
Turk J Elec Eng & Comp Sci
(2018) 26: 2500 – 2511
© TÜBİTAK
doi:10.3906/elk-1710-155

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Genetic programming-based pseudorandom number generator for wireless
identification and sensing platform

Cem KÖSEMEN, Gökhan DALKILIÇ, Ömer AYDIN∗

Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

Received: 16.10.2017 • Accepted/Published Online: 29.04.2018 • Final Version: 28.09.2018

Abstract: The need for security in lightweight devices such as radio frequency identification tags is increasing and
a pseudorandom number generator (PRNG) constitutes an essential part of the authentication protocols that provide
security. The main aim of this research is to produce a lightweight PRNG for cryptographic applications in wireless
identification and sensing platform family devices, and other related lightweight devices. This PRNG is produced with
genetic programming methods using entropy calculation as the fitness function, and it is tested with the NIST statistical
test suite. Moreover, it satisfies the requirements of the EPCGen2 standards.

Key words: Pseudorandom number generation, genetic programming, wireless identification and sensing platform,
radio frequency identification, security

1. Introduction
Pseudorandom number generators (PRNGs) are required in many cryptographic applications for fast and
effective generation of secret keys and nonce values. Secure communication protocols use random nonce values for
authentication purposes, which are very critical parts of these protocols. In this research, a lightweight PRNG is
produced to provide a secure end-to-end communication between the wireless identification and sensing platform
(WISP) family of devices and their readers. Since this PRNG’s main target is lightweight devices, only the
mathematical addition operator and the bitwise logical operators are used. Besides WISPs, this new PRNG can
be used on any other lightweight device, like various Internet of Things (IoT) devices, which transfer sensitive
information that needs to be protected.

A WISP is basically an RFID device with a general-purpose, fully programmable 16-bit microcontroller
and customizable external physical sensors like an accelerometer, light sensor, and temperature sensor [1–3].
The WISP uses the power of the reader’s emitted radio signals to work, which allows it to run without a battery.
The WISP has a processor and it can execute software programs preloaded on it, unlike most of the other passive
RFID tags. That feature makes WISPs suitable for implementing security protocols and allows running these
protocols easier. The PRNG produced in this work is also programmed onto a WISP and runs on its processor
flawlessly.

WISP 5 is the latest version of the WISP device family, developed at the University of Washington
laboratories. A WISP 5 device obtained from the University of Washington is used for testing purposes in this
work. WISP 5, presented on the website wisp5.wikispaces.com, conforms to the EPC Class 1 Generation 2
(EPC C1G2) standard for ultrahigh frequency (UHF) RFID tags.
∗Correspondence: omer.aydin@deu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2500

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

There are many different ways to generate random numbers. True random number generators (TRNGs)
use nondeterministic sources, for example physical sources like temperature or magnetic fields, as their entropy
sources and thus generate true random numbers [4]. TRNGs generally have a slow rate of number production.
PRNGs generate random numbers with deterministic functions that are basically mathematical formulas [5].
The same seed given to these functions always outputs the same sequence as the result. PRNGs have higher
rates of number production, but it is required that PRNGs be seeded with true random numbers.

PRNGs should be tested with appropriate tools to determine their statistical quality (randomness).
Currently, there are several types of test software that use different methods. In this work, the NIST statistical
test suite (STS) is selected for validating the quality of the generated random numbers, because NIST STS is
one of the well-known statistical test suites and has 15 different tests [6–9]. NIST STS applies a set of statistical
tests to the binary sequence that is generated by the given PRNG. These tests evaluate the statistical properties,
like uniformity of zeroes and ones, repeating patterns, entropy, etc.

Genetic programming (GP) is a method for problem-solving that provides a full or an approximate
solution among a set of initial computer programs. This initial set (called the population) of programs or
expressions may change depending on the problem domain. For example, if the solution is a good PRNG,
the possible population consists of PRNG functions that are formed by numbers, inputs, and mathematical or
logical operations. Each individual of the population has a fitness value based on how well it solves the problem.

In the initial generation, the randomly generated set of individuals has low fitness scores as expected.
After generations pass by applying selection, crossover, and mutation operations to the individuals, better
generations with higher fitness values are obtained and so the population is improved. If any of the individuals
reach the aimed fitness score in any specific generation, that individual is considered to be the solution to the
problem [10,11].

