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Abstract: In this article, we investigated the design and implementation aspects of multilevel discrete wavelet transform
(DWT) by employing a finite impulse response filter on field programmable gate array platform. We presented two key
multiplication-free architectures, namely, the distributed arithmetic algorithm (DAA) and residue number system (RNS).
Our goal is to estimate the performance requirements and hardware resources for each approach, allowing for selection of
the proper algorithm and implementation of multilevel DAA- and RNS-based DWT. The design has been implemented
and synthesized in Xilinx Virtex 6 ML605, taking advantage of Virtex 6’s embedded block RAMs. The results reveal
that the DAA-based approach is appropriate for a small number of filter taps, while the RNS-based approach would be
more appropriate for more than 10 filter taps, yet both DAA- and RNS-based approaches offer high signal quality with
peak signal-to-noise ratio as 73.5 and 56.5 dB, respectively.

Key words: Discrete wavelet transform, distributed arithmetic algorithm, field programmable gate array, residue
number system

1. Introduction
Discrete wavelet transform (DWT) [1–3], a linear signal processing technique that transforms a signal from
the time domain to the wavelet domain [4], employs different algorithms for decomposing a signal into an
orthonormal time series with different frequency bands. The signal analysis can be performed using either
the pyramid algorithm (PA) [4] or recursive pyramid transform (RPT) [5]. The PA algorithm is based on
convolutions with quadrature mirror filters, which is not feasible for practical implementation. However, RPT
decomposes the signal x[n] into two parts using high- and low-pass filters, which can be implemented using
filter banks [6].

1-D DWT has been implemented for signal denoising, feature extraction, and pattern recognition and
compression in [2, 3, 7, 8]. The conventional convolution-based DWT requires massive computations and
consumes much area and power, which could be overcome by using the lifting-based scheme for the DWT
that was introduced by Sweldens [9]. Although, the lifting scheme is used to compute the output of low- and
high-pass filters using fewer components, it may not be well suited for our application due to the nature of
the pattern-based cognitive communication system, where the low frequencies components are more important
than those of the higher ones [2]. Another advantage of using convolution-based DWT over lifting approach is
∗Correspondence: alzaq@itu.edu.tr
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that it does not require temporary registers to store the intermediate results and with the appropriate design
strategy, it could have better area and power efficiency [10, 11].

Rather than implementing finite impulse response (FIR) filter via multipliers and an adder tree, a
multiplier-free architecture is suggested due to their resultant low-complexity systems and their high throughput
processing capability [12–14]. There are essentially two approaches for facilitating parallel processing: the
distributed arithmetic algorithm (DAA) and residue number system (RNS).

DAA efficiently performs the inner product function in a bit-serial manner via a look-up table (LUT)
scheme that is followed by shift accumulation operations of the LUT output [12]. The LUT, a memory element,
stores precomputed partial results [13]. Alternatively, RNS is a highly parallel nonweighted arithmetic system
that is based on the residue of division operation of integers using the LUT scheme [14]. Eventually, the RNS-
based results are converted back to the equivalent binary number format using a Chinese remainder theorem
(CRT) [15]. The key advantage of RNS is gained by reducing an arithmetic operation to a set of concurrent
but simple operations. Several applications such as digital filters benefit from the RNS design, as in [16].

1.1. Contribution of this paper

In this paper, three major 1-D DWT approaches are implemented on field programmable gate array (FPGA)-
based platforms and compared in terms of performance and energy requirements. The implementations are
compared for different numbers of multipliers, memory consumptions, number of taps (N ), and levels (L) of
the transform to show their advantages. To the best of our knowledge, no detailed comparisons of hardware
implementations of the three major 1-D DWT designs exist in the literature. This comparison will give significant
insight on which implementation is the most suitable for given values of relevant algorithmic parameters.
Although there are many efficient designs in the literature, we did not optimize the number of memories in
any approach so that we have a fair comparison.

The paper unfolds as follows. In Section 2, the theoretical backgrounds of DAA and RNS are reviewed.
In Section 3, the implementation of discrete wavelet transform is described. We further provide an analytical
comparison between these approaches. In Section 4, the performance results are presented. Finally, the paper
is concluded in Section 5.

