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Abstract: The knowledge acquired during the learning of artificial neural networks (ANNs) is coded as values in synaptic
weights, which makes their interpretations difficult, hence the name of the black box. The aim of this work is to provide
a comprehensible interpretation of the ANN’s decisions by extracting symbolic rules. We improve the performance of our
extraction algorithm by combining the ANN with a genetic algorithm. Misleading rules whose support and confidence
values are less than fixed thresholds are removed and, as a result, the comprehensibility is improved. The extracted rules
are evaluated and compared with other works. The results show good performance of our proposal in terms of fidelity
and accuracy.
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1. Introduction

Artificial neural networks (ANNs) are very powerful in classification problems, they give a good generalization
of knowledge present in the training set [1], they are less sensitive to noise, and they are less vulnerable to the
presence of incorrect data. Despite these advantages, neural networks also have a number of disadvantages,
such as the initial network architecture, and so it is quite difficult to find the right topology of neural networks
[2]. It is also difficult to determine a good choice of ANN parameters such as the initial weights and thresholds,
and the number of hidden layers; a bad choice of these parameters may slow down learning time or may lead
to a bad local optimum. The most penalizing problem of ANNs is the problem of the black box [3], and so
the neural networks cannot explain their decisions. The knowledge remains locked in the black box and is
incomprehensible to the user or even for the expert [4]. This problem is penalizing for certain applications
where decision-makers generally opt for less accurate but comprehensible models. The aim of the present work
is to provide a comprehensible interpretation of the ANN’s decisions by extracting symbolic rules. The decisions
of the ANN are represented by symbolic rules understandable by the user. The rules are first filtered to keep
only the best ones, i.e. those that verify good support and good confidence. We improve the performance of
our extraction algorithm by combining the ANN with a genetic algorithm (GA).

In the following sections, we describe the existing hybrid neurosymbolic systems. Next, we describe our
genetic method of rule extraction from the neural network. Finally, we show some computational results and
we indicate some issues for future works.
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2. Related work
In this section, we describe different combinations of the ANN with other machine learning algorithms. Symbolic
approaches such as decision trees or GAs may be used to solve the network initial architecture problem or the
network initial parameters problem. In the case of the black box problem, these combinations serve to improve
the performance of the extracted rules. Among the popular existing hybrid systems, we can enumerate here the
following:

• Neurofuzzy systems: there are several ways to do this hybridization: fuzzy rules can be extracted from the
ANN [5] in order to solve the black box problem. Furthermore, fuzzy rules can be injected into the initial
neural network architecture; here, the ANN is learned from examples and the fuzzy rules and, hence,
learning time is reduced.

• Neuro-IDT: there are two possibilities to combine the ANN with decision trees: the decision tree can be
extracted from the ANN [6], or, in the other case, the decision tree can be injected to the ANN.

• Neurogenetic: this hybrid system combines a GA with the ANN [7,8]; in this case, the GA can be used
to have an optimal neural network architecture or to have the optimal rules that represent the hidden
knowledge of the ANN.

Several methods are developed to understand neural network decisions by extracting a set of rules. Regard-
ing extraction strategies, there are two different approaches: local and global. The local methods look for
combinations of weights that activate the hidden or output neuron; then these combinations will be used to
generate the rules. The local methods that are interested in each unit and each connection quickly become
inefficient in the case of large neural networks. On the other hand, the global methods are insensitive to the
number of the units of neural networks. In this case, the generation of the rules is only based on analysis of
the responses of the neural network to the inputs. In the literature, there are several rule extraction algorithms
we can enumerate here: Subset algorithm [9]: this algorithm extracted logical rules of order 0; it is based on
the local method. The MofN algorithm [9] extracted a limited set of rules compared to the Subset algorithm.
Taha and Ghosh presented three rule extraction techniques [10]: BIO-RE, which used the global approach, and
Partial-Re and Full-Re, which used the local approach to extract partial and full rule sets from the trained
feedforward. Markowska [5] proposed the global approach to extract fuzzy rules from the neural network. A
survey of different rule extraction approaches can be found in [11]. In the present paper, we are interested in
extracting rules from the ANN using a GA, which will be explained in the next section.