2. Related works
There are some previous studies in which the GP methods were used to generate random numbers or PRNGs.
One of the first works for producing a PRNG with a genetic algorithm (GA) was Koza’s work that produced
a randomizer [12]. That randomizer converts a sequence of consecutive numbers to random numbers; hence, it
does not rely on a recursive seed. As its fitness function, it uses a bit entropy calculation method, where binary
sequence outputs with higher entropy are considered better. Bit entropy calculation as the fitness function is
also used in this work. Koza’s work includes some simple statistical test results, like frequency and gap tests,
but not a complete suite like NIST STS. It also uses costly arithmetic operations like modulus and division,
which can be a problem in lightweight devices of the IoT.

Tomassini et al.’s work generated pseudorandom sequences directly by using a cellular automaton (CA)
instead of generating a deterministic PRNG [13]. The GA in this work is used for producing a suitable CA.
This GA evolves the cells of a single, nonuniform CA, which has cell rules that are initialized randomly. This
CA generator achieved good results within the Diehard test suite.

In Chlumecky et al.’s study, methodology and software using a GA and a newly created hydro random
number generator (HRNG) for the optimization of a rainfall-runoff model were introduced [14]. Their new
HRNG generates random numbers based on hydrological data and gives better results than PRNGs, as they
claimed. Nevertheless, this paper does not include structural or statistical analysis of the HRNG’s security.

Çabuk et al. in their work [15], proposed a new xorshift-based lightweight PRNG, called xorshiftR+ ,
which is specially designed for the constrained devices of the IoT and tested on a WISP. The authors also

2501

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

obtained very satisfying results in terms of speed and randomness from NIST STS and a more comprehensive
suite, TestU01.

Ibrahim and Dalkılıç focused on the security of healthcare systems, and especially authentication proto-
cols, in their article [16]. They developed a new mutual authentication protocol using elliptic curve cryptography
and the advanced encryption standard (AES) for RFID tags. This protocol was tested and coded on WISP
passive RFID tags. Although they claimed that it overcomes the security problem for healthcare systems
using RFID tags, they used a WISP 5 built-in random number generator for their authentication protocol.
RNGs should be examined structurally and statistically to say that they are secure, and they did not give any
information about the security status of that PRNG.

Knežević, in his study [17], stated that evolutionary computation could be used to create PRNGs, which
has an important role against side channel attacks. Knežević concluded that the GP method can speed up
exponential computation or can be used to break the Merkle–Hellman cryptosystem in the asymmetric key
cryptography and also can create Boolean functions or good quality S-boxes for symmetric key cryptography.
In this article, the claims were not directly supported by experimental results, and only articles that support
the assertion were reviewed.

Challa et al. investigated the latest authentication protocols proposed for implantable medical devices
(IMDs) and WISPs in their study [18]. In this paper, they gave comparative details considering IMDs’
computation and communication costs and functionality features among the existing authentication schemes.
They called attention to some difficulties that need to be mitigated for authentication schemes to be designed
for IMDs. Although they mentioned the importance of random number generators in their paper, there was
no evaluation about the resource usage and security analysis of those RNGs that have one of the key roles for
authentication protocols.

Hernandez-Castro et al.’s work used the avalanche effect and the strict avalanche criterion to measure
the fitness of PRNGs [19]. It generates an initial set of random numbers with the Mersenne Twister generator
and randomly changes a single bit. After that, it calculates the Hamming distance between these values and
the output of their PRNG.

Hernandez-Castro and Tomassini’s studies produced good results with Diehard, but they did not contain
the NIST STS results, which is a more comprehensive package than the Diehard test package [20]. Moreover,
it was mentioned that only successful results were obtained with statistical tests and the results were not given
for the measurements and tests performed on any equipment.

LAMED is another project that also uses the strict avalanche criterion as its fitness function [21]. As
in our project, a PRNG for low-cost, low-power RFID tags is produced considering the EPC standard, and a
hardware implementation has been designed to test that PRNG, too. However, instead of running the algorithm
on real hardware, the authors of LAMED preferred to create only a conceptual design.

Khan and Bhatia’s work applied a GA on a binary sequence that was already generated and selected a
key from that sequence [22]. The coefficient of correlation calculation was used in the fitness function. Even
though it has encouraging results, no known statistical tests were provided along with those results.