2. Background
2.1. Discrete wavelet transform
The wavelet decomposition mainly depends on the orthonormal filter banks. Figure 1 shows a two-channel
wavelet structure for decomposition, where x[n] is the input signal, g[n] is the high-pass filter, h[n] is the
low-pass filter, and ↓ 2 is the down-sampling by a factor of two. In this way, each filter creates a series of
coefficients that represent and compact the original signal information.

Mathematically, a signal, y[n] , consists of high- and low-frequency components as shown in Eq. (1). It
shows that the obtained signal can be represented by using half of the coefficients because they are decimated
by Eq. 2 .

y[n] = yhigh[n− 1] + ylow[n− 1]. (1)

The decimated low-pass-filtered output is recursively passed through identical filter banks to add the dimension
of varying resolution at every stage. Eq. (2) mathematically expresses the filtering process of a signal through
a digital low-pass filter h[k] . This operation corresponds to a convolution with an impulse response of k -tap
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Figure 1. Multilevel wavelet decomposition.

filters.
ylow[n] =

∑
k

h[k].x[2n− k], (2)

where n becomes 2∗n , representing the down-sampling process. The output ylow[n] provides an approximation
signal, while yhigh[n] provides the detailed signal.

2.2. Distributed arithmetic algorithm (DAA)

Eq. (2) shows that output y is the sum of the multiplication of the filter coefficients and the input. DAA elimi-
nates the need for hardware multipliers by performing the arithmetic operations in a bit serial computation[13].
Because the down-sampling process follows each filter (as shown in Figure 1), Eq. (2) can be rewritten without
the decimation factor as:

ylow[n] =

N−1∑
k=0

x[k].h[k]. (3)

Particularly, Eq. (3) is a computational intensive operation owing to multiplication of the real input values
with the filter coefficients. Further simplification can be performed on the x[k] in Eq. (3). Considering the
representation of x[k] as a fixed-point arithmetic with length L, x[k] becomes:

x[k] = −x[k]0 +

L−1∑
l=1

x[k]l.2
−l, (4)

where x[k]l is the lth bit of x[k] andx[k]0 is the sign bit. Substituting Eq. (4) into Eq. (3), the output of the
filter becomes:

y[n] =

[ L−1∑
l=1

2−l.

N−1∑
k=0

h[k].x[k]l

]
+

N−1∑
k=0

h[k](−x[k]0). (5)

Since x[k]l takes the value of either 0 or 1,
∑N−1

k=0 h[k].x[k]l may have only 2N possible values. That is, rather
than computing the summation at each iteration online, it is precomputed and stored in a ROM, indexed by
x[k]l . In other words, Eq. (5) efficiently realizes the sum of product computation by memory (LUT), adders,
and shift register.
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2.3. Residue number system (RNS)

The RNS [15] is a nonweighted number system that performs parallel carry-free addition and multiplica-
tion arithmetic. In digital signal processing (DSP) applications, which require intensive computations, the
carry-free propagation allows for concurrent computation in each residue channel. The RNS moduli set,
P = m1,m2, . . . ,mq , consists of q channels. Each mi represents a positive relatively prime integer, that
is GCD(mi,mj) = 1, for i ̸= j .1 Any number, X ∈ ZM = 0, 1, . . .M − 1 , is uniquely represented in the RNS
by its residues |X|mi

, which is the remainder of division X by mi and M is defined in Eq. (6):

M = Πq
i=1mi = m1 ∗m2 ∗ · · · ∗mq, (6)

where M determines the range of unsigned numbers in [0,M − 1] and should be greater than the largest
performed results. The implementation of RNS-based DWT is obtained from Eq. (3) as follows:

y[n]mi
= ymi

= |(
N−1∑
k=0

|h[k]mi
.x[n− k]mi

|mi
)|mi

, (7)

where for each mi ∈ P . This implies that a q−channel DWT is implemented by q FIR filters that work in
parallel.

