
Turk J Elec Eng & Comp Sci
(2018) 26: 2525 – 2540
© TÜBİTAK
doi:10.3906/elk-1802-55

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Secure access control in multidomain environments and formal analysis of model
specifications

Fatemeh NAZERIAN , Homayun MOTAMENI∗ , Hossein NEMATZADEH
Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Received: 07.02.2018 • Accepted/Published Online: 08.06.2018 • Final Version: 28.09.2018

Abstract: Distributed multiple organizations interact with each other. If the domains employ role-based access control,
one method for interaction between domains is role-mapping. However, it may violate constraints in the domains
such as role hierarchy, separation of duty, and cardinality. Therefore, autonomy of the domains is lost. This paper
proposes secure interoperation in multidomain environments. For this purpose, a cross-domain is created by foreign
permission assignment. In an effort to maintain the autonomy of every domain, several rules are defined formally. Then,
a decentralized scheme is used to provide permission mapping between domains. At the next stage, the proposed cross-
domain is specified using Alloy, the first logic language. Subsequently, validity of the rules is analyzed through Alloy
analyzer.

Key words: multidomain, conflict, Alloy, formal language, role-based access control

1. Introduction
With network expansion, a certain dimension can be divided into multidomains to correct management informa-
tion. A large amount of information can be stored in the domains. A great deal of information is sensitive, e.g.,
financial information of organizations or confidential information about a patient which should be protected
from unauthorized access. An effective method for data security involves access control.

One of the most widely used access control methods is role-based access control. Most organizations
set roles for different tasks. Therefore, role-based access control (RBAC) is appropriate for such organizations.
If every domain has an RBAC policy, one method for interoperation in multidomain environments creates a
cross-domain via role mapping, where a role of a domain inherits permissions of role in other domains in the
hierarchy relation between domains [1–3]. In the cross-domain created via role mapping, several constraints in
the local domain may be ignored. They cause the following:

1- Role hierarchy violation: if two roles have no inheritance relation in the local domain but there is a path
in hierarchy of the crossing domain between them [1, 2, 4].

2- Separation of duty (SOD) violation: SOD is divided into two parts. One is role-specific SOD constraint,
where a user cannot gain access to conflict roles, and the other is user-specific SOD constraint, where a
role cannot be assigned to two users. These constraints were sometimes ignored in interoperation between
domains [1–6].

∗Correspondence: motameni@iausari.ac.ir

This work is licensed under a Creative Commons Attribution 4.0 International License.
2525

https://orcid.org/0000-0003-4539-0383
https://orcid.org/0000-0003-2150-2811
https://orcid.org/0000-0002-6161-0430

NAZERIAN et al./Turk J Elec Eng & Comp Sci

3- Cardinality: in RBAC, we can consider a numerical restriction for every user or role. For example, a user
u with cardinality un means that the number of roles simultaneously authorized for u cannot exceed
un while role r with cardinalityrnmeans that the number of users simultaneously assigned to r cannot
exceed rn [1, 6].

Thus, the main contributions of this paper are as follows:

1. A permission-mapping cross-domain that solves conflicts occurring in role-mapping cross-domain is pro-
posed.

2. Several rules are defined to maintain the autonomy and security of every domain.

3. A decentralized administrative model is considered to manage permission mapping between domains.

In this paper, a system with two domains (office staff and medical staff) is considered. In the first step,
two domains interact with each other via role mapping, where conflicts such as role hierarchy, separation of duty,
and cardinality occur. In the next step, foreign permission assignment is used for interoperation in multidomain
environments that employ RBAC policies, so as to solve the conflicts that occur in the cross-domain created
via role mapping. In other words, a cross-domain is created by foreign permission assignment and is shown
how the proposed cross-domain will solve conflicts such as role hierarchy, SOD, and cardinality violations. In
an effort to maintain the autonomy of local domains, three rules are defined formally: 1) not separation of
duty assignment (NSODA), 2) not foreign permission assignment (NFPA), and 3) not hierarchy permission
assignment (NHPA). If constraints of the local domain and the three rules (NSODA, NFPA, and NHPA) are
not violated, then permission is assigned to the role of the foreign domain. Then, a decentralized scheme is
explained with an algorithm to manage permission mapping between domains. The proposed cross-domain is
specified with Alloy (the first-order logic language) [7]. Our motivation behind using Alloy is the automatic
analysis capabilities which make Alloy applicable in analysis of system specifications [8–12].

