
Turk J Elec Eng & Comp Sci
(2018) 26: 2489 – 2499
© TÜBİTAK
doi:10.3906/elk-1707-6

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Optimization in the catalyst optimizer of Spark SQL

Meenu CHAWLA, Vinita BANIWAL∗

Department of Computer Science & Engineering, Maulana Azad National Institute of Technology, Bhopal, India

Received: 02.07.2017 • Accepted/Published Online: 09.05.2018 • Final Version: 28.09.2018

Abstract: Apache Spark is one of the most technically challenged frameworks for cluster computing in which data
are processed in a parallel fashion. The cluster consists of unreliable machines. It processes a large amount of data
faster compared to the MapReduce framework. For providing the facility of optimized and fast SQL query processing,
a new unit is developed in Apache Spark named Spark SQL. It allows users to use relational processing and functional
programming in one place. It provides many optimizations by leveraging the benefits of its core. This is called the
catalyst optimizer. This optimizer has many rules to optimize queries for efficient execution. In this paper, we discuss
a scenario in which the catalyst optimizer is not able to optimize the query competently for a specific case. This is the
reason for inefficient memory usage and increases in the time required for the execution of the query by Spark SQL. For
dealing with this issue, we propose a solution in this paper by which the query is optimized up to the peak level. This
significantly reduces the time and memory consumed by the shuffling process.
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1. Introduction
In the past few years, many frameworks have been introduced to deal with unstructured and massive data.
Every framework contributed some major functionalities for the better processing of enormous collections of
data. Similarly, a new framework has also been introduced by the Apache foundation, which is Apache Spark
[1]. Spark is responsible for cluster computing and processes applications by data-parallel computation on a
cluster of nodes.

A new module has also been introduced in Apache Spark, which is called Spark SQL [2]. It allows Spark
programmers to utilize the benefits of the complex analytics libraries of Apache Spark. This module combines
relational processing and functional programming APIs of Spark so that programmers can easily switch between
both mechanisms and do not have to think about choosing one facility at a time. The following contributions
have made it possible to achieve both functionalities in one module. First is the catalyst optimizer, which is the
core of Spark SQL and is extendable so that new rules can be added easily as and when the need arises. The
second is DataFrame, which is a component of Spark. The performance and working of Spark are considerably
different from that of MapReduce [3]. It has the facility to evaluate operations in a lazy manner so that it can
perform relational optimizations. Spark SQL is designed in such a way that it can handle structured data in an
efficient manner.

A midquery fault tolerance mechanism is provided by Spark SQL by using an abstraction called a resilient
distributed dataset (RDD) [4]. The RDD is the key reason to choose a Spark framework for interactive and
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iterative applications because these applications require reusing the data and RDDs make it possible to reuse
the data efficiently by keeping the intermediate data in the memory.

In this way, Spark provides numerous advantages over the previously introduced frameworks. Spark SQL
has a catalyst optimizer in its core. This optimizer has several rules for optimizing relational queries. These
rules are applied to a data structure called a tree. The tree is the main data type in this optimizer. Before
executing a query, it passes through four phases of the catalyst optimizer. These phases are analysis, which is
applied to either SQL queries or DataFrame; logical optimization, which is done on the analyzed logical plan;
physical planning, during which the optimized logical plan is taken as input and some physical operators are
applied to optimize the plan; and code generation, in which the physical plan is converted into Java bytecode
to run on each node of the cluster.

In this manner, relational queries are executed by applying some richer optimizations on them. We
considered the physical plans of specific queries and observed that some optimizations are still possible to be
applied before executing the queries. After applying all possible optimizations manually on those queries, we
saw that the time and memory required by the shuffling process are significantly less for queries on which manual
optimization has been done, compared to the original query. Thus, there is a need to add this optimization to
the catalyst optimizer so that unnecessary memory consumption and time can be reduced to a certain extent.
To overcome this issue, we designed an algorithm. When these queries pass through the algorithm the memory
and time consumption get reduced during the shuffling process.

2. The existing method to optimize queries having joins and filters

In this paper, we discuss a scenario in which some more optimizations are still possible to be imposed on queries,
which are currently not applied by the corresponding rule of the catalyst optimizer. This specific scenario occurs
when a query has joins and filters in it. Before understanding the query execution, let us understand the shuffling
process, which is the key subject of this study.