Leonard and Jackson’s high entropy RNG production with single-node genetic programming (SNGP)
work was also based on Koza’s bit-entropy calculation method [12,23]. It also uses the same operator set that
consists of arithmetical operators as in Koza’s study. SNGP is a form of GP, which uses graphs and dynamic
programming methods that improve efficiency. Although the resulting RNG has some good results, it could not
pass all of the NIST STS tests.

2502

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

Picek et al. generated a deterministic RNG function for lightweight devices with the Cartesian genetic
programming method [24]. In this method, the expressions are represented as an indexed graph. The avalanche
criterion and approximate entropy tests are used in its fitness function. This work uses a different GA approach
for generating the PRNG, but does not provide any testing results.

3. Materials and methods
Producing a PRNG with GP is tricky, because there is no certain testing method that ensures that a PRNG
has high quality. There are a vast number of statistical tests that determine different means of quality of the
generated sequences from a particular PRNG. Because of that, different fitness calculation methods according
to these tests were tested in previous works.

Shannon entropy calculation [25] used in this work is one of these suitable statistical testing methods.
Binary sequences with higher entropy are statistically well distributed and tend to appear more random.

The GA is a suitable method for generating a PRNG since bunches of mathematical/logical expressions
that can be used as PRNG functions are essentially elements of a set with infinite members. Selecting a suitable
PRNG function from that set can be done using a heuristic method such as the GA.

3.1. Genetic algorithm initial population

The GA starts with an initial population consisting of randomly generated individuals (chromosomes). In this
work, each individual is a mathematical prefix expression and each token of these prefix expressions is a gene
of the GA. The prefix form is used because it is easier to store and to make operations on.

The optimal value for the population size was determined as 50 because different population sizes bigger
than 50 were tested in the GA, but no positive or negative effect was observed on the results. Using a bigger
population size also increases the running time of the GA.

For generating the initial population, an operator set must be determined. The operator set used is given
in Eq. (1):

O = { +, &, |, ∧, >, !}. (1)

The operators are as follows: the addition, bitwise and, bitwise or, bitwise exclusive or, left rotation (left
circular shift), and unary bitwise not operators. Other mathematical operators like multiplication, division, and
modulus have higher costs and are not implemented for lightweight devices like WISPs, so these operators are
not appropriate to be used.

There are also integer numbers and input parameters that are used in the expressions. Input is indicated
with the letter J. Integer numbers are selected between 1 and 16 to add variety to the generated PRNGs. We
selected these numbers after testing a bigger range of numbers. Increasing the range of the numbers does not
affect the results significantly.

3.2. Genetic algorithm steps

The first step in the genetic algorithm is tournament selection [26]. The tournament selection randomly picks
a predefined number of individuals from the population and selects the fittest of the picked individuals. In this
work, 5 individuals are picked for the tournament selection. Since the population size is 50, 5 is an appropriate
number for selecting one individual from that relatively small population. After two tournament selection
operations are applied to the population consecutively, two individuals are gathered as the result.

2503

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

These two individuals picked by the tournament selection are the inputs of the single-point crossover
operation. For the single-point crossover, the tree representations of two expressions from Figure 1 exchange
parts from randomly selected operator nodes, one from each of them. Basically, they exchange a subtree. The
fitter of the new two individuals, which has the higher entropy, is selected as the result. Only the selected
operator nodes are swapped between expressions, so the total token count does not change. On this basis, two
expressions, Eq. (2) and Eq. (3), are given to the crossover operation as inputs and the tree representations of
these expressions given in Figure 1 are formed.

^

+

J 2 ! 13

>

J

&

|

J 4 7 J

+

Figure 1. Tree representations of the expressions before the crossover operation.

∧ + J 2 > ! J 13 (2)

& | J 4 + 7 J (3)

If the “>” node of the first tree and “+” node of the second tree are selected as the crossover points,
after the crossover operation, these two expressions become like in Eq. (4) and Eq. (5). The new trees are
given in Figure 2.

^

+

J 2 ! 13

>

J

&

|

J 47 J

+

Figure 2. Tree representations of the expressions after the crossover operation.

∧ + J 2 + 7 J (4)

& | J 4 > ! J 13 (5)

The maximum token count of the expression produced by the crossover operation is limited to 80. That
means that there cannot be an expression that has more than 80 tokens as a result of a crossover operation.

2504

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

After the crossover operation returns a new individual, the mutation operation is applied. The mutation
operation only changes one operator of the expression with a probability of 5%. The rate 5% is selected
experimentally, but in GAs, the mutation probability is generally low and it is set just to add some variety to
the population. For example, if a binary operator is selected as a target of the mutation operation, it is replaced
with a new randomly selected binary operator. Finally, this individual becomes a new member for the next
population.

