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Abstract: Diffraction of the E-polarized electromagnetic wave by a semiinfinite strip grating is considered. The scattered
field is represented as a superposition of the field induced by the currents on the strips of an infinite periodic grating and
the field induced by the correction current excited due to end of the grating. A singular integral equation with additional
conditions for correction current density is obtained. A solution for the infinite periodic grating in the E-polarization case
is obtained from the corresponding solution for the H -polarization case using the duality principle. Numerical results
for the current density and far fields distribution are represented.
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1. Introduction
In an earlier paper [1], the problem of H -polarized wave diffraction by semiinfinite grating (SIG) was investi-
gated. For full analysis it is necessary to consider the E -polarization case.

Strip gratings may be used as frequency-selective surfaces, components of optic devices, metamaterials,
and stealth covers. The model of SIG may be used to study effects caused by truncation of a real finite grating
[2–4]. The real gratings may have defects such as break of periodicity or even the absence of one or several
strips. The model of the SIG can allow us to describe the difference of the properties of the ideal periodic
grating and the real one. However, here researchers may meet some difficulties. The infinite size of SIG does
not allow us to directly apply methods of analysis of finite gratings. Despite the fact that SIG is infinite, it
cannot be treated as ideally periodic. For this reason the Floquet theorem also is not applied here directly.
As a rule, SIGs are studied with the use of the following approach. The total field is sought as the field
of the infinite-periodic grating (IPG) and correction field. Often these fields are presented using potentials
with unknown current densities on the strips. The vast majority of papers deal with the E -polarization case.
Partially it is connected with that integrand that has logarithmic singularity, unlike the H -polarization case.
Such integrals are integrable ones. Different approaches may be used to obtain the correction field and scattered
field of a whole structure. In [5, 6] the variational approach and in [2, 3, 7] the method of moments (MoM) was
proposed. In [8–13], the Wiener–Hopf technique was used, while in [14] the canonical problem was solved by the
Sommerfeld–Maliuzhinets method. The operator method [15–19] allows us to study different semiinfinite arrays
of scatterers. As a result, a nonlinear operator equation may be obtained. However, as we know, there are
some problems with the convergence of the solution schemes of nonlinear equations. In [20], the authors stated
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that direct discretization of integral equations with a logarithmic singularity is not sufficiently effective. The
authors managed to obtain more efficient schemes based on the Cauchy-type singular integral equations with
their discretization by the method of discrete singularities (MDS). The MDS belongs to the group of so-called
Nystrom-type algorithms [20–27]. In the case of SIG, the algorithm described in [1] with a slight modification
can be used. It is also based on the MDS. Such an algorithm uses direct discretization of the singular integral
equations. The interpolation procedure involves the Gauss–Chebyshev quadrature formulas. These formulas
describe the edge behavior of the fields correctly. Well-known theorems [25, 26] guarantee the convergence of
the MDS.

2. Solution of the problem
Let us consider scattering of the E -polarized plane wave by the SIG. The corresponding geometry and the
problem notations are shown in Figure 1. The strips have zero thickness and width 2d , and the period is l .

The set of strips we denote as L =
∞∪
m=0

(−d + lm; d + lm) . Suppose that the plane wave is incident on the

grating from the z > 0 half space

l

y

z

n=0 n=1 n=2
2d

ϕ
0

ϕ E=(E , 0, 0)x 
k

Figure 1. Structure geometry.

Eix(y, z) = exp (ik(y cosφ0 − z sinφ0)) ,

where k is the wavenumber and φ0 is the incident angle to the y -axis. As in the H -polarization case, we seek
the scattered field as a sum of two fields. One of them is the field of currents on the IPG and the other one is
the correction field,

Esx(y, z) = Es,infx (y, z) + Es,cx (y, z). (1)

The field of currents on IPG Es,infx (y, z) we represent in the form of single-layer potential [28]. Correction
field Es,cx (y, z) also can be represented as single-layer potential (for example, as in [2, 3]), but here we represent
Es,cx (y, z) in the spectral domain via an unknown spectral function,