2.1. GA for rule extraction
2.1.1. The basic principle of GAs

GAs are exploration algorithms based on the mechanisms of natural selection and genetics. GAs are based on
a coding of problems and their solutions in the form of chains, often binary chains, of fixed or variable lengths.
An initial population is first generated containing potential solutions for a given problem; then the GA selects,
through a fitness measure, the elements of the population that fulfill the constraints of the desired solution.
Genetic operators such as crossover and mutation are then applied to this population in order to obtain a new
population with better solutions than the previous generation. The process is repeated over several generations
until a generation of solutions satisfies the imposed quality criteria.
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2.1.2. How to use a GA for rule extraction
A GA starts with a given initial population containing a set of individuals. There are two possibilities: each
individual encodes one rule (called the Michigan approach) or several rules (the Pitt approach) [12]. The goal
of the GA is to search in rules space the set of rules that represent the knowledge of the ANN according to
three criteria: fidelity, accuracy, and comprehensibility. The fidelity indicates the ability of the extracted rules
to mimic the behavior of the network from which they were extracted [5].

Let P = {P1, …, Pn} be a set of patterns or examples. For one pattern Pi, where Pi ⊆ P, the fidelity
is equal to “one” if the rule set and the neural network give the same classification result of Pi,

Fidi =

{
1 if (rule set (Pi) = neural network (Pi))
0 otherwise

(1)

For N patterns, the fidelity is given by

Fidelity =

N∑
i=1

Fidi

N
(2)

Accuracy defines the number of correctly classified patterns by the rule set [3]. It is calculated independently
of the ANN.

Let R = {R1, …, Rn} be a set of rules. For one pattern Pi, the accuracy acc is equal to one if there is
at least one rule Rj in the rule set R that satisfies Pi. In this case, all values of the premises that exist in Rj
should exist in Pi.

∃ ⊆ Acci =

{
1 if Rj R, Rj satisfies P i
0 otherwise

(3)

For N patterns, the accuracy is given by

Accuracy =

N∑
i=1

Acci

N
(4)

Comprehensibility defines the degree of understanding and it is based on the number of rules. An important
number of rules are difficult to understand whereas a reduced number of rules leads to good comprehensibility.

3. The proposed algorithm of rule extraction

Our algorithm is composed of three modules: the connectionist module, the genetic module (GA module) for
rule extraction, and the rule pruning module (see Figure 1).

3.1. ANN component

We have used multilayer perceptron neuron network training with the backpropagation algorithm. This type of
network consists of an input layer, one or more hidden layers, and an output layer. The neurons of each layer
are connected to all the neurons of the adjacent layers through the synaptic weights. The main purpose of the
learning phase is to find a set of optimal weights leading the neural network to give a better prediction.
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Figure 1. The proposed system.

3.2. GA component
Neural networks are treated as a black box. The aim of the GA is to search, from a set of initial rules, those
that express knowledge of the neural network. These rules should verify good fidelity, good accuracy, and good
comprehensibility.

3.2.1. Fitness function
In order to converge to a single solution, the fitness function is defined as the weighted average of the following
parameters: fidelity, accuracy, and comprehensibility.

fitness = α× fidelity + β × accuracy + δ × comprehensibility (5)

The fidelity and the accuracy measures take their values in the interval [0,1], whereas the comprehensibility
(number of rules) values are always greater or equal to one. Therefore, the comprehensibility should be
normalized to the interval [0,1] before processing using the following formula:

ComprNorm = (MaxRule− comprehensibility)/(MaxRule− 1) , (6)

where MaxRule is the maximum number of rules, comprehensibility is the number of rules obtained by the
algorithm, and ComprNorm is the normalized value of comprehensibility. For example, if MaxRule = 5 and
comprehensibility = 5 then Compr Norm is set to 0 and if MaxRule = 5 and comprehensibility = 1, ComprNorm

is set to 1. The objective is to maximize ComprNorm in order to have a minimum of rules. Therefore, the
fitness function of Eq. (5) is modified as follows:

fitness = α× fidelity + β × accuracy + δ × ComprNorm (7)

{α, β, δ} ∈ [0, 1]andα+ β + δ = 1

The parameters α , β and δ should be determined according to the preferences of the decision-makers.
An important issue in the rule extraction is finding a compromise between the qualities of extracted rules.
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3.2.2. The form of chromosomes
The chromosome represents a possible solution to the proposed problem. It consists of a vector of rules. One
rule is coded as a string of integer values between 0 and 1. “-” means that the attribute is not involved in the
rule,” 0” means that the attribute is written “Not (Ai)” in the rule generated, and “1” means that the attribute
is written as “Ai” in the rule generated. For example, Rule 4 in Figure 2 is written as “if A1 and A4 and not
(A5) then ClassX”

0 1 1 - 0 - 0 1 - 0 1 0 1 - - 1 - - 1 0 

       

         Rule 1             Rule 2  Rule 3                   Rule 4 

Figure 2. Chromosome form of a given class.

3.2.3. Genetic operators

A wheel selection operator was used to choose parents for the next generation. Crossover combined two
individuals (or parents) to form a new individual (or child) of the next generation by using one-point crossover
technique. The mutation operator takes one parent from the population and randomly changes one gene.

3.3. Pruning rules component

Let A = {A1, …, An} be a set of premises or attributes and C the target class. Let ri be a rule of the form X
⇒ C, where X ⊆ A.

The support of ri indicates the number of patterns satisfying both the A and the C divided by the total
number of patterns. The confidence of ri indicates the number of patterns satisfying the consequent (C) among
those verifying the premise (X) [13].

For example, let us assume Table 1, which represents a set of examples. The support of the rule (If A1
and A6 → C2) = 2/9 = 0.22 whereas the confidence = 2/3 = 0.66.

Table 1. Sample dataset.

A1 A2 A3 A4 A5 A6 A7 Class
1 0 1 0 0 1 1 C1
0 1 0 0 0 0 0 C1
1 0 1 0 1 0 1 C1
0 1 1 1 0 1 0 C1
0 0 1 0 0 0 1 C2
1 0 1 1 0 0 1 C2
1 0 1 1 0 0 0 C2
1 1 1 0 0 1 1 C2
1 0 0 0 0 1 0 C2

The pruning rules component consists of eliminating the invalid rules whose support and confidence
values are less than fixed thresholds. Once filtered, the rules are used by the genetic module for optimization.
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The choice of thresholds should be made with caution. A very small support threshold value may lead us to
uninteresting rules whereas a very large value may skip interesting rules.

4. Results and discussion
We have used a multilayer perceptron trained by the backpropagation algorithm. It does not exclude the
possibility of working with other ANN types or with other learning algorithms. Initially, the neural network is
trained with a set containing 70% of the examples of the dataset. The remaining (30%) are used for testing its
accuracy.

4.1. Datasets [14]

We chose to work on 3 datasets: breast cancer, Austra (Australian Credit Approval), and Pima (Pima Indians
Diabetes). A brief description is given in Table 2.

Table 2. Datasets used in our computational experiments.

Datasets Number of patterns Attributes Classes NN
NNH Acc (%)

Breast cancer 699 9 2 3 97.11
Austra 690 14 2 3 90.08
Pima 768 8 2 6 78.00
(NNH = number of hidden nodes, Acc = accuracy).