2.1. Shuffling

Shuffling [5] is a process that is part of the Spark driver. Shuffling is an intermediate step of the Spark
application that consumes resources and can affect the process of Spark applications because it requires disk
I/O, serialization, and network I/O to calculate the result. It takes place when a Spark job contains data
aggregation operations like reduceByKey, groupByKey, or Join.

Shuffling is a process in which data are redistributed over partitions and transferred between stages. To
organize all the data for a reduce task, Spark needs to perform an all-to-all operation, which is called shuffling.
The shuffle phase is a combination of partitioning data and aggregating data according to the situation. During
this process, all partitions are read to discover the values related to all the keys. These values are used to
calculate the result for each key. During this process, Shuffle Write and Shuffle Read operations take place
separately. These operations are shown in Figure 1.

“Shuffle Write” can be assumed as the sum of all written serialized data on all executors before trans-
mitting, normally at the extremity of a stage. “Shuffle Read” is the total amount of reading of serialized data
on all executors at the starting of any stage. All the results related to single map tasks are kept in memory.
Later, these results are sorted according to the target partition and then written to a single file. If the data
are too large for the memory, then Spark starts to spill these tables to the disk, incurring additional overhead
of disk I/O and increasing garbage collection. Shuffling is basically a process to maintain a shuffle file for each
partition.
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Figure 1. Method of selecting the filters to be pushed by existing rule.

Normally in Spark, the number of shuffle files generated during shuffling is M × R.
Here, M = total no. of map tasks and R = total no. of reduce tasks.
Shuffling is improved in Spark by using the sort-based [6] technique for particular scenarios. For un-

derstanding the optimizations that are of interest to us, let us consider the following queries. Two queries are
written here. In both the queries, some conditions and joins are placed and both queries have the same objective
and produce the same result after execution.

Query1:
Select 2 col2 from 1 table join 2 table
Where (1 col1=2 col1
and 1 col2=”ABCD” and 1 col3=”EFGH”
and 1 col4=”1111” and 2 col3=”2222”
and 2 col4=”3333” and 2 col5=”WXYZ”)
OR
(1 col1=2 col1
and 1 col2=”aaaa” and 1 col3=”bbbb”
and 1 col4=”1111” and 2 col3=”2222”
and 2 col4=”3333” and 2 col5=”cccc”)

Query2:
Val 1 half = hiveContext.sql (“select 1 col1, 1 col2 from 1 table
Where (1 col2=”ABCD” and 1 col3=”EFGH” and 1 col4=”1111”)
OR
(1 col2=”aaaa” and 1 col3=”bbbb”
and 1 col4=”1111”) ”)
Val 2 half = hiveContext.sql (“select 2 col1, 2 col2, 2 col5 from 2 table
Where ( 2 col3=”2222” and 2 col4=”3333”
and (2 col5=”WXYZ” or 2 col5=”cccc”) ”)
1 half.registerTempTable (“1 filter”)
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2 half.registerTempTable (“2 filter”)
hiveContext.sql (“select 2 col1 from 1 filter join 2 filter
Where (1 filter.1 col1=2 filter.1 col1
and 1 filter.1 col2=”ABCD”
and 2 filter.2 col5=”WXYZ”)
OR
(1 filter.1 col1=2 filter.1 col1
and 1 filter.1 col2=”abcd”
and 2 filter.2 col5=”cccc”) ”)

After executing both the queries on Spark SQL, the memory required by both shuffle write and shuffle
read operations is calculated and the overall time required to process the queries is noted in order to compare
the queries. The results obtained by executing these two queries are shown in Figures 2 and 3.

Stage ID Duration(sec) Input Shuffle-Read Shuffle-Write 

5 2  34.1 KB  
2 0.3  256.0 B  
1 48 1808.5 MB  34.1 KB 
0 276 10.6 GB  3.2KB 

 
Stage ID Duration (sec) Input Shuffle-Read Shuffle -Write 

5 1  6.6 KB  
2 0.3  32.0 B  
1 49 1808.5 MB  3.4 KB 
0 288 10.6 GB  3.2 KB 

Figure 2. Execution of Query 1. Figure 3. Execution of Query 2.

As we can see, in query 2, some manual optimizations are done by pushing all possible filters before
applying a join operation; therefore, query 2 takes a very smaller amount of time and memory during shuffling
for its execution. In query 1, only existing optimizations are applied, and some filters are pushed before joining,
so it consumes a lot of memory and time compared to query 2.