Es,infx (y, z) =
iωµ0

4

∞∑
m=0

d∫
−d

µ∞
m (y′ + lm)H

(1)
0

(
k
√
(y − y′ − lm)2 + z2

)
dy′, (2)

Es,cx (y, z) =

∞∫
−∞

c(ξ) exp (ik(ξy + γ(ξ)|z|)) dξ, (3)

where µ∞
m (y′ + lm) is equal up to a factor to the current density on the mth strip of the IPG, c(ξ) is an

unknown spectral function of the correction field, γ(ξ) =
√

1− ξ2 , Reγ ≥ 0 , Imγ ≥ 0 , H(1)
0 (x) is the Hankel
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function of the first kind, µ0 is a magnetic constant, and ω is angular frequency. The summation is performed
over all strips of the SIG, m = 0, 1, 2, ...

Enforcement of boundary conditions leads to the dual integral equations:
∞∫

−∞

c(ξ)γ(ξ) exp(ikξy)dξ = 0, y /∈ L, (4)

∞∫
−∞

c(ξ) exp(ikξy)dξ = −
(
Eix(y, 0) + Es,infx (y, 0)

)
= g(y), y ∈ L. (5)

From Eq. (1) we can obtain an expression for g(y) :

g(y) =
ωµ0

2

−1∑
m=−∞

exp (ikζ0lm)

d∫
−d

Hs,inf
y (y′, 0)H

(1)
0

(
k
√
(y − y′ − lm)2 + z2

)
dy′,

where in the general case ζm = 2πm
kl + cosφ0 . Here we used the Floquet theorem and the expression for µ∞

0 (y) ,

µ∞
0 (y) =

{
2
iH

s,inf
y (y, 0), |y| ≤ d,

0, |y| > d.

From the Maxwell equations it follows that the tangential magnetic component of the field of the IPG is

Hs,inf
y =

1

iωµ0

∂Es,infx

∂z
. (6)

2.1. Singular integral equation

From edge conditions, as well as from Eq. (4), it follows that c(ξ) may have singularities when ξ → ±1 . Let
us introduce function u(ξ) = γ(ξ)c(ξ) , which does not have singularities. Eq. (4) is the Fourier transform of
u(ξ) and it is valid for y /∈ L . Let us consider the Fourier transform of u(ξ) for all y ∈ (−∞; ∞) and denote
it as F (y) :

F (y) =

∞∫
−∞

u(ξ) exp(ikyξ)dξ.

Then, using the inverse Fourier transform, we can express function u(ξ) as follows:

u(ξ) =
k

2π

∫
L

F (y) exp(−ikyξ)dy.

Let us differentiate Eq. (5) with respect to y . Then the following singular integral equation can be
obtained [20, 25–27]:

1

π
PV

∫
L

F (ξ)

ξ − y
dξ +

1

π

∫
L

K(y, ξ)F (ξ)dξ =
i

k
g′(y), y ∈ L, (7)
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where PV means the Cauchy principal value integral. Eq. (4) gives rise to additional conditions:

1

π

∫
L

F (ξ)Q(ym, ξ)dξ = g(ym), m = 0, 1, ..., (8)

where ym is an arbitrary point of (−d+ lm; d+ lm) . The kernel functions are

K(y, ξ) = k

∞∫
0

sin(kζ(y − ξ))

ζ
(ζ + iγ(ζ))dζ,

Q(y, ξ) = k

∞∫
0

cos(kζ(y − ξ))

γ(ζ)
dζ.

The solution of Eqs. (7) and (8) can be obtained by the MDS [20, 25, 26]. Note that the right-hand
sides of Eqs. (7) and (8), g(y) and g′(y) , are still unknown. To evaluate them we should consider the IPG and
obtain an expression for Hs,inf

y (y, 0) .