The rest of this paper has been organized as follows: Section 2 provides the relevant literature review.
Section 3 provides an overview of RBAC. In Section 4, the proposed approach is described, and Section 5 shows
an example. In Section 6, the proposed approach is analyzed through Alloy for automatic verification. In
Section 7, the new model is compared with the existing works in the literature. And finally, in Section 8, the
paper is concluded and future work is discussed.

2. Related works
In order to prevent unauthorized access, a number of access control models have been proposed such as discre-
tionary access control (DAC)[13], mandatory access control (MAC) [14], role-based access control (RBAC)[15,
16] and attribute-based access control (ABAC)[17]. Among these methods, RBAC is more common because it is
easy to use and policy-neutral. The latter implies that RBAC supports DAC and MAC models [13, 15, 16, 18, 19].
Hence, researchers extended the RBAC model for different situations [20–22]. A survey of RBAC is available in
[23]. An advantage of RBAC is self-management through RBAC. If the number of users, roles, and permissions
are extremely large, then management of these components by a security administrator will be complicated.
Administrative models provide a solution to this problem. ARBAC97 is the first administrative model which
controls permission-to-role and role-to-user assignments by administrative role hierarchy [24]. Researchers pro-
posed other administrative models for RBAC such as ARBAC99 [25] and ARBAC02 [26].

2526

NAZERIAN et al./Turk J Elec Eng & Comp Sci

With the development of information processing, secure interoperation between systems has become
a challenge for which certain policies should be considered. In [27], a secure interoperation model called IR-
BAC2000, in which a dynamic role was used for the relation between two domains, was proposed. AIRBAC2000
was proposed for dynamic role management in [28]. In [29], domain-based RBAC (D-RBAC) and access con-
trol architecture were proposed for multidomain network environments. In [30], a multiple security domain
in cloud computing environment was considered while IRBAC2000 was used for cross-domain access control.
Then, a centralized administrative model was considered to administer a collection of multiple hosts, router,
and internet.

In the RBAC model, roles have a hierarchical structure and there are several constraints such as SOD [5]
and cardinality for roles or users. In the interoperation between domains, the autonomy and security of every
domain should be considered. In other words, if an access is authorized in the local domain, it is also authorized
in the secure interoperation in multidomain environments, and vice versa [31]. Meanwhile, constraints of every
domain are not violated but there are a few potential conflicts in the relation between domains with RBAC
policies such as role hierarchy, separation of duty, and cardinality violation, the role-mapping cross-domain may
violate these constraints.

Researchers presented different methods for solving the above conflicts. Some proposed a global policy
that integrates the policies of local domains [2, 32, 33]. In this approach, every domain must expose its access
control policies all to the mediator, while others proposed a decentralized policy or mediator-free scheme for
secure interoperation because they considered the mediator as a bottleneck that could provide information
of every domain. Meanwhile, domains may occasionally contain confidential information that should not be
exposed [3, 27, 34].

3. Preliminaries
The National Institute of Standard and Technology (NIST) proposed NIST RBAC standard [18]. American
National Standard for Information Technology (ANSI) has changed the NIST RBAC, defining a standard
for RBAC [35]. According to the ANSI RBAC standard, RBAC includes 4 conceptual models: core RBAC,
hierarchy RBAC, static separation of duty, and dynamic separation of duty.

Core RBAC: It includes 5 basic elements, i.e., USER (set of users), ROLE (set of roles in the system),
OPS (system operations), OBS (set of objects that support the system), and SESSION (set of sessions that
launch business) and the following relations:

- UA⊆USERS×ROLES is a relation of users to roles.

- assigned_user(r: ROLES) → 2USERS , the mapping of role r onto a set of users. That means one role
can be assigned to some users.

- PRMS=OPS×OBS is a set of permissions performing operation on object.

- PA⊆PRMS×ROLES is a relation of permission to role.

- assigned_permissions(r: ROLES) → 2PRMS , the mapping of role r onto a set of permission. That means
one role can have several permissions.

Role hierarchy: RH⊆ROLE×ROLE is a partial order on ROLES called the inheritance relation indicated
by ≥ , where r1 ≥ r2 means r2 permissions are also r1 permission and users of r1 are also users of r2 .