There is a dedicated rule of the catalyst optimizer for pushing the filters and evaluating them before
joining operation. The rule is “Push Predicate Through Join”, which is applied to queries that have “joins” and
“filters”. It has its own criteria to select filters, which can be pushed before join, and it does not care about the
remaining filters. When this existing rule is applied to query 1 and query 2, a significant decrease in time and
memory consumption is observed.

Let us understand the criteria used by this rule for the selection of the filters to be pushed. When the
query has some groups of filters, where each group is separated by the “or” operator and filters of each group
are separated by the “and” operator,

• This rule takes the logical plan of a query as an input and classifies the filters into deterministic and
nondeterministic filters.

• The filters that are deterministic in nature are checked for selection to be pushed.

• The deterministic filters are then segregated into Left-Evaluated Filters, Right-Evaluated Filters, and
Common Conditions. Only those filters having the same column name and same literal value are pushed,
which are present in all the groups of filters.

1. Left-Evaluated Filters are the filters that are pushed before join to the left side table of the join operation.

2. Right-Evaluated Filters are filters that are pushed before join to the right side table of the join operation.
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3. Common Conditions are the filters that remain after the above segregation. They are evaluated after join
operations and they are the reason for unnecessary memory and time consumption during shuffling. This
functionality is illustrated by Figure 4.
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Figure 4. Shuffle read and shuffle write.

In this way, from Query 1, 1 col4=”1111” and 2 col3=”2222” and 2 col4=”3333” are pushed before the
join operation because these filters are part of both the groups separated by the “OR” operator. The remaining
filters are not pushed.

Still, some of the remaining filters can be pushed before the joining operation, which will result in an
efficient shuffling process. Proof of this is shown in query 2, where all filters are pushed before join and evaluated
in a different way. Therefore, the memory consumption and time required by query 2 are much lower compared
to query 1. This is depicted in Figure 2.

Hence, there is a need to add an algorithm that can deal with the above-mentioned issue. This issue is
also discussed in Apache Jira.

3. Proposed solution

The purpose of providing an additional optimization to the query is to enhance the performance of the shuffling
process during execution. It has been elucidated above that shuffling is already a costly operation because it
transfers data from one executor to another.

To optimize the query, the following algorithm has been designed:
Here, Step 5 is the most essential as it reduces the size of the data processed during shuffling. Step 6 is

executed as a cross-check to compute the final accurate result. This is done because there may be some data
from Step 5 that may not actually be part of the final result.

4. Results and analysis

For proving the efficiency of the proposed algorithm, some queries are designed. They are executed by both the
existing and proposed approaches. This clearly demonstrates the benefits of the proposed approach.
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Algorithm
1: Extract the Common Conditions from the query, which are not pushed by the existing system.
2: Separate the filters as Left-Evaluated Filters and Right-Evaluated Filters.
3: Prepare a Left Group by applying the “OR” operator between all Left-Evaluated Filters when considered

pairwise.
4: Prepare a Right Group by applying the “OR” operator between all Right-Evaluated Filters when considered

pairwise.
5: Push the Left Group to the left-side table of join and the Right Group to the right-side table of join to

evaluate filters before join.
6: Feed the Left Group and the Right Group into the query even after the join operation for ensuring the

accuracy in calculation of the result.

Query 1:

Select count (*) FROM table1 join table2
|where (table1.User Name=table2.User Name
|and table1. ‘From‘=’From: richard.tomaski@enron.com‘
|and table1.Subject=’Subject: Harper Deals’
|and table1.Mime Version=’Mime-Version: 1.0’
|and table2. ‘Date‘=’Date: Tue, 3 Apr 2001 ’
|and table2.Message ID=’Message-ID:<12345> ’)) | or
|(table1.User Name=table2.User Name
|and table1. ‘From‘=’From: laura.vuittonet@enron.com’
|and table1.Subject=”Subject: Tony’s deals”
|and table1.Mime Version=’Mime-Version: 1.0’
|and table2. ‘Date‘=’Date: Mon, 9 Apr 2001’
|and table2.Message ID=’Message-ID:<123> ’)

In Query 1, there are six filters in each group. Only two conditions are exactly same (table1.Mime Version=’Mime-
Version:1.0’ and table1.User Name=table2.User Name) in both the groups as only these conditions will be
pushed by the existing optimizer. These are thus the strict filters and the remaining are loose filters. These
loose filters are taken care of by our proposed approach. Table 1 shows the difference between the performance
of query execution by the existing and proposed approaches using different sizes of data for each comparative
execution.

Table 1. Execution of Query 1.