Designing a robust RNS-based DWT requires choosing the moduli set and hardware design of residue-to-
binary conversion. Most widely studied moduli sets are given as a power of two due to the attractive arithmetic
properties of these modulo sets. For example, {2n − 1, 2n, 2n+1 − 1} [17] and {2n, 22n − 1, 22n + 1} [18] have
been investigated. In this work, the moduli set Pn = {2n − 1, 2n, 2n+1 − 1} is used for three reasons. First, the
multiplicative adder (MA) is simple and identical for m1 = 2n−1 and m3 = 2n+1−1 . Second, for small n = 7 ,
the dynamic range of P7 is large, M = 4145280 , which could efficiently express real numbers in the range
[−2.5, 2.5] using 16-bit fixed-point representation, provided scaling and rounding are done properly. Third, the
reverse converter unit is simple and regular [19] because it does not employ any ROM.

3. DWT implementation methodology

3.1. DWT implementation using DAA

DAA hides the explicit multiplications with a ROM look-up table. The memory stores all possible values of
the inner product of a fixed w -bit with any possible combination of the DWT filter coefficients. The input
data, x[n] , are signed fixed points of 22 -bit width, with 16 binary-point bits (Q5,16 ). We assumed that the
memory contents have the same precision as the input, which is reasonable to give high enough accuracy for
the fixed-point implementation. As a consequence, 22 ROMs, each consisting of 16 words, are required. Each
ROM stores any possible combination of the four DWT filter coefficients, where the final result is a 22 -bit
signed fixed point (Q5,16 ). In order to decrease the number of the memories, the width should be reduced,
which will have impact on the output precision.

Figure 2 shows the block diagram of one-bit DAA at position l . This block contains one ROM (4× 22)

and one shift register. Because the word length, w , of the input x is 22 bits, the actual design contains 22

blocks. In addition, 21 adders are required to sum up the partial results.
1The greatest common divisor (GCD) of two nonzero integers is the largest positive integer that divides them without a remainder.

2197



ALZAQ and ÜSTÜNDAĞ/Turk J Elec Eng & Comp Sci

ROM 

(bit l )
∑ 

X l [n]

Y[n]

− − −

>> 

(16- l ) i

22

. b15    ...  b0b21     b16S

Fixed point presentation of X 

Figure 2. The block diagram of the DAA-based architecture of the DB2. For simplicity, we showed one ROM and one
shift register.

3.2. DWT implementation using RNS

The DWT implementation that employs RNS has mainly three components which are the forward converter,
the modulo adders, and reverse converter. The forward converter, which is also known as the binary-to-residue
converter (BRC), is used to convert a binary input number to residue numbers. In contrast, the reverse
converter or the residue-to-binary converter (RBC) is used to obtain the result in a binary format from the
residue numbers. We will refer to the RNS system, which does not include RBC, as a forward converter and
modular adders (FCMA), as illustrated in Figure 3a.

<< Z-1 Z-1 Z-1

BRC

(h0)

BRC

(h3)

BRC

(h2)

BRC

(h1)

MA

(m2 = 2n)

MA

(m3 = 2n+1-1)

MA

(m1 = 2n-1)

x3

x1

RBC

/ 
/ 

n

n+1

/ 
n

16

/   

FCMA

x2

X[n]

x /
16

15:12

11:8

7:4

MA
(m2= 2n)

MA
(m1= 2n-1)

MA
(m3  = 2n+1-1)

m3 Shi"
(2n+1-1)

8
/
7
/

3:0

4-bit slice

M3

4 x 22

8
/
7
/

M2

4 x 22

/
8

/
7

8
/

/
7
/
7

M1

4 x 22

x3

x2

x1

8
/

7
/

7
/

M0

4 x 22

m2 Shi"
(2n)

m1 Shi"
(2n-1)

| . |m1 | . |m2 | . |m3

21    ..   15  14  ..  8  7  ..  0

Memory content at location j 

7/

a b

Figure 3. The block diagram of DB2 RNS-based architecture: a) The complete model, b) the block diagram of the
BRC for the 3-channel RNS-based, P7 = {127, 128, 255} .