2527

NAZERIAN et al./Turk J Elec Eng & Comp Sci

In ANSI [35], there are two types of constraints: static separation of duty (SSD) and dynamic separation
of duty (DSD). SSD is a collection of pair (rs ,n), where each rs is a role set that | rs | ≥ 2, while n is a
natural number such that 2 ≤ n ≤| rs | , i.e., no user can be assigned to n roles in set rs . Similar to SSD, a
DSD constraint is a collection of pair (rs ,n), where each rs is a role set such that | rs |≥ 2 and n is a natural
number such that 2 ≤ n ≤| rs | , i.e., no user may simultaneously activate n roles from set rs in one session.
The SSD constraint limits roles that can be assigned to user, while a DSD constraint limits roles that can be
activated by the user in one session. In [36], the authors changed the formal definition of DSD in [35].

4. Proposed approach

In this section, a method is proposed to solve the conflicts that may occur in a cross-domain created by
role-mapping. First, the conflicts are shown in the role-mapping cross-domain. Second, permission-mapping
cross-domain is proposed to solve the conflicts that occur in the role-mapping cross-domain. Third, rules are
defined to keep the security of every domain, and finally, an algorithm is proposed for decentralized management
of permission-mapping cross-domain. The conflicts that may occur in role-mapping cross-domain are as follows:

1- Role hierarchy violation: if role r1 cannot access role r2 in the local domain but in the hierarchy of
cross-domain, there is a path between them.

2- Role-specific SOD violation: if r1 and r2 are in role-specific SOD constraint, then these roles cannot
simultaneously be assigned to user u .

3- User-specific SOD violation: if u1 and u2 are in user-specific SOD constraint, then these users cannot
simultaneously be authorized to role r .

4- Role-cardinality violation: if cardinality of role r is Cr , it implies that the maximum number of users
simultaneously authorized to r must be less than Cr .

5- User-cardinality violation: if cardinality of user u is Cu , it implies that the maximum number of roles
simultaneously assigned to u must be less than Cu .

Figure 1 illustrates the above conflict in a cross-domain created by role-mapping. As can be seen, there
are two domains: the office staff (α) and the medical staff (β). There are five roles in the office staff domain
(α): office manager (r1), medical representative (r2), accounts payable (r3), secretary (r4), and purchasing
(r5) and in the medical staff domain (β), there are two roles: doctor (r6) and nurse (r7). There are three
users (denoted by ui , i = 1, 2, 3) in the system. Symbol rα is used to represent role r in domainα . In Figure
1, rα1 inherits all permissions of rβ6 , rβ6 inherits all permissions of rα2 , rβ7 inherits all permissions of rα4 , and rα5

inherits all permissions of rβ7 . Five conflicts occur in Figure 1. These conflicts are shown in Table 1 . Two role
hierarchy violations occur because rα1 and rα2 are not related in the local domain but in the role hierarchy of
the cross-domain, rα1 can access rα2 via rβ6 . Similarly, rα5 can access self-senior role, i.e., rα4 via rβ7 . Violation
of role-specific SOD occurs because (rα2 , rα3) ∈ role-specific SOD, but u1 can simultaneously access rα2 and rα3 .
u1 can access rα3 with inheritance relationship and rα2 via rβ6 . Violation of user-specific SOD occurs because

(u1 , u2) ∈ user-specific SOD, but u1 and u2 can access r2 simultaneously (u1 can access rα2 via rβ6). Role
cardinality violation occurs because cardinality of rα2 is one, but u1 and u2 can access r2 simultaneously. User

2528

NAZERIAN et al./Turk J Elec Eng & Comp Sci

cardinality violation occurs because cardinality of u3 is three, but u3 can access four roles: rβ6 , rβ7 , rα4 , and
rα2 .

r1r1

r4r4

r3r3

r5r5

r2r2

r6r6

r7r7

u1u1

u2u2

U
se
r-
SO
D

U
se
r-
SO
D

Role-SODRole-SOD

Car(r2)=1Car(r2)=1

u3u3

Car(u3)=3Car(u3)=3

Domain αDomain α Domain βDomain β

Figure 1. Cross-domain created by role mapping.

Table 1. Conflict in Figure 1.