2.2. Field Hs,inf
y (y, z)

To obtain the field scattered by the IPG in the E -polarization case we use the duality principle and the known
solution for the H -polarization case. For the scattered field written as a Fourier series with unknown amplitudes
an , n = −∞, ...+∞ ,

Es,infx (y, z) =

∞∑
n=−∞

an exp (ik(ζny + γn|z|)) , (9)

where γn =

√
1−

(
2πn
kl + cosφ0

)2 , Reγn ≥ 0 , Imγn ≥ 0 , and the singular integral equation similar to Eq. (7)

with an additional condition can be obtained [25–27]:

1

π
PV

∫
S

F2π(ξ)

ξ − ψ
dξ +

1

π

∫
S

K2π(ψ, ξ)F2π(ξ)dξ = iκγ0, ψ ∈ slot, (10)

1

π

∫
S

F2π(ξ)dξ = 0. (11)

The kernel function is

K2π(ψ, ξ) = −κ
2

∞∑
n=−∞
n̸=0

(
i|n|
κ

− γn

)
exp (in(ψ − ξ))

n
+ iγ0κ

ψ − ξ

2
+

(
1

ψ − ξ
− 1

2
ctg

(
ψ − ξ

2

))
,

where κ = kl/(2π) is a dimensionless wave number. Integration is performed over slot S of a single period
(in dimensionless quantities). The singular integral equation with additional conditions, Eqs. (10) and (11),
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also can be solved by the MDS. Amplitudes an can be expressed via F2π with the help of the periodic Fourier
transform:

an =
exp(−iπn)

2πin

∫
S

F2π(ξ) exp(−inξ)dξ, n ̸= 0,

a0 = − 1

π

∫
S

ξ

2
F2π(ξ)dξ − 1.

Eq. (9) is obtained from the condition that current density outside the metal strips be 0. For the metal
strips one can obtain the following:

Hs,inf
y (y, 0) =

exp(iky sinα)
iκZ

 1

π
v.p.

δ∫
−δ

F (ξ)

ξ − ψ
dξ +

1

π

δ∫
−δ

K(ψ, ξ)F (ξ)dξ − iκγ0

 , (12)

where Z is free space impedance.

3. Field representation

3.1. Far field
To express far fields we use the saddle-point method [29]. However, here one should use a higher-order asymptotic
than in the case of regular finite grating. The semiinfinite summation in Eq. (2), m = 0, 1, 2, ... , leads to
the poles’ appearance in the integrands. The position of poles corresponds to the cut-off frequencies of the
plane waves, which exist only in the domain φ > wq , where wq is the propagation angle of the q th plane wave
relative to the y -axis. Line φ = wq acts as a shadow boundary [1–3, 18]. Then

Esx(φ, ρ)
∼= Epx(φ, ρ) + Eerfcx (φ, ρ) + Es,cx (φ, ρ), kρ→ ∞, (13)

where ρ =
√
y2 + z2 is distance. By substituting Eq. (9) into Eq. (6) and then into Eq. (2), and using Eqs.

(1) and (3), we may rewrite terms in Eq. (13) in explicit form:

Epx(φ, ρ) =
∑
q

εq(φ)aq exp(ikρ cos(φ− wq)). (14)

The following function appears:

εq(φ) =

{
0, φ < wq,
1, φ > wq,

since, as was mentioned above, plane waves exists only in the φ > wq domain. The second-order asymptotic
gives us the Gauss error function in Eerfcx (φ, ρ) . It provides continuous asymptotic representation in the
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transition region near φ = wq ,

Eerfcx (φ, ρ) = exp
(
ikρ− πi

4

) [
π
kl

∑
q
sgn(wq − φ)

cinf (− coswq)
sinwq

×

exp
(
−2ikρ

(
sin φ−wq

2

)2)
·
(

1+i√
2
−
√
2C(ψ)−

√
2iS(ψ)