Also, the fittest individual is preserved and remains unchanged in the next generation. This method is
known as elitism in GP. The pseudocode of the genetic algorithm steps is given in Figure 3.

 do

 initialize newPopulation

 for i <- 0 to populationSize do

 Elitism(population, newPopulation)

 firstSelection <- TournamentSelection(population)

 secondSelection <- TournamentSelection(population)

 newIndividual <- Crossover(firstSelection, secondSelection)

 Mutate(newIndividual)

 newPopulation.Add(newIndividual)

 end for

 fittest <- newPopulation.fittest

 while fittest.fitness <= 18

Figure 3. The GP method algorithm.

3.3. Fitness function
The fitness function determines how good the solution is. In our case, the individual with the best entropy value
is considered as the fittest. The Shannon entropy method is used for calculating the entropy of the generated
binary sequences [25]. It basically calculates the minimum number of symbols to encode the data as in data
compression. The formula of Shannon entropy is shown in Eq. (6).

H = −
N∑
i=0

pi log2 pi (6)

The H value is separately calculated for every n-bit entropy value. The logarithmic base is 2, because
the data are encoded into binary sequences. pi is the frequency of the specific character in the binary sequence.
Assuming that we want to calculate the 2-bit entropy, first, all possible 2-bit characters’ (00, 01, 10, 11)
frequencies in the binary sequence are to be calculated. Likewise, 1-bit entropy calculates the frequencies of 0s
and 1s. After these pvalues (frequencies) are obtained, H is calculated as per the formula. Since the frequencies
vary between 0 and 1, we add a minus sign to the formula to negate the negative result.

2505

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

In our GA’s fitness function, 1-bit to 8-bit and 16-bit entropies are calculated, divided by their n-bit
entropy values, and then summed. For instance, the 8-bit entropy value is divided by 8, which results in 1 at
maximum. The purpose of this division is that every n-bit entropy value should weight the same in the final
fitness value. When they are between 0 and 1, each n-bit entropy value has the same effect on the final fitness
value. Thus, the maximum entropy value that an individual can get is 9, because every n-bit entropy test
returns 1 at maximum. The fitness function calculates the score over two sequences from two different seeds,
so the maximum fitness value of an individual becomes 18.

For calculating the fitness of an individual, a predefined seed value is to be given and it generates 218

values. The input and output values of the expressions are 64-bit signed integers. Each output is used as the
next step’s input, which is similar to other PRNGs. The 218 integers’ entropy is calculated for two different
seed values and the fitness of the individual is finally determined.

4. Experimental results and discussion

The fittest expression produced with this experiment is shown in Eq. (7) in the prefix form.

+ J + + J + > + J + ∧ ! J 16 ! + J > J 6 11 ! + + + + J + J + J +

+ J + J + > J 6 ! ! + J > J 6 ! ∧ ! J 16 ! > J 4 + J + + J + J + >

+ ∧ > J 6 14 ∧ ! J 16 11 ! + J > J 6 ∧ ! J 16 ! + J > J 6 ! ∧ > J 6 16

(7)

In Figure 4, C implementation of the PRNG algorithm is given.

int64_t PRNG(int64_t J)

{

 int64_t a1 = (J >> 6) | (J << 58);

 int64_t a2 = (J >> 4) | (J << 60);

 int64_t a3 = J + J;

 int64_t a4 = ~J ^ 16;

 int64_t a5 = J + a1;

 int64_t a6 = J + a4 + ~a5;

 int64_t a7 = (a6 >> 11) | (a6 << 53);

 int64_t a8 = (a1 ^ 14) + a4;

 int64_t a9 = (a8 >> 11) | (a8 << 53);

 return ~(a1 ^ 16) + a3 + ~(~a2 + a3 + ~a5 + a3 + a3 + ~a4 + a5

 + a5 + a6 + a9) + a7;

}

Figure 4. C implementation of the proposed PRNG.

This expression has 98 tokens, where 55 of them are operators, and it has a fitness value of 17.99429. It
takes 11 generations in the GA to obtain this solution. However, it is found that the expressions with much

2506

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

higher entropy do not necessarily have good NIST STS results when tested. Because of that, even if the GA
produces expressions with entropy values higher than 17.999, they are not used.