Conflict Description
Role hierarchy There are two conflicts; 1- rα1 inherits rα2 via rβ6 while rα1 and rα2 are not related

in the local domain. 2- rα5 inherits self-senior role, i.e, rα4 via rβ7
Role-specific SOD There is a conflict because (rα2 , rα3) are in role-specific SOD but u1 can access

rα2 via rβ6 and can access rα3 via rα1 .
User-specific SOD There is a conflict because (u1, u2) are in user-specific SOD but u1 can access rα2

via rβ6 while u2 access rα2 too.
Role cardinality There is a conflict because Car(rα2)=1 but u1 and u2 simultaneously authorize rα2 .
User cardinality There is a conflict because Car(u3)=3 but 4 roles rβ6 , rβ7 , rα4 and rα2 are assigned to u3.

4.1. Permission-mapping cross-domain
For solving the above conflicts, a foreign permission assignment where every role in local domain can inherit
a few permissions of role in another domain and cannot inherit roles of another domain is proposed. Figure 2
shows how a cross-domain created by foreign permission assignment can solve the conflicts that may occur in
a cross-domain created via role mapping. The number of domains, roles, and constraints (SOD, cardinality) in
Figure 2 is the same as those in Figure 1 but in Figure 2, two domains (α and β) interact with each other
via permission assignment. According to the RBAC policy, every role has one or more permissions (Section 3)
and can inherit several permissions of a role in another domain. In Figure 2, rα1 inherits only p20 of rβ6 and

cannot access all permissions of rβ6 . In the same way, rβ6 can access only p5 of rα2 , rα5 can access only p24 of

rβ7 , and rβ7 can access only p8 of rα4 . The conflicts in the previous section are solved in our approach. The

reason is displayed in Table 2. Role hierarchy violation cannot occur because rα1 can access only p20 of rβ6 ;

thus, rα1 cannot access permissions of rα2 and also rα5 inherits only p24 of rβ7 and cannot access permissions
of self-senior role rα4 . Role-specific SOD violation cannot occur because in Figure 2, (rα2 , rα3) ∈ role-specific
SOD and u1 authorizes only rα3 and cannot access rα2 via rβ6 . User-specific SOD cannot occur because (u1 ,
u2) are in user-specific SOD (Figure 2) and u1 and u2 cannot access the same roles. Role cardinality violation

2529

NAZERIAN et al./Turk J Elec Eng & Comp Sci

cannot occur in Figure 2 because cardinality rα2 is one and only accessible to u2 . User cardinality violation
cannot occur in Figure 2 because cardinality of u3 is three and u3 can access two roles, rβ6 and rβ7 .

r1r1

r4r4r3r3

r5r5

r2r2

r6r6

r7r7

u1u1

u2u2

U
se
r-
SO
D

U
se
r-
SO
D

Role-SODRole-SOD

Car(r2)=1Car(r2)=1

u3u3

Car(u3)=3Car(u3)=3

Domain αDomain α Domain βDomain β

p1p1 p2p2

p3p3

p4p4
p5p5 p6p6

p7p7
p8p8

p9p9
p10p10 p11p11

p20p20
p21p21 p22p22

p23p23 p24p24 p25p25

p20p20

p5p5

p8p8

p2
44p2
4

Figure 2. Cross-domain created by foreign permission assignment.

Table 2. Overview of conflicts in Figure 2.

Conflict Description
Role hierarchy There is no role hierarchy conflict because rα1 cannot access all permissions of rβ6

and cannot access permissions of rα2 . Meanwhile rα5 inherits only p24 of rβ7
and cannot access permissions of rα4 .

Role-specific SOD There is no role-specific SOD conflict because (rα2 , rα3) are in role-specific SOD and
u1 authorizes only rα3 and cannot access rα2 via rβ6 .

User-specific SOD There is no user-specific SOD conflict because (u1,u2) are in user-specific SOD and u1

cannot access rα2 via rβ6 as u2.
Role cardinality There is no role cardinality conflict because Car(rα2)=1 and u2 authorizes only rα2 .
User cardinality There is no user cardinality conflict because Car(u3)=3 and u3 access two roles rβ6 and rβ7 .