S. no.
Existing approach Proposed approach

Input (table1 & table2) Duration of Shuffle Duration of Shuffle
execution memory execution memory

1. 159.4 MB & 954.0 MB 4 min 62.7 MB 33 s 47.8 KB
2. 1124.4 MB & 5.3 GB 53 min 95.7 MB 3 min 64.0 KB
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Query 2:

Select count (*) FROM table1 join table2
|where (table1.User Name=table2.User Name
|and table1.Subject=’Subject: Harper Deals’
|and table1.Mime Version=’Mime-Version: 1.0’
|and table2. ‘Date‘=’Date: Tue, 3 Apr 2001’) | or
|(table1.User Name=table2.User Name
|and table1.Subject=”Subject: Tony’s deals”
|and table1.Mime Version=’Mime-Version: 1.0’
|and table2.‘Date‘=’Date: Mon, 9 Apr 2001’
|and table2.Message ID=’Message-ID: <12321401.1075840995900> ’)

In Query 2, only one condition (table1.Mime Version=’Mime-Version: 1.0’) is pushed by the existing
method before the join operation. The remaining filters are untouched in both groups. These filters will
be pushed by the proposed algorithm. table1.Subject=’Subject: Harper Deals’ and table1.Subject=”Subject:
Tony’s deals” will both be pushed towards table1 and will be evaluated before joining. table2.‘Date‘=’Date: Tue,
3 Apr 2001 ’, table2.‘Date‘=’Date: Mon, 9 Apr 2001’, and table2.Message ID=’Message-ID:
<12321401.1075840995900> ’ will all be pushed towards table2 and will be evaluated before joining. The
result from the above two tables will be used for join operation.

Table 2 shows the difference between the memory and time required during execution of Query 2 by
the existing and proposed approaches. The proposed approach gives better results compared to the existing
approach.

Table 2. Execution of Query 2.

S. no.
Existing approach Proposed approach

Input (table1 & table2) Duration of Shuffle Duration of Shuffle
execution memory execution memory

1. 159.4 MB & 954.0 MB 4.1 min 61.1 MB 15 sec 43.5 KB
2. 1124.4 MB & 5.3 GB 1.1 hr 92.7 MB 3 min 57.6 KB

Query 3:

Select count (*) FROM one1 as table1 join one2 as table2
|where (table1.User Name=table2.User Name
|and table1.Subject=’Subject: Harper Deals’
|and table1.To=’To: andrew.lewis@enron.com’
|and table2. ‘Date‘=’Date: Tue, 20 Mar 2001’
|and table2.File No=’15.’) | or
|(table1.User Name=table2.User Name
|and table1.Subject=”Subject: Tony’s deals”
|and table2. ‘Date‘=’Date: Mon, 9 Apr 2001’
|and table2.File No=’15.’
|and table2.Message ID=’Message-ID: <12321> ’)
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In Query 3, only one condition (table2.File No=’15.) is the same in both groups, so it will be pushed
before joining.

Filters table1.Subject=’Subject: Harper Deals’, table1.To =’To: andrew.lewis@enron.com’, and ta-
ble1.Subject=”Subject: Tony’s deals”2001’ will be pushed towards table1 and thus the data of table1 will
be refined.

Similarly, filters table2.‘Date‘=’Date: Tue, 20 Mar 2001’, table2.‘Date‘=’Date: Mon, 9 Apr 2001’,
table2.File No=’15.’, and table2.Message ID=’Message-ID: <12321> will be evaluated by table2.

The resultant data from both tables will be considered for the join operation. Table 3 shows the difference
between the memory and time required during the execution of Query 3 by the existing and proposed approaches.
The memory consumption is much less with the proposed approach compared to the existing approach while
the duration of execution does not change considerably.

Table 3. Execution of Query 3.

S. no.
Existing approach Proposed approach

Input (table1 & table2) Duration of Shuffle Duration of Shuffle
execution memory execution memory

1. 159.4 MB & 954.0 MB 50 s 19.1 MB 42 s 924.0 B
2. 1124.4 MB & 5.3 GB 3.3 min 32.7 MB 3.2 min 1341.0 B

Query 4:

Select count (*) FROM table1 join table2
|where (table1.User Name=table2.User Name
|and table1.Subject=’Subject: Harper Deals’
|and table1.To=’To: andrew.lewis@enron.com’
|and table2. ‘Date‘=’Date: Tue, 20 Mar 2001’
|and table2.File No=‘15.’)