)
− i
kl

√
π

2kρ

(
2cinf (− cosφ)
f(− cosφ) +

∑
q

cinf (− coswq)

sinwq sin wq−φ

2

)]
,

(15)
where

C(ψ) =

ψ∫
0

cos
(π
2
t2
)
dt,

S(ψ) =

ψ∫
0

sin
(π
2
t2
)
dt,

are Fresnel integrals, ψ = 2
√

kρ
π sin

∣∣wl−φ
2

∣∣ , wq = π/2 + arcsin ζq , f(ξ) = 1 − exp (ikl(cosφ0 − ξ)) , cinf (ξ) =

2
∞∑

n=−∞
anγn

sin(kd(ζn−ξ))
kl(ζn−ξ) , and

∑
q

is the summation over all q that correspond to the propagating plane waves,

|ζq| < 1 . Notice that here we used Eq. (9) but not Eq. (12). This was done to obtain Eq. (14) in a simple form
as a sum of propagating Floquet modes.

The far field for Eq. (4) is

Es,cx (φ, ρ) ∼=
√

2π

kρ
u(− cosφ) exp (i(kρ− π/4)) , 0 < φ < π.

3.2. Current on the strips

Function F (y) in Eqs. (7) and (8) equals up to a constant factor (2/Z ) to a correction current density on
the strips. Thus, to evaluate correction current density, we may use F (y) . According to the edge condition,
current density has root-type singularity near the edge. To describe the correction current behavior we introduce
function

Jc(y) =
√
(y − (−d+ lm)) ((d+ lm)− y)F (y),

y ∈ (−d+ lm; d+ lm), m = 0, 1, 2, ...,

which does not have singularities.

4. Numerical results
4.1. Validation and convergence
To validate the obtained results we will compare them with those obtained by the MoM in the assumption of
a single-mode current distribution [2]. For better visual comparison with results obtained in [2], we introduce

2411



KALIBERDA et al./Turk J Elec Eng & Comp Sci

coefficient Jcn , which is up to a constant factor the correction current density in the center of the nth strip
when y = yn = l · n ,

Jcn =
d

Zπ
Jc(yn).

The diffraction pattern without Floquet modes we denote as

D(φ, ρ) = Eerfcx (φ, ρ) + Es,cx (φ, ρ).

The results for Jcn are represented in Figure 2 and diffraction patterns are represented in Figure 3. Good
agreement is observed between our results and results obtained by the MoM. Far from the shadow boundaries
(φ = wq ) the behavior of D(φ, ρ) is mainly defined by the field of cylindrical waves. Its magnitude vanishes as
Escx (φ, ρ) ∼ 1/

√
kρ , when kρ→ ∞ . However, near the shadow boundaries Eerfcx (φ, ρ) dominates. As one can

see from Figure 3, D(φ, ρ) does not vanish near φ = wq .

0 5 10 15

0

1

2

 MoM

 Presented approach

Z |J
 c

n
|

ky

Figure 2. Distribution of |Jc
n| vs. y , kl = π/5 ( l = λ/10), kd = π/20 (2d = λ/20), φ0 = 900 . Presented approach

(asterisks) and method from [2] (solid line).

To solve Eqs. (7), (8), (10), and (11) we use the quadrature rule for singular integrals with root-type
weight function [20, 25, 26]. Denote the number of nodes on every strip as M . We suppose that the edge of
the SIG is influenced at the finite number of strips N . We exchange the infinite set of strips L by the bounded

one LN =
N∪
m=0

(−d+ lm; d+ lm) . Let us quantify the correction current influence by the following value [1–3]:

Jc =

∫
L

|Jc(y)|2 dy.

Figure 4a shows the relative error of correction current εM = |(Jc(M)− Jc(2M)) /Jc(2M)| versus M , and
Figure 4b shows the relative error of correction current εN = |(Jc(N)− Jc(2N)) /Jc(2N)| versus N . Notice
that convergence is provided by general theorems [25, 26]. The value of parameter kd = π/2 corresponds to the
resonance region and strip width is equal to half of the wavelength, 2d = λ/2 . The value of parameter kl = 2π

( l = λ) corresponds to the cut-off frequency of ±1 Floquet modes. It is obvious that the larger the strip width
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Figure 3. Diffraction patterns, kl = π/5 ( l = λ/10), kd = π/20 (2d = λ/20) for two different incident angles, φ0 = 900

and φ0 = 450 , and two different distances from the grating to the observation point, kρ = 30 and kρ = 100π . Presented
approach (solid lines) and method from [2] (asterisks).

is, the larger number of interpolation nodes should be taken. The biggest error of εN as expected is observed
near the cut-off frequency of the Floquet modes.
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Figure 4. Computation error. a) εM as a function of number of nodes on every strip; b) εN as a function of number
of strips.