4.2. Cross-domain rules
In this section, a number of restrictions are considered for the newly proposed cross-domain, where the autonomy
of every domain is maintained and called cross-domain rules. These rules are formulated in a formal language.
For this purpose, two functions namely Irequest_permission and Iassign_permission are introduced as follows:
Irequest_permission: This function returns foreign permissions requested by the role.
Irequest_permission ⊆ ROLE1DOMAIN1 ×ROLE2DOMAIN2

This relation returns permissions that ROLE1 in DOMAIN1 requested from ROLE2 in DOMAIN2.
Iassign_permission: This function returns foreign permissions assigned to the role.
Iassign_permission ⊆ ROLE1DOMAIN1 ×ROLE2DOMAIN2

This relation returns permissions assigned to ROLE1 in DOMAIN1 by ROLE2 in DOMAIN2.
Now, using these functions, three rules are defined in the following subsections: 1) not separation of

duty assignment (NSODA), 2) not foreign permission assignment (NFPA), and 3) not hierarchy permission
assignment (NHPA).

2530

NAZERIAN et al./Turk J Elec Eng & Comp Sci

4.2.1. Not separation of duty assignment (NSODA)

If two roles (r1 , r2) are in role-specific SOD constraint, then permissions of r1 and r2 cannot be assigned to
a role in other domains. For further explanation, consider that rβ6 requests p6 of rα3 in Figure 2. This request

is invalid because rβ6 has permission p5 of rα2 and cannot request permission of rα3 because (r2 , r3) are in
role-specific SOD constraint. The formal description of this constraint is as follows:
∀i ∈ N ∧ ∀d1, d2 ∈ DOMAINS ∧ ∀r1, r2, r3, ri ∈ ROLES∧
r1, r2 ∈ d1 ∧ r3, ri ∈ d2 ∧ (r1, r2) ∈ SOD•

(Irequest_permission(rd2
3 , rd1

1) ∩ Iassign_permission(rd2
3 , rd1

2)) = ∅)

∧(∀ri | r3 ≥ ri ∨ ∀ri | ri ≥ r3) ⇒

(Irequest_permission(rd2
3 , rd1

1) ∩ Iassign_permission(rd2
i , rd1

2)) = ∅).

In this definition, (r1 , r2) are in SOD constraint. Hence, foreign role r3 cannot request permission of
r1 while it has a permission of r2 . If r3 has a junior or senior role ri , and ri has a permission of rd1

2 , then r3

cannot request permission of rd1
1 . In Figure 2, for example, rβ7 has a senior role rβ6 . Thus, if rβ7 has a permission

of rα3 , then rβ6 cannot access to permission of rα2 because (rα3 , rα2) are in role-specific SOD constraint.

4.2.2. Not foreign permission assignment (NFPA)

In this rule, a role in a local domain cannot request foreign permissions assigned to a role of another domain.
To gain a better understanding of NFPA, consider Figure 2. rβ7 requests p8 of rα4 but rα5 cannot request p8 of

rβ7 . Under this restriction, rα5 cannot access the permissions of self-senior role rα4 . If the number of domains is
greater than 2, NFPA, indicates a violation of hierarchy permission request between domains. Therefore, every
domain must request permission of another domain directly. The formal definition of NFPA is as follows.
∀i ∈ N ∧ ∀d1, d2, di ∈ DOMAINS ∧ ∀r1, r2, ri ∈ ROLES∧
r1 ∈ d1 ∧ r2 ∈ d2 ∧ ri ∈ di ∧ di ̸= d2•
(Irequest_permission(rd1

1 , rd2
2) ∩ Iassign_permission(rd2

2 , rdi
i)) = ∅)

In formal definition, di is the third domain and permissions of di assigned to role r2 in domain d2 cannot
be assigned to a role of another domain.

4.2.3. Not hierarchy permission assignment (NHPA)

In this rule, a role in a local domain cannot request any inherited permissions of roles in other domains. In
Figure 2, rα1 inherits permissions of rα3 but rβ6 cannot request p6 of rα1 because p5 of rα2 has been assigned to

rβ6 and if p6 is assigned to rβ6 by rα1 then rβ6 can access permissions of r2 and r3 in domain α . Nonetheless,
(r2 , r3) are in SOD constraint and permissions of these roles cannot be assigned to a role in another domain.
The formal definition of NHPA is as follows:
∀r1, r2, r3 ∈ ROLES ∧ ∀d1, d2 ∈ DOMAINS•
r1, r2 ∈ d1 ∧ r3 ∈ d2 ∧ (r1 ≥ r2) ⇒ (Irequest_permission(rd2

3 , rd1
1) ∩ assign_permission(r2)) = ∅).

According to Section 3, assign_permission(r2) returns permissions assigned to r2 , and r1 ≥ r2 means
that r1 is the senior role of r2 . Thus, role rd2

3 cannot request a permission of rd1
1 inherited from rd1

2 .