Query 4 is a scenario in which only one group of filters exists, so all the filters will be pushed by the
existing system. Thus, all filters are strict filters in this query and the proposed approach does not have to
look for any other filters because there is no loose filter. Subsequently, both the existing and the proposed
approaches will use the same amount of shuffle memory and time.

Table 4 represents that there is no difference between the execution performance of the existing and
proposed algorithms for Query 4 because there is no loose filter in the query.

Table 4. Execution of Query 4.

S. no.
Existing approach Proposed approach

Input (table1 & table2) Duration of Shuffle Duration of Shuffle
execution memory execution memory

1. 159.4 MB & 954.0 MB 64 s 158.0 B 64 s 158.0 B
2. 1124.4 MB & 5.3 GB 3.2 min 163.0 B 3.2 min 163.0 B
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Query 5:

Select count (*) FROM join table2
|where (table1.User Name=table2.User Name
|and table1.Subject=’Subject: Harper Deals’
|and table1.To=‘to: andrew.lewis@enron.com’
|and table2. ‘Date‘=’Date: Tue, 20 Mar 2001’
|and table2.File No=’15.’) | or
|(table1.User Name=table2.User Name
|and table1.Subject=”Subject: Tony’s deals”
|and table2. ‘Date‘=’Date: Mon, 9 Apr 2001’
|and table2.Message ID=’Message-ID: <12321 > ‘)

In Query 5, no filter is the same in both groups of filters. Therefore, there is no strict filter and all the
filters are loose filters. The existing approach will not push any filter towards any table of join operation. By
the proposed approach, table1.Subject=’Subject: Harper Deals’, table1.To=‘to: andrew.lewis@enron.com’, and
table1.Subject=”Subject: Tony’s deals” will all be pushed towards table1 to get filtered.

table2.‘Date‘=’Date: Tue, 20 Mar 2001’, table2.File No=‘15.’, table2.‘Date‘=’Date: Mon, 9 Apr 2001’,
and table2.Message ID=’Message-ID: <12321 > ’ will all be pushed to table2 and evaluated on table2. The
above resultant data will be fed in the join operation.

Table 5 is proof of efficient utilization by the proposed method during shuffle memory because there is a
huge difference between the time and memory required by both the existing and previous methods for executing
Query 5. It shows that the introduced method gives a way to utilize memory efficiently. After executing all
the queries by the existing and proposed approaches, it is concluded that the execution time and the memory
consumption during the shuffling process are much lower by the proposed approach compared to the existing
approach.

Table 5. Execution of Query 5.

S. no.
Existing approach Proposed approach

Input (table1 & table2) Duration of Shuffle Duration of Shuffle
execution memory execution memory

1. 159.4 MB & 954.0 MB 3.5 min 78.3 MB 40 s 84.7 KB
2. 1124.4 MB & 5.3 GB 1.4 h 124 MB 3.2 min 107.5 KB

Figure 5 represents the time required by executing all the queries by the existing and the proposed
approach, where table1 has 159.4 MB amount of data and table2 has 954.0 MB amount of data. There is a
significant change in both time and memory consumption between the existing and the proposed approach of
execution.

Figure 6 represents the time required for executing all the queries by the existing and the proposed
approach, where table1 has 1124.4 MB amount of data and table2 has 5.3 GB amount of data.

Figure 7 represents the memory required during the shuffling process for executing all the queries by both
the approaches. Here table1 is of size 159.4 MB and table2 is of size 954.0 MB.

Figure 8 represents the memory required during the shuffling process during execution of all the queries
by both the approaches, where table1 is of size 1124.4 MB and table2 is of size 5.3 GB.
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Figure 6. Time required executing all the queries (1124.4
MB & 5.3 GB).
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Figure 8. Memory required executing all the queries
(1124.4 MB & 5.3 GB).

5. Conclusion
The proposed approach reduces the data before joining, which leads to higher performance of a job. It results
in a faster query processing without loading irrelevant data, which is not possible by the existing approach.
Therefore, much lower amounts of memory and time are required during the shuffling process compared to the
existing approach.

If there are no loose filters in the query, then both the existing and the proposed solutions take the same
amount of time and memory.

6. Future work
Discussion about the strength of the proposed approach has been done above, but still, to improve this solution,
new ideas can be mixed into this approach. This introduced approach fits specific queries and in that case our
proposed algorithm will improve the memory usage and execution time.

The next target will be to optimize the queries of different formats up to a significant level in the future
so that a user does not need to think about the semantics of the query or manual optimizations. All the possible
optimizations will be done automatically.
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