The forward converter is used to convert the result of multiplying an input number by a wavelet coefficient
to q residue numbers via LUT, shift, and modulo adders, where q is the number of channels.

In RNS system number conversion, the received samples and wavelet coefficients span the real number
and might take small values. One of the main drawbacks of RNS number representation is that it only operates
with positive integer numbers from [0,M − 1] . The DWT coefficients are generally between 1 and −1 . As a
possible solution, we have divided the range of RNS, [0,M − 1] , to handle those numbers.

In addition, the received sample x[i] is scaled up by shifting y positions to the left (multiplying by 2y ),
which ensures that x[i] is a y -bit fixed-point integer. In a similar manner, the wavelet coefficients are scaled
by shifting z positions to the left.
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In Modulo mi multiplier, the multiplication of the received sample, x[i] , by the filter coefficients,
which are constants, is performed by indexing the ROM. As the word length, w , of the received sample
X[i] is increased, the memory size becomes 2w . In addition, q ROMs are required to perform the modulo
multiplication.

We propose a few improvements to this design. First, instead of preserving a dedicated memory for
each modulo mi , a ROM that contains all module results is used. Thus, each word at location j contains
the q modules of hk ∗ j ∗ 211 . Figure 3b shows the internal BRC block design of the 3-channel moduli set
P7 = {127, 128, 255} with its memory map at the top-right corner. It shows that, for a location j , the least
significant 8 -bit contains |hk ∗x|m3

, the next 7 -bit contains |hk ∗x|m2
, and the most significant 7 -bit contains

|hk ∗ x|m1
, which can be generalized as shown in Eq. (8). The advantage of this method is that no extra

hardware is required to separate each module value.

ROM(j) = |hk ∗ j ∗ 211|m1
∗ 22n+1 + |hk ∗ j ∗ 211|m2

∗ 2n+1 + |hk ∗ j ∗ 211|m3
, j = [0, 2w]. (8)

As with the DAA-based approach, if the input word length is 16 bits, the ROM should contain 216 locations.
One way to reduce the size of the memory is to divide it into four ROMs of 4× 22 . Figure 3a shows the block
diagram of the binary-to-residue converter with four ROMs; each is indexed by four bits of x . However, the
output of each ROM should be combined so that the final result can be corrected. It is worth noting that this
division comes with a cost in terms of adders and registers.

According to the previous improvements, the RNS-based works are as follows. The input X16−bit =

(x1, x2, x3, x4) is divided into four segments. Each of the 4-bit segments is fed into one ROM so that three
outputs corresponding to |hk ∗ xl ∗ 211|mi are produced. To obtain the final multiplication’s result, each mi

output should be shifted by l positions, where l is the index of the lowest input bit (4, 8, or 12). The modular
multiplication and shift for 2n − 1 and 2n+1 − 1 can be achieved by a left circular shift (left rotate) for l

positions, whereas the modular multiplication and shift for 2n can be achieved by a left shift for l positions
[17]. Finally, the modulo adder adds the corresponding output.

Modulo adders (MAs) are required for adding the results from a modular multiplier as well as for a
reverse converter. In this work, we have two MAs: one is based on 2n and the other is based on 2n−1 . Modulo
2n adder is just the lowest n bits of adding two integer numbers, where the carry is ignored.

Figure 4 shows the block diagram of the 2n−1 modulo adder. It shows that MA is slow and less efficient
than the conventional binary adder because MA needs one adder and one subtractor to perform the modulo
addition. Therefore, the output of each MA will be delayed by one clock cycle compared to the conventional
adder. The Chinese remainder theorem (CRT) [15] provides the theoretical basis for converting a residue
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Figure 4. The block diagram of (2n − 1) modulo adder.