2531

NAZERIAN et al./Turk J Elec Eng & Comp Sci

4.3. Decentralized administration
Since every domain has RBAC policy, a foreign permission assignment can be controlled by administrative role
of every domain. Administrative role of every domain receives the requested permission of other domains and
then verifies the rules NSODA, NFPA, and NHPA. If these rules are satisfied, then the permission is assigned
to the role of the requested domain.

Algorithm is proposed to check the foreign permission request. Consider role r1 in domain d1 requests
permission pk of role r2 in domain d2 , then administrative role of domain d2 should check NSODA, NFPA, and
NHPA rules. For checking the NSODA rule, the administrative role of domain d2 checks the SOD constraint
in domain d2 . If r1 has a permission of rj in domain d2 and (rj ,r2) is in SOD constraint of domain d2 ,
then this request is invalid. If role rx of domain d1 has a permission of rj in domain d2 and (rj ,r2) is in
SOD constraint of domain d2 , then administrative role of domain d2 sends a message to the administrative
role of domain d1 to inform that role rx is not junior or senior of role r1 in role hierarchy of domain d1 . If
rx is a junior or senior of role r1 then NSODA rule is not satisfied and this request is invalid. For NFPA
rule checking, the administrative role of domain d2 checks that pk is not a foreign permission of domain d2 ,
otherwise this request is invalid. As for NHPA, the administrative role of domain d2 checks that pk is not a
hierarchy permission of domain d2 ; otherwise, this request is invalid.

Algorithm. Check permission request
1: Role r1 of domain d1 requests permission pk of role r2 in domain d2.
2: Administrative role of domain d2 checks NSODA rule.
3: For every (rj ,r2) in SOD constraint in domain d2

4: Begin
5: If r1 has a permission of rj
6: Return invalid request and exit.
7: If rx of domain d1 has a permission of rj in domain d2

8. begin
9: d2 Sends a message d1.
10: d1 checks hierarchy relation and returns answer.
11. end
12: If there is a relation between r1 and rx

13: Return invalid request and exit.
14: End
15: Administrative role of domain d2 checks NFPA rule.
16: If pk is foreign permission of r2
17: Return invalid request and exit.
18: Administrative role of domain d2 checks NHPA rule.
19: If pk is hierarchy permission of r2
20: Return invalid request and exit.

4.3.1. Complexity analysis

In the above algorithm, every domain uses an administrative role to check the permission request. Consider
two domains, d1 and d2 . Domain d1 has n1 roles and p1 permissions, whereas domain d2 has n2 roles and

2532

NAZERIAN et al./Turk J Elec Eng & Comp Sci

p2 permissions. Role r1 in domain d1 requests pk of role r2 in domain d2 . The administrative role of domain
d2 should check three rules; NSODA, NFPA, and NHPA. We calculate time complexity for domain d2 .

1. NSODA checking (lines 4–14): The maximum SOD constraint in domain d2 that includes r2 is (n2 -1).
For every (n2 -1) pair, requester role r1 should not have a permission of (n2 -1) roles in SOD constraint.
Assume that pr is the maximum number of permission that should be checked (lines 5 and 6).

If there is a role in domain d1 with a permission of (n2 -1) roles in SOD constraint, then the administrative
role of domain d1 should check the hierarchy role related to it. Consider constant C for this purpose

(lines 7–13). Thus, time complexity to check NSODA is
n2−1∑
i=1

(pr + C) .

2. NFPA checking (lines 15–17):Pf represents the total foreign permissions in domain d2 .

3. NHPA checking (lines 18–20):Ph represents the hierarchy permissions in domain d2 .

Then, the time complexity for domain d2 is as follows:

t(n2, p2) = (
n2−1∑
i=1

(pr + C)) + pf + ph ≤ (
n2−1∑
i=1

(p2 + C)) + p2 + p2 ,

t(n2, p2) = (n2 − 1)(p2 + C) + 2p2 ,
t(n2, p2) = (n2 + 1)p2 + (n2 − 1)C = n2p2 + n2C + p2 − C .
P2 is the total permissions of domain d2 and is greater than pr, pf, and ph. Thus, time complexity for

domain d2 is t(n2, p2) = O(n2 × p2) . In the newly proposed approach, a decentralized scheme is used and
interaction between domains is managed by itself. The time complexity of every domain is O(np) , where n is
the number of roles and p is the number of permissions. If i domains interact with each other and domain
d1 has n1 roles and p1 permissions, domain d2 has n2 roles and p2 permissions and so on, then the time
complexity of the interaction between domains is O(max(n1p1, n2p2,…, nipi)).