4.1. NIST STS results
NIST STS results for a sequence of 16 million bits generated by the newly obtained expression are given in Table
1. As shown in the table, the produced PRNG successfully passes all of the NIST STS tests. This indicates that
the resulting sequence is statistically well distributed, so it provides the feeling and functionality of a random
sequence to some extent [6]. The bit-stream count property of NIST STS is given as 32 in this application. The
proportion values mean the ratio of the bits in the 32 bit-streams that passed the test. NIST STS evaluates 29
bits and above as successful. That means proportions that are bigger than 29/32 (0.90625) are considered as
random by the test suite.

Table 1. NIST STS results for the proposed PRNG.

Test P-value Proportion
Frequency 0.804337 1.00000
BlockFrequency 0.299251 0.96875
CumulativeSums 0.671779 0.96875
CumulativeSums 0.949602 1.00000
Runs 0.253551 1.00000
Longest Run 0.804337 1.00000
Rank 0.534146 1.00000
FFT 0.739918 1.00000
NonOverlappingTemplate (Avg.) 0.417842 0.98649
OverlappingTemplate 0.054199 1.00000
Universal 0.949602 1.00000
ApproximateEntropy 0.602458 1.00000
RandomExcursions (Avg.) 0.017591 0.97917
RandomExcursionsVariant (Avg.) 0.032163 0.97839
Serial 0.739918 1.00000
Serial 0.671779 1.00000
LinearComplexity 0.468595 1.00000

4.2. ENT results
Another pseudorandomness testing software is the ENT Test Suite that is defined and detailed at
www.fourmilab.ch/random. ENT applies a set of statistical tests to an output file generated by the sub-
ject PRNG. In Table 2, the three ENT test results for 128 MB output files that are generated from randomly
selected seed values are given.

The entropy result can be 8 at maximum, because each character is encoded in 1 byte that stores 8 bits.
Since the calculated entropy values are high, as seen in Table 2, the compression rate is 0%, which is a good
result. The ENT Test Suite gives the entropy results with a maximum precision of 6. Since all of the results
are very close to 8, they are represented as 7.999999 in Table 2. The ENT Test Suite calculates the chi-square

2507

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

Table 2. ENT test results for the proposed PRNG.

Test 2,121,363,896 (1st seed) 897,893,119 (2nd seed) 1,732,455,681 (3rd seed)
Entropy 7.999999 bits/byte 7.999999 bits/byte 7.999999 bits/byte
Compression rate 0% 0% 0%
χ2 statistic 276.17 (17.31%) 255.47 (48%) 255.1035 (48.64%)
Arithmetic mean 127.4947 127.5085 127.5012
Monte Carlo π 3.141592609012

(0.00% error)
3.141444551072
(0.00% error)

3.141423987469
(0.01% error)

Serial correlation coefficient –0.000100633592 –0.000123993062 –0.00000661128

distribution of the binary sequence, too. The chi-square rate indicates how frequently a random binary sequence
would exceed the calculated value. The calculated rate is expected to be in the range of 10% to 90%, which
is considered successful. The arithmetic mean is calculated by dividing the sum of all the bytes generated by
file length. The perfect score is 127.5, so the generated PRNG has successful results for that value. The Monte
Carlo value for the Pi test returns a result that converges to a Pi value. The resulting values are close to Pi
with a very small error rate between 0% and 0.01%, which is a good result.

The serial correlation coefficient shows how much a byte in the sequence depends on the previous bytes.
It is expected that this value should be close to zero, while it can be either negative or positive. As in Table 2,
the generated PRNG has serial correlation coefficient values that are close to zero.

4.3. EPCGen2 randomness requirements
While EPCGen2 does not specifically instruct how a PRNG should be implemented, it expects that any suitable
PRNG will pass three statistical tests [27]:

Test 1: The probability of a 16-bit random number selected from the generated sequence of the PRNG
must be bounded by 0.8/216 and 1.25/216 as shown in Eq. (8) and Eq. (9).

0.8
/
216 < P < 1.25

/
216 (8)

0.000012 < P < 0.000019 (9)

This requirement is basically a 16-bit entropy calculation. Since the generated PRNG outputs are 64-bit
numbers, they are divided into four parts to calculate the frequency.

After generating a 512 MB output file, the probability (P) for each number is found between 0.000013
and 0.000017. Since these numbers are within the boundaries, this requirement is satisfied.

