27.3029 26.7288 25.9505
Neigh- 40 24.0482 21.9527 26.2681 24.1286 21.6602 23.7396 23.4713 25.8332 25.0822 24.7288
SURE 50 22.9527 21.1504 24.8575 23.2016 20.2274 22.7795 22.7032 24.7235 23.8404 23.9154
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Table 2. Denoising results (MSSIM) of the proposed algorithm and other benchmark techniques for various images at
different noise levels.

Methods σ Barbara Baboon Peppers Boats Cartoon Couple Bridge Lena Jetplane Hill
20 0.8389 0.7242 0.8515 0.7467 0.8669 0.7410 0.6974 0.8298 0.8350 0.7045

NLM 30 0.7432 0.5403 0.7985 0.6566 0.7924 0.6192 0.5688 0.7612 0.7721 0.5953
[14] 40 0.6506 0.4325 0.7247 0.5799 0.7142 0.5349 0.4929 0.7009 0.7083 0.5356

50 0.5907 0.3777 0.6865 0.5297 0.6192 0.4848 0.4446 0.6453 0.6479 0.4907
Bayes- 20 0.7865 0.6995 0.7703 0.7400 0.8326 0.7384 0.7338 0.7627 0.7611 0.6980
Shrink 30 0.6864 0.5910 0.6806 0.6295 0.7547 0.6261 0.6263 0.6510 0.6539 0.5881
[27] 40 0.6044 0.5062 0.5776 0.5388 0.6812 0.5293 0.5412 0.5614 0.5716 0.5062

50 0.5381 0.4281 0.5137 0.4712 0.6114 0.4587 0.4689 0.4913 0.5007 0.4437
Neigh- 20 0.7977 0.6939 0.8051 0.7568 0.8348 0.7573 0.7405 0.7888 0.7958 0.7199
Shrink 30 0.7083 0.5893 0.7125 0.6574 0.7608 0.6576 0.6400 0.6978 0.6933 0.6207
[26] 40 0.6333 0.4996 0.6470 0.5717 0.6916 0.5704 0.5645 0.6133 0.6203 0.5377

50 0.5683 0.4295 0.5734 0.5209 0.6247 0.5005 0.5029 0.5454 0.5501 0.4882
Neigh- 20 0.8048 0.7720 0.8163 0.8347 0.7627 0.7631 0.7702 0.7953 0.8106 0.7336
SURE 30 0.7196 0.6589 0.7593 0.7557 0.6682 0.6718 0.6637 0.7272 0.7498 0.6334
[28] 40 0.6498 0.5514 0.7034 0.6872 0.6062 0.6016 0.5928 0.6794 0.6946 0.5745

50 0.6029 0.4746 0.6622 0.6319 0.5489 0.5428 0.5370 0.6306 0.6517 0.5225
20 0.7860 0.6661 0.8142 0.7634 0.8359 0.7441 0.7236 0.7922 0.8002 0.7345

EBF 30 0.7105 0.5815 0.7465 0.6768 0.7584 0.6627 0.6558 0.7147 0.7364 0.6350
[7] 40 0.6401 0.5711 0.7015 0.6172 0.6906 0.5979 0.5888 0.6700 0.6847 0.5768

50 0.5785 0.4672 0.6531 0.5709 0.6347 0.5401 0.5327 0.6297 0.6270 0.5251
20 0.8433 0.7510 0.8479 0.7826 0.8946 0.7735 0.7553 0.8303 0.8403 0.7482

ANLM 30 0.7509 0.6220 0.7821 0.6948 0.8276 0.6682 0.6505 0.7589 0.7747 0.6499
[17] 40 0.6725 0.5259 0.7217 0.6168 0.7596 0.5880 0.5742 0.6924 0.7200 0.5725