number into a natural integer. The moduli set Pn = {2n − 1, 2n, 2n+1 − 1} can be efficiently implemented by
four modulo adders and two multiplexers [19]. The output of the RBC is unsigned (3 ∗ n + 1) -bit integer
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number. The actual signed number can be found by shifting the result y + z positions to the left, which is
equivalent to dividing by 2(y+z) . Both y and z are the scaled values of the input and wavelet coefficients,
respectively. Generally, the word length of 1-level DWT is bounded by Eq. (9) and should not exceed (3∗n−2)

bits.
3 ∗ n+ 1 ≥ y + z + 3. (9)

3.3. Hardware complexity

DAA and RNS techniques employ the memory as a key resource to avoid multiplying two input variables. In
each approach, as the number of filter taps increases, both the size and number of memories change. Assuming
that the length of the received word is w -bit and there are N filter taps, the size of a memory element can
be considered as a× b , where a and b are the word lengths in bits of the input and output, respectively. The
value of a determines the size of the memory, 2a .

The total number of memory elements that are occupied by the DAA-based filter is w ∗ (N × 22) . The
output is a 16-bit fixed point and the word length is 22 bits. The number of memory elements remains constant
as the filter taps increase, whereas the size of the memory exponentially increases to 2N .

On the other hand, the total number of memory elements occupied by an RNS-based filter is N ∗
⌈log2(w)⌉ ∗ (4 × 22) . This equation shows that the number of memory elements increases linearly with the
number of filter taps, while the memory size remains constant (4 × 22) . Table 1 shows a comparison of the
memory usage with w = 16 for different DWT families.

Table 1. Occupied memories when DAA- and RNS-based approaches are used. The word lengths, w, are 22 bits and
16 bits for DAA- and RNS-based approaches, respectively.

DB2 DB4 DB10
Number of filter taps 4 8 10

DAA memory usage 22 ∗ (4× 22) 22 ∗ (8× 22) 22 ∗ (10× 22)

RNS memory usage 16 ∗ (4× 22) 32 ∗ (4× 22) 40 ∗ (4× 22)

DAA-based implementation employs shift registers and adders to sum the result at each bit level (Figure
2). For a word length w with m magnitude bits, we need (w − 1) shift registers and (w − 1) 2-input adders
(data combined by a tree adder architecture). To handle the negative numbers, the two’s complement operation
requires additional (m− 1) shift registers and (m− 1) adders. Thus, for l-level DAA-based implementation, a
total of l ∗ (w −m− 2) shift registers and 2-input adders is required.

On the other hand, for a word length w and N -tap filter, the q -channel FCMA implementation requires
N BRC blocks and (q ∗ (N − 1)) MA blocks to compute the final result. Each BRC block has (⌈log2 w⌉)− 1 ,
(⌈log2 n⌉−1) , and (⌈log2 w⌉)−1 MA blocks for 2n−1 , 2n , and 2n+1−1 modulo, respectively. The modulo 2n

requires log2n because shifting operations is not circular where shifting n-bit numbers to the left by n positions
or more is always zero. Likewise, the RBC has 4 MA blocks (for 2n+1−1), 2 multiplexers, and two subtractors.
Thus, the total number of MA blocks at 1-level RNS-based is:

MAt = 2N ∗ ((⌈log2 w⌉ − 1)2n−1) + (⌈log2 n⌉ − 1)2n + q ∗ (N − 1) + 4. (10)
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For instance, 3-channel DB2 implementation requires 9 MA blocks to sum the result and P7 RNS-based
implementation has a total of 45 MA blocks when w = 16 . Meanwhile, the number of RNS-based adders
depends on the design of the MA block. For example, each MA block of (2n − 1) and (2n+1 − 1) requires 2
adders, while each MA block of 2n requires 1 adder. Thus, at = 12N +N(⌈log2 n⌉− 1)+ 5(N − 1)+ 10 adders
are required, which can be simplified as follows (summarized in Table 2):

at = 17N +N(⌈log2 n⌉ − 1) + 10. (11)

Table 2. Memory usage and adders for 1-level N -tap DAA- and RNS-based DWT.