4.2. MLP module
Our rule extraction algorithm requires binary data. Numerical or real data should be converted into binary
data using the following formula [10]:

Yi =

{
1 if xi ≥ ui

0 else
, (8)

where xi is the value of the attribute Xi, ui is the average value of Xi, and yi is the corresponding binary value.
Tables 3 and 4 show the confusion matrix of the best results on the training and test sets on the breast cancer
dataset. Several measures are calculated to check the validity of the network, namely accuracy, misclassification
rate, sensitivity, and specificity:

Table 3. Confusion matrix for the best network on the training set.

Benign Malignant
Benign 318 (true positive) 1 (false negative)
Malignant 13 (false positive) 159 (true negative)

Accuracy = 100% × (
true positive cases+ true negative cases

total
) (9)

Misclassification = 100% × (
false positive cases+ false negative cases

total
) (10)
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Table 4. Confusion matrix for the best network on the test set.

Benign Malignant
Benign 123 (true positive) 2 (false negative)
Malignant 4 (false positive) 79 (true negative)

Sensitivity = 100% × (
true positive cases

true positive cases+ false negative cases
) (11)

Specificity = 100% × (
true negative cases

true negative cases+ false positive cases
) (12)

Table 5 shows the performance of the neural network on test and training sets of the breast cancer dataset.
Table 2 shows the accuracy of neural networks for all datasets used.

Table 5. Performance of the ANN.

Accuracy Misclassification Sensitivity Specificity
Train 97.14% 0.028% 99.67% 92.44%
Test 97.11% 0.028% 98.40% 95.18%

4.3. Genetic module for rule extraction
The time taken by our system to converge to the solution depends largely on parameters such as the initial
population, number of iterations, mutation probability value, and crossover probability value. After several tests,
the parameters values were set as follows: crossover probability = 0.8, mutation probability = 0.2, population
size = 100, the number of individuals = 20 rules, minimum value of support = 0.1, and minimum value of
confidence = 0.5. MaxRule = 5 (we suppose that, for each class, the maximum number of rules is set to 5). We
first applied our extraction method to the breast cancer dataset; the aim of this rule extraction application is
to search for the automatic breast cancer diagnostic through the generation of a set of rules. Figures 3 and 4
show the obtained results on benign and malignant classes in terms of accuracy, fidelity, and compr norm (the
normalized comprehensibility), by varying the parameters {α ,β ,δ} in the interval [0, 1]. The results are sorted
according to the ascending order of accuracy values. In the middle of Figure 3, note that the three curve lines are
closer together, which means a good compromise between the three measures in this region. Outside this region,
the accuracy and the comprehensibility tend to be contradictory since as accuracy increases comprehensibility
decreases. We can make the same observation about the malignant class (see Figure 4). For the value β = 1,
the algorithm extracted 4 rules for the benign class with an accuracy value of 1. The fidelity for this value is
low (close to 0.74). By focusing on the fidelity and the accuracy, the algorithm extracted 3 rules whose fidelity
is equal to 1 and with an accuracy value of 0.9779. Moreover, by focusing on comprehensibility, the algorithm
extracted one rule with fidelity = 100% and with accuracy close to 0.95. Table 6 shows the trade-off between
the accuracy and the comprehensibility for the benign class by modifying the parameters values {α , β , δ} .

Figure 5 and 6 show the results obtained in terms of average support and average confidence on benign and
malignant classes (the results are sorted according to the ascending order of accuracy values). Several solutions
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Figure 3. Obtained results for the benign class by varying the {α , β , δ} parameters.
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Figure 4. Obtained results for the malignant class by varying the {α , β , δ} parameters.

Table 6. Performance of the extracted rules from the benign class.