50 0.5950 0.4529 0.6646 0.5663 0.6876 0.5240 0.5074 0.6290 0.6577 0.5170
NLM 20 0.8424 0.7308 0.8567 0.7664 0.8771 0.7601 0.7221 0.8365 0.8408 0.7274
+ 30 0.7529 0.5873 0.8027 0.6851 0.8067 0.6577 0.6143 0.7681 0.7734 0.6310
Bayes- 40 0.6697 0.5087 0.7388 0.6104 0.7353 0.5803 0.5456 0.7006 0.7101 0.5651
Shrink 50 0.6084 0.4343 0.6923 0.5529 0.6571 0.5220 0.4955 0.6314 0.6540 0.5121
NLM 20 0.8442 0.7260 0.8591 0.7659 0.8757 0.7653 0.7450 0.8388 0.8428 0.7274
+ 30 0.7515 0.5917 0.8036 0.6706 0.8043 0.6639 0.6406 0.7757 0.7770 0.6287
Neigh- 40 0.6566 0.5120 0.7494 0.5867 0.7325 0.5783 0.5655 0.7068 0.7174 0.5526
Shrink 50 0.5914 0.4432 0.6992 0.5378 0.6349 0.5119 0.5069 0.6471 0.6549 0.5066
NLM 20 0.8183 0.7736 0.8290 0.8444 0.7701 0.7709 0.7711 0.8076 0.8219 0.7405
+ 30 0.7384 0.6648 0.7791 0.7714 0.6728 0.6760 0.6648 0.7452 0.7653 0.6382
Neigh- 40 0.6669 0.5669 0.7270 0.6896 0.6075 0.6038 0.5967 0.7015 0.7135 0.5793
SURE 50 0.6179 0.4898 0.6932 0.5725 0.5499 0.5445 0.5402 0.6551 0.6675 0.5304
EBF 20 0.7959 0.7754 0.8337 0.7665 0.8666 0.7658 0.7699 0.8079 0.8424 0.7448
+ 30 0.7265 0.6640 0.7822 0.6928 0.7973 0.6701 0.6605 0.7480 0.7743 0.6422
Neigh- 40 0.6563 0.5653 0.7316 0.6201 0.7337 0.6065 0.6097 0.6772 0.6960 0.5845
SURE 50 0.6001 0.4882 0.6995 0.5793 0.6789 0.5421 0.5653 0.6318 0.6417 0.5823
ANLM 20 0.8468 0.7714 0.8539 0.7920 0.8985 0.7836 0.7690 0.8363 0.8429 0.7572
+ 30 0.7619 0.6522 0.7955 0.7082 0.8329 0.6870 0.6678 0.7705 0.7808 0.6613
Neigh- 40 0.6914 0.5612 0.7463 0.6371 0.7611 0.6168 0.5965 0.7140 0.7318 0.5983
SURE 50 0.6227 0.4865 0.7020 0.5907 0.6923 0.5551 0.5416 0.6590 0.6771 0.5521
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Figure 7. Denoised Lena image using various methods for σ = 30 : a) clean, b) NLM, c) BayesShrink, d) NeighShrink, e)
NeighSUREShrink, f) EBF, g) ANLM, h) NLM+BayesShrink, i) NLM+NeighShrink, j) NLM+NeighSUREShrink, k) EBF+
NeighSUREShrink, and l) ANLM+NeighSUREShrink.
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Figure 8. Denoised Baboon image using various methods for σ = 30 : a) clean, b) NLM, c) BayesShrink, d) NeighShrink,
e) NeighSUREShrink, f) EBF, g) ANLM, h) NLM+BayesShrink, i) NLM+NeighShrink, j) NLM+NeighSUREShrink, k) EBF+
NeighSUREShrink, and l) ANLM+NeighSUREShrink.
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Figure 9. Denoised Peppers image using various methods for σ = 30 : a) clean, b) NLM, c) BayesShrink, d) NeighShrink,
e) NeighSUREShrink, f) EBF, g) ANLM, h) NLM+BayesShrink, i) NLM+NeighShrink, j) NLM+NeighSUREShrink, k) EBF+
NeighSUREShrink, and l) ANLM+NeighSUREShrink.
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Figure 10. Denoised texture image (Baboon, D40, and D112) using various methods for σ = 30 : a) First column
corresponds to clean images, b) Second column corresponds to denoised images using BM3D method, c) Third column
corresponds to denoised images using the proposed approach (ANLM+NeighShrink).
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Table 3. Denoising results (PSNR(dB)) of the proposed approach and BM3D technique for various texture images at
different noise levels.

Methods σ Baboon D40 D74 D112
20 25.3215 23.7145 26.6917 23.3622

BM3D 30 23.0561 20.9981 20.9504 20.6876
[36] 40 21.6258 19.2674 19.2448 19.0220

50 20.8571 18.0374 18.0938 17.9371
ANLM 20 25.2440 23.7725 23.7073 23.5221
+ 30 23.1900 21.2881 21.3859 20.9806
Neigh- 40 22.0181 19.7354 19.5065 19.4041
SURE 50 21.1547 18.5636 18.3154 18.3091

Table 4. Computational complexity of various methods.

Methods NLM Wavelet-based BM3D Proposed
[14] [26–28] [36]

Computational O(MS2P 2) O(M)−O(M logM) O(MOT2D
(P 2))+O(M

(
(P 2+N2)S

2

N2
step

)
) O(MS2P 2) +O(M)

complexity +O(MOT3D

(
P 2N2

N2
step

)
) +(O(M)−O(M logM))

of various methods in the proposed approach lies in the range of 0.2–1 dB. The present scheme also results in
better performance in comparison with the patch-based denoising scheme like BM3D for texture images at lower
computational complexity. With the application of the proposed approach, the key image details are also well
preserved at high noise levels.
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