DAA-based RNS-based
Memory usage w ∗ (N × 22) N ∗ ⌈log2 w⌉ ∗ (4× 22)

Num. of adders w −m− 2 17N +N(⌈log2 n⌉ − 1) + 10

4. Simulation results, performance analysis and validation
Hardware analysis was carried out by using a Xilinx System Generator for DSP, which is a high-level software
tool that enables the use of MATLAB/Simulink environment to create and verify hardware designs for Xilinx
FPGAs. The hardware-software cosimulation design was synthesized and implemented on ML605 Xilinx Virtex
6.

The implementation of RNS and DAA is compared with the multiplier-accumulate based DWT structure
(MAC). We also consider the direct DWT implementation using an IP FIR Compiler 6.3 (FIR6.3) block,
which provides a common interface to generate highly area-efficient and high-performance FIR filters. For RNS
implementation, the moduli sets ofP7 = {127, 128, 255} and P10 = {1023, 1024, 2047} were used.

4.1. Resource utilization and system performance

Table 3 summarizes the resource use by RNS-based components, i.e., FCMA and reverse converter (RBC). The
RBC consumes fewer resources and less power. However, the operating frequency is equal in all models and
greater than that of the entire RNS-based filter.

Table 4 summarizes the resource consumption of each filter implementation. It shows that the MAC-
and IP FIR-based implementations have 4 multiplier units (DSP48E1s) with maximum frequencies of 296 and
472 MHz, respectively. In contrast, the proposed approaches are more complex than MAC. However, DAA- and

Table 3. The resource use and system performance of the RNS components, i.e., FCMA and reverse converter. FCMA
involves the forward converters and modulo adders.

Resources RNS-based (P7) RNS-based (P10)
FCMA RBC FCMA RBC

Number of slice registers 656 157 883 190
Number of slice LUTs 591 138 854 180
Number of RAMB18E1 16 0 16 0
Max. operating freq. (MHz) 291.2 311.62 283.85 298.67
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Table 4. Resource use and system performance for the DWT implementation.

Resources MAC DAA FIR RNS(P7) RNS(P10)
Number of slice registers 282 661 167 767 1089
Number of slice LUTs 128 520 71 721 1055
Number of occupied slices 58 188 60 240 358
Number of RAMB18E1 0 22 0 16 16
Max. operating freq. (MHz) 296.38 229.83 472.59 258.86 261.028

RNS-based implementations have 22 and 16 memory blocks (BRAMs) used to store the precalculated wavelet
coefficients. It also shows that the number of slice registers, slice LUTs, and occupied slices of P10 RNS-based
is greater than that of the P7 because the former has 31 output signals, while the latter has 22 output signals.
As a result, the number of flip-flops is increased and the number of resources is approximately increased by one
third, while the maximum frequency in both designs is greater than 235 MHz.

Table 5 shows a comparison between the DAA- and RNS-based 1-level DWT implementations when using
larger filter banks, i.e., DB4 and DB5. It shows that the DAA-based implementation occupies a fixed number
of RAMB18E1. Figure 5 depicts the impact of using different wavelet families on memory. The number of
memory elements of the DAA-based implementation is fixed and depends on the word length (Table 2).
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Figure 5. Occupied memory by the first level of DAA- and RNS-based DWT.

However, as the number of filter taps increases, the memory size exponentially increases to 2N . In
contrast, the number of memory elements that are used in the RNS-based implementation linearly increases as
the number of filter taps increases. Similarly, the number of memories that are used at multilevel DAA-based
and RNS-based implementations with the l -level would be an aggregate of levels 1 through l .

Table 6 shows the performance based on the signal-to-noise-ratio (SNR) and peak-signal-to-noise-ratio
(PSNR). Both DAA- and RNS-based approaches offer high signal quality with a PSNR of 73.5 and 56.5 dB,
respectively.
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Table 5. Resource use for the DWT implementation of DB2, DB4, and DB5.

Resources DAA-based RNS-based (P7)
DB2 DB4 DB5 DB2 DB4 DB5

Number of slice registers 650 737 780 767 1441 1898

Number of slice LUTs 521 539 568 721 1320 1677

Number of RAMB18E1 22 22 22 16 32 40

Max. operating frequency (MHz) 232.7 205.5 223.3 258.9 265.3 258.8

Table 6. The SNR and PSNR values of 1-Level of different DWT implementations.