4.2. Numerical analysis

Figures 5a, 5b, 5c, and 5d show diffraction patterns of the correction and total current at distance kρ = 100π

(ρ = 50λ) for different values of period and strip width. For comparison, the Kirchhoff solution (Es,cx (φ, ρ) ≡ 0)
is also shown in Figure 5. The plots are normalized by the maximum value for kd = π/2 , kl = 2π .
The maxima in patterns are observed near the angles of propagation of the Floquet modes. The curves for
D(φ, ρ) may have discontinuities here [1–3]. However the total scattered field is continuous since term Epx(φ, ρ)

should be added. A jump discontinuity at φ = wq appears because of term sgn(wq − φ) in Eq. (15), and
Esx(φ→ wq − 0, ρ)−Esx(φ→ wq +0, ρ) = Epx(φ→ wq +0, ρ) . At the finite strip gratings in the E -polarization
case the leaky waves propagating near φ = 00 and φ = 900 excite not only near l = n ·λ , n = 1, 2, ... but at all
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frequencies. Case l = n ·λ , n = 1, 2, ... corresponds to the Wood anomaly region when high-order propagating
Floquet modes arise. Figure 5b is plotted for the first Wood anomaly, l = λ . Moreover, the resonant width of
the strips is taken, 2d = λ/2 . One may observe significant increase in the intensity of the correction field near
the plane of the grating. Here leaky waves lead to the appearance of additional maxima near the plane of the
SIG.
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Figure 5. Diffraction patterns, kρ = 100π (ρ = 50λ). Function |D(ρ, φ)| (black solid lines), Kirchhoff solution (red
dotted lines), and correction field (green dashed lines): a) kl = 5 , kd = π/2 (2d = λ/2); b) Wood anomaly kl = 2π
( l = λ), kd = π/2 (2d = λ/2); c) kl = 7 , kd = π/2 (2d = λ/2); d) kl = 7 , kd = π (2d = λ).

It is known [24, 27, 30] that in the E -polarization case, contrary to the H -polarization case, when
parameters of the grating close to the exciting of the Wood anomaly are chosen, the strips’ interaction in the
regular IPG is weak. The reflection coefficient of the IPG is much smaller as compared to the H -polarization
case. The same situation was described in [24, 27] when a single strip was removed from the IPG. Another
picture is observed in the case of the SIG. Diffraction patterns presented in Figure 5 show that there is significant
disturbance in the scattered field near the Wood anomaly region. Figure 6 and Figure 7 allow us to make a
conclusion about the influence of the end of the SIG. These figures show the correction current distribution on
the strips and dependence of Jc versus period l . The correction current vanishes away from the SIG edge, as
we expected. The maxima of Jc appear near the Wood anomaly regions. The same situation was observed in
the H -polarization case, too [1].
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Figure 6. Distribution of |Jc(y)| vs. y , kl = 5 , kd = π/2
(blue line), Wood anomaly kl = 2π , kd = π/2 (black line),
kl = 7 , kd = π/2 (red line), and kl = 7 , kd = π (green
line).

Figure 7. Correction current influence, kd = π/2 .

5. Conclusion
In this paper, a rigorous solution of the E -polarized plane wave diffraction by the SIG is obtained. The total
field is presented as a superposition of the field of currents on the IPG and correction field. These fields are
obtained as a result of the solution of singular integral equations. The method of numerical solution provides
a theoretically guaranteed convergence.

It was shown that there is significant disturbance in the scattered field near the Wood anomaly region
when high-order propagating Floquet modes arise. Contrary to the IPG one may observe an increase of the
current magnitude on the SIG near this region.
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