Test 2: For 10,000 tags, the probability that more than one tag produces the same sequence must be
below 0.1% whenever the tags are energized.

For this requirement, we have to calculate how many different seed values the PRNG can accept. It is
calculated as in Eq. (10): [

10000×
(

1

264

)]
× 100 ∼= 5x10−14 < 0.1% (10)

Considering that the same sequence cannot be generated with different seeds, this requirement is satisfied
by our PRNG as shown in Eq. (10).

2508

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

Test 3: A 16-bit number selected from the PRNG must not be predictable with a probability better than
0.025%.

This requirement can be checked with serial correlation calculation of the generated sequence by using
the ENT Test Suite. It is tested with 128 MB files generated with the PRNG and all results pass the test with
success. The obtained results from different seeds are listed in Table 3. The requirement is satisfied since all
the sample values are below 0.00025 (0.025%).

Table 3. Serial correlation test results of the proposed PRNG.

Seed value Serial correlation coefficient
1,824,581,738 0.000023774318
845,522,866 0.000042487019
290,056,763 0.000071459114
685,445,128 0.000041220041
2,115,072,129 0.000010820175

4.4. Time constraint of EPCGen2
The EPCGen2 standard also has a time constraint for generating random numbers. Each tag has 18 ms for
encryption [28,29]. With our benchmark, for the test with the WISP 5 device, ten thousand 64-bit numbers are
generated in between 7200 and 7300 ms, which means the PRNG is executed 10,000 times. A 64-bit number is
thus generated in approximately 0.72 to 0.73 ms, which is clearly acceptable considering the total time slot of
18 ms.

5. Conclusion
There are previous works that generated PRNGs with different GP and fitness methods, but very few of them
can practically be used in lightweight devices, like WISP passive RFID tags. In this work, a lightweight PRNG
that successfully passes all the tests of the NIST STS is produced with GP methods. This brand-new PRNG
consists of performance-efficient operators, like logical bitwise operators and the arithmetical add.

This study shows that a statistically good PRNG can be generated with GP methods using the entropy
calculation as its fitness function. With this entropy calculation fitness method, a good PRNG can be produced
in a small number of generations.

Unlike most of the other PRNGs generated in the past, the PRNG generated in this work is tested on real
hardware and analyzed in terms of resource and time consumptions. It is also tested with EPCGen2 randomness
conditions.

For future works, other statistical properties (like in NIST STS) can be combined with bit entropy
calculation to improve the fitness function and generate better PRNGs.

Acknowledgment

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with
project number 215E225.

2509

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

References

[1] Smith JR, Sample AP, Powledge PS, Roy S, Mamishev A. A wirelessly-powered platform for sensing and compu-
tation. Lect Notes Comp Sci 2006; 495-506.

[2] Sample A, Yeager D., Powledge P, Smith J. Design of a passively-powered, programmable sensing platform for UHF
RFID systems. In: IEEE International Conference on RFID; 26–28 March 2007; Grapevine, TX, USA. New York,
NY, USA: IEEE. pp. 149-156.

[3] Chae HJ, Salajegheh M, Yeager DJ, Smith JR, Fu K. Maximalist cryptography and computation on the WISP
UHF RFID tag. In: Smith JR, editor. Wirelessly Powered Sensor Networks and Computational RFID. New York,
NY, USA: Springer, 2013. pp. 175-187.

[4] Stipčević M, Koç ÇK. True random number generators. In: Koç ÇK, editor. Open Problems in Mathematics and
Computational Science. Berlin, Germany: Springer, 2014. pp. 275-315.

[5] Park SK, Miller KW. Random number generators: good ones are hard to find. Commun ACM 1988; 31: 1192-1201.

[6] Bassham LE, Rukhin AL, Soto J, Nechvatal JR, Smid ME, Leigh SD, Levenson M, Vangel M, Heckert NA, Banks
DL. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.
Gaithersburg, MD, USA: National Institute of Standards and Technology, 2010.

[7] Barker E, Kelsey J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators.
NIST Special Publication 800-90A. Gaithersburg, MD, USA: NIST, 2014.

[8] Turan MS, Barker E, Kelsey J, McKay KA, Baish ML, Boyle M. Recommendation for the entropy Sources Used for
Random Bit Generation. NIST Special Publication 800-90B Second Draft. Gaithersburg, MD, USA: NIST, 2016.