{α , β, δ} Fidelity Accuracy ComprNorm #Rules Mean sup Mean conf
{0.4, 0.2, 0.4} 1.0000 0.9470 1.00 1 0.62 0.99
{0.5, 0.5, 0} 1.0000 0.9779 0.50 3 0.57 0.98
{0.1, 0.9, 0} 0.9630 0.9823 0.25 4 0.60 0.98
{0, 1, 0} 0.7429 1.0000 0.25 4 0.5 0.91

have been obtained with the same values of fidelity, accuracy, and comprehensibility (see Figures 3 and 4). In
this case, the support and confidence values can help us to make a decision by choosing the best values. Finally,
Tables 7–9 show the obtained results in terms of mean fidelity, mean accuracy, mean comprehensibility (#rules),
mean support (sup), and mean confidence (conf) on the breast cancer, Austra, and Pima datasets.

2472



YEDJOUR et al./Turk J Elec Eng & Comp Sci

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
{0

.1
,0

,0
.9

} 
{0

.3
,0

,0
.7

} 
{0

.8
,0

,0
.2

} 
{0

.2
,0

,0
.8

} 
{0

.5
,0

,0
.5

} 
{0

.7
,0

,0
.3

} 
{0

.6
,0

,0
.4

} 
{1

,0
,0

}  
{0

.9
,0

,0
.1

} 
{0

.4
,0

,0
.6

} 
{0

.6
,0

.3
,0

.1
} 

{0
.5

,0
.3

,0
.2

} 
{0

.7
,0

.1
,0

.2
} 

{0
.2

,0
.2

,0
.6

} 
{0

.2
,0

.4
,0

.4
} 

{0
.3

,0
.1

,0
.6

} 
{0

.3
,0

.2
,0

.5
} 

{0
.3

,0
.5

,0
.2

} 
{0

.1
,0

.1
,0

.8
} 

{0
.2

,0
.5

,0
.3

} 
{0

.2
,0

.6
,0

.2
} 

{0
.3

,0
.6

,0
.1

} 
{0

.6
,0

.2
,0

.2
} 

{0
.7

,0
.2

,0
.1

} 
{0

.1
,0

.2
,0

.7
} 

{0
.1

,0
.3

,0
.6

} 
{0

.2
,0

.1
,0

.7
} 

{0
.2

,0
.3

,0
.5

} 
{0

.3
,0

.3
,0

.4
} 

{0
.3

,0
.4

,0
.3

} 
{0

.4
,0

.1
,0

.5
} 

{0
.4

,0
.2

,0
.4

} 
{0

.4
,0

.3
,0

.3
} 

{0
.4

,0
.4

,0
.2

} 
{0

.4
,0

.5
,0

.1
} 

{0
.5

,0
.1

,0
.4

} 
{0

.5
,0

.2
,0

.3
} 

{0
.5

,0
.4

,0
.1

} 
{0

.6
,0

.1
,0

.3
} 

{0
.8

,0
.1

,0
.1

} 
{0

,0
,1

}  
{ 

0
,0

.4
,0

.6
} 

{0
.6

,0
.4

,0
} 

{0
.2

,0
.8

,0
} 

{0
.3

,0
.7

,0
} 

{0
.4

,0
.6

,0
} 

{0
.5

,0
.5

,0
} 

{0
.7

,0
.3

,0
} 

{0
.8

,0
.2

,0
} 

{0
.9

,0
.1

,0
} 

{0
,0

.1
,0

.9
} 

{0
,0

.2
,0

.8
} 

{0
,0

.3
,0

.7
} 

{0
,0

.5
,0

.5
} 

{0
,0

.6
,0

.4
} 

{0
,0

.7
,0

.3
} 

{0
,0

.8
,0

.2
} 

{0
,0

.9
,0

.1
} 

{0
.1

,0
.4

,0
.5

} 
{0

.1
,0

.5
,0

.4
} 

{0
.1

,0
.6

,0
.3

} 
  

 
{0

.1
,0

.7
,0

.2
} 

{0
.1

,0
.8

,0
.1

} 
{0

.2
,0

.7
,0

.1
} 

{0
.1

,0
.9

,0
} 

{0
,1

,0
}  

Sup_mean  

Conf_mean  

Figure 5. Average support and confidence for the benign class.
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Figure 6. Average support and confidence for the malignant class.