RNS-based
FIR MAC DAA P7 P10

SNR (dB) 83.2 78.7 70.4 53.41 54.78
PSNR (dB) 86.3 81.8 73.5 56.5 57.9

4.2. Comparison

Table 7 provides a quantitative, comprehensive, and comparative study of different implementation methods of
DWT, including the convolutional MAC [20], Parallel MAC loop-based filter (PMLBF) [21], and algebraic inte-
ger (AI) [22], as well as our implementation of 1-D 1-level DWT. From the data, we observed that the proposed
22-bit DAA-based architecture almost has the same complexity as the lowest-complexity implementation, as
seen in [21]. However, our DAA- and RNS-based architectures consume less power. Even if the architectures in
[21] and [22] have a throughput of one sample per clock cycle, the lower power required by DAA- and RNS-based
implementations makes them superior in terms of throughput to power consumption.

4.3. Discussion

Hardware availability and system performance requirements are critical for selecting the appropriate architecture
of the embedded platform. Overall, the number of filter taps and word length have a substantial influence.

Because the only difference between P7 and P10 RNS-based implementations is the signal width, the
maximum operating frequencies slightly changes. Furthermore, the 1-level DB2 filter bank was designed
with maximum operating frequencies of 232 and 258 MHz for DAA- and RNS-based approaches, respectively.
However, all high-frequency implementations introduce a latency of at least 10 clock cycles for 1-level DAA-based
DWT.

Another critical parameter that affects the DWT performance is the filter order. The DAA-based
implementation outperforms the RNS-based with at most 10 taps. When the number of taps increases, the
number of memory units and binary adders within the RNS-based implementation constantly increases, while the
memory size is not affected (Table 2). The memory requirement for DAA-based implementation exponentially
increases as the number of filter taps increases.
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Table 7. The SNR and PSNR values of 1-Level of different DWT implementations.

Jarrah Mamatha Madishetty Avinash Current
[20] [21] [22] [23] work

Technology Artix-7 Virtex-6 Virtex-6 Virtex-5 Virtex-6
Wavelet type db1(Haar) db4 db3 db2 db2
Architecture MAC MAC * AI ** DAA DAA RNS
Word length N/A 8-bit 8-bit 8-bit 22-bit

Slice reg. 2247 139 2890 66 661 1089
(1.77%) (0.046%) (0.95%) (0.52%) (0.22%) (0.36%)

Slice LUTs N/A 417 5470 136 520 1055
(0.39%) (5.17%) (1.01%) (0.49%) (0.99%)

Occupied slices N/A N/A N/A 61 188 358
(86%) (0.5%) (0.95%)

Maximum freq. (MHz) 214.6 633.4 344 301.8 229.8 261.0
Dynamic power (mW) 101 632 204 N/A 66.54 53.05
DSP48Es N/A 16 N/A 0 0 0
Throughput N/A 1 ip/op 1 ip/op 8 ip/op 2 ip/op 2 ip/op
*Parallel MAC loop-based filter (PMLBF); a pipelined real-time architecture.
**Algebraic integer (AI).

5. Conclusion
The performance requirements and hardware resource availability has a great impact on choosing the proper
algorithm for implementing a DWT on FPGA. In this paper, we addressed the effect of increasing the number
of filter taps and word length, which have a substantial influence on the overall performance of the design and
resource availability. Moreover, we presented pipelined DAA- and RNS-based implementations and compared
them with the pipelined MAC-based approach. DAA- and RNS-based approaches are multiplierless architectures
that intensively use memory to speed up the entire processing time. The trade-off between system performances
and resource consumption was also presented. Experiment results show that the DAA-based approach is
appropriate for a small number of filter taps, while the RNS-based approach would be more appropriate for
a number of filter taps that are greater than 10, yet both DAA- and RNS-based approaches offer high signal
quality with PSNR as 73.5 and 56.5 dB, respectively.
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