[9] Barker E, Kelsey J. Recommendation for Random Bit Generator (RBG) Constructions. NIST Special Publication
800-90C Second Draft. Gaithersburg, MD, USA: NIST, 2016.

[10] Koza JR. Genetic programming as a means for programming computers by natural selection. Stat Comput 1994;
4: 87-112.

[11] Koza JR. Genetically breeding populations of computer programs to solve problems in artificial intelligence. Proc
Int C Tools Art 1990; 1: 819-827.

[12] Koza JR. Evolving a computer program to generate random numbers using the genetic programming paradigm. In:
Fourth International Conference on Genetic Algorithms; July 1991; San Diego, CA, USA. pp. 37-44.

[13] Tomassini M, Sipper M, Zolla M, Perrenoud M. Generating high-quality random numbers in parallel by cellular
automata. Future Gener Comp Sy 1999; 16: 291-305.

[14] Chlumecky M, Buchtele J, Richta K. Application of random number generators in genetic algorithms to improve
rainfall-runoff modelling. J Hydro 2017; 553: 350-355.

[15] Çabuk UC, Aydın Ö, Dalkılıç G. A random number generator for lightweight authentication protocols: xorshiftR+ .
Turk J Electr Eng Co 2017; 25: 4818-4828.

[16] Ibrahim A, Dalkılıç G. An advanced encryption standard powered mutual authentication protocol based on elliptic
curve cryptography for RFID, proven on WISP. J Sensors 2017; 2017: 2367312.

[17] Knežević K. Combinatorial optimization in cryptography. In: 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics; 22–26 May 2017; Opatija, Croatia. pp. 1324-1330.

[18] Challa S, Wazid M, Das AK, Khan MK. Authentication protocols for implantable medical devices: taxonomy,
analysis and future directions. IEEE Consum Electr Mag. 2018; 7: 57-65.

[19] Hernández-Castro JC, Isasi P, Seznec A. On the design of state-of-the-art pseudorandom number generators by
means of genetic programming. In: Congress on Evolutionary Computation; 19–23 June 2004; Portland, OR, USA.
pp. 1510-1516.

[20] Sıs M, Ríha Z. Faster randomness testing with the NIST statistical test suite. In: Fourth International Conference
on Security, Privacy, and Applied Cryptography Engineering; 18–22 October 2014; Pune, India. pp. 272-284.

2510

KÖSEMEN et al./Turk J Elec Eng & Comp Sci

[21] Peris-Lopez P, Hernandez-Castro JC, Estevez-Tapiador JM, Ribagorda A. LAMED - A PRNG for EPC Class-1
Generation-2 RFID specification. Comp Stand Inter 2009; 31: 88-97.

[22] Khan FU, Bhatia S. A novel approach to genetic algorithm based cryptography. Int J Res Comp Sci 2012; 2:
2249-8265.

[23] Leonard P, Jackson D. Efficient evolution of high entropy RNGs using single node genetic programming. In: Annual
Conference on Genetic and Evolutionary Computation; 11–15 July 2015; Madrid, Spain. pp. 1071-1078.

[24] Picek S, Sisejkovic D, Rozic V, Yang B, Jakobovic D, Mentens N. Evolving cryptographic pseudorandom number
generators. Lect Notes Comp Sci 2016; 9921: 613-622.

[25] Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 396-399.

[26] Miller BL, Goldberg DE. Genetic algorithms, tournament selection, and the effects of noise. P Soc Photo-Opt Ins
1995; 9: 193-212.

[27] GS1. EPCTM Radio-Frequency Identity Protocols Generation-2 UHF RFID Specification for RFID Air Interface.
Lawrenceville, NJ, USA: GS1 EPCglobal Inc., 2013.

[28] Feldhofer M, Dominikus S, Wolkerstorfer J. Strong authentication for RFID systems using the AES algorithm. In:
International Workshop on Cryptographic Hardware and Embedded Systems; 11–13 August 2004; Cambridge, MA,
USA. pp. 357-370.

[29] Özcanhan MH, Dalkılıç G. Mersenne twister-based RFID authentication protocol. Turk J Electr Eng Co 2015; 23:
231–254.

2511

	Introduction
	Related works
	Materials and methods
	Genetic algorithm initial population
	Genetic algorithm steps
	Fitness function

	Experimental results and discussion
	NIST STS results
	ENT results
	EPCGen2 randomness requirements
	Time constraint of EPCGen2

	Conclusion