Table 7. Obtained results on the breast cancer dataset.

Rules Class Sup Conf Fidelity (%) Accuracy (%) #rules
if A2 < 3.1 and A6 < 3.5 Benin 0.6217 0.9862

99.51 98.50 05
if A4 < 2.8 and A5 < 3.2 Benin 0.6130 0.9379
if A3 ≥ 3.2 Malignant 0.3014 0.9244
If A6 ≥ 3.5 Malignant 0.2870 0.9124
if X8 ≥ 2.9 Malignant 0.2768 0.9009

5. Comparison with other works

To confirm the performance of our method we have compared our obtained results with seven algorithms:
Full RE [10], NeuroRule [15], BIO-RE [10], HYPINV [16], NeuroLinear [17], Kim et al. [18], and GEX [5].
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Table 8. Obtained results on the Austra dataset.

Rules Class Sup Conf Fidelity (%) Accuracy (%) #rules
if A8 ≥ 0.52 class1 0.41 0.79

94.96 89.42 03if A8 < 0.52 and A10 < 2.40 class0 0.43 0.93
if A5 < 7.37 and A7 < 2.90 class0 0.26 0.80
Class = 1 indicates that the credit card application has been approved by the bank.

Table 9. Obtained results on the Pima dataset.

Rules Class Sup Conf Fidelity Accuracy #rules
if A8 < 33.2 Class0 0.46 0.74

86.2 77.87 6

if A6 < 32 Class0 0.38 0.77
if A2 < 120.9 and A6 ≥ 32 Class0 0.18 0.75
if A2 ≥ 120.9 and A6 ≥ 32 Class1 0.18 0.65
if A1 ≥ 3.8 and A2 ≥ 120.9 Class1 0.14 0.60
if A3 ≥ 69.1 and A6 ≥ 32 and A8 ≥ 33.2 Class1 0.10 0.57
(class1 is interpreted as “tested positive for diabetes”)

Comparison results in Table 10 indicate that the proposed algorithm produces a small number of rules. It
extracts rules for all classes without the necessity of the default rule. Our proposal achieves high performance
for the breast cancer and Austra datasets (see Table 11) and surpasses the others methods. The application of our
algorithm to the Pima database showed the the lack of convenience of our algorithm on complex datasets. The
binarization used by Eq. (8) severely degrades the performance of the Pima neural network and subsequently
the performance of the rules extracted. Therefore, a more natural representation of the problem offers more
effective solutions. Finally, the proposed algorithm provides interesting rules by taking into account the support
and the confidence measures while the others do not.

Table 10. Results obtained by different algorithms in terms of number of rules and accuracy, using the breast cancer
dataset.

Full-RE BIO-RE NeuroRule Our proposal
Accuracy (%) 96.19 96.63 97.21 with default rule 98.50
#Rules 05 10 + default rule 4 (3 + default rule) 5

Table 11. Results obtained by different algorithms in terms of number of rules and accuracy, using the Austra and
Pima datasets.

Datasets Measures NeuroLinear Kim et al. HYPINV Gex Our proposal

Austra Accuracy 83.64 - 82.52 64.3 89.42
#Rules 6.6 - 2 67.52 3

Pima Accuracy - 73.4 78.59 0.889 77.87
#Rules - 23.6 1 27.8 6
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6. Conclusion
A new method of rule extraction from ANNs has been proposed. The performance of our extraction algorithm
is improved by combining the ANN with a genetic algorithm. The algorithm starts by removing the misleading
rules by applying the support and confidence measures. The results show that the proposal achieves high
performance when comparing it with others works. However, the results are strongly dependent on α , β and δ

parameters. This may affect the feasibility of the method. To overcome this problem, an interesting extension
is the use of another optimization strategy that offers multiobjective optimization in the Pareto sense. Another
interesting extension is the application of our method to extract rules from neural networks trained with original
input features without any binarization.
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