In the centralized scheme, there is a mediator that gathers the policy of every domain. Therefore, the
centralized scheme tends to be space-consuming. If i domains interact with each other, the mediator should
collect all policies of these domains. The time complexity is O(n1n2..ni × p1p2..pi) , i.e., time-consuming.

5. An illustrative example
Since every domain has RBAC policy, a foreign permission assignment can be controlled by the administrative
role of every domain. Consider Figure 2. For domain α , r1 − r5 are organization roles while arα is considered
an administrative role. For domain β , r6 and r7 are organization roles and an administrative role arβ is
considered. The administrative role of every domain includes a related cross-domain (what permissions are
assigned to roles of other domains), SOD constraint, PA (permission directly assigned to the role), HR (hierarchy
role), and FPA (foreign permission assignment). For every domain, SOD constraint has been provided in Table
3, domain β does not have SOD constraint and therefore is displayed empty. Cross-domain is shown in Table
4. Cross-domain (CD) of domain dn is the sum of permissions of another domain assigned to roles in domain

dn . A foreign permission assignment is in the form rdm
i ▷ p

rdnj

k , in which permission pk of role rj in domain

dn is assigned to role ri in domain dm . In domain α for example, rβ6 ▷ p
rα2
5 , rβ7 ▷ p

rα4
8 means p5 of role r2 in

domain α is assigned to role r6 of domain β while p8 of role r4 in domain α is assigned to role r7 of domain

2533

NAZERIAN et al./Turk J Elec Eng & Comp Sci

β . Permission assignment (PA), role hierarchy (HR), and foreign permission assignment (FPA) can be seen in
Table 5.

Table 3. SOD constraint for every domain.

Domain SOD constraint
α {(r2, r3)}
β {}

Table 4. Cross-domain for every domain.

Domain Cross-domain
α rβ6 ▷ p

rα2
5 , rβ7 ▷ p

rα4
8

β rα1 ▷ p
rβ6
20 , r

α
5 ▷ p

rβ6
24

Table 5. Permission assignment and role hierarchy for every domain.

Domain Role PA HR FPA
r1 p1, p2 r1 ≥ r3, r1 ≥ r4 p20

r2 p3, p4, p5

α r3 p6, p7 r1 ≥ r3

r4 p8 r4 ≥ r5, r1 ≥ r4

r5 p9, p10, p11 p24

β r6 p20, p21, p22 r6 ≥ r7 P5

r7 p23, p24, p25 r6 ≥ r7 P8

When a foreign role requests a permission of a local domain, the administrative role of the local domain
checks the rules (NSODA, NHPA, and NFPA) using SOD constraint in Table 3, cross-domain in Table 4, and
permission assignment (PA), role hierarchy (HR), and foreign permission assignment (FPA) in Table 5. If the
requested permission does not violate these three rules (NSODA, NFPA, NHPA), then permission is assigned
to the foreign role.

Example 1 In Figure 2, if rβ6 requests p6 of rα3 , then the administrative role of domain α verifies the NSODA
rules for domain α . For this purpose, the administrative role of domain α checks the SOD constraint in Table
3 and informs that (r2 , r3) are in SOD constraint. Then, it checks the cross-domain of α in Table 4 while
informing that rβ6 has a permission of rα2 , indicating that the request is invalid.

Example 2 In Figure 2, if rβ7 requests p7 of rα3 , the administrative role of domain α checks Table 3 for

domain α and informs that (r2 , r3) are in SOD constraint. According to domain α of Table 4, rβ7 does not

have a permission of rα2 but rβ6 has a permission of rα2 . Thus, the administrative role of domain α sends a

message to the administrative role of domain β , asking whether or not rβ6 and rβ7 have a hierarchy relation.
The administrative role of domain β verifies Table 5 for domain β informing that there is a hierarchy relation

2534

NAZERIAN et al./Turk J Elec Eng & Comp Sci

between rβ6 and rβ7 . It therefore returns True to domain α , and then administrative role of domain α announces

that request p7 by rβ7 is invalid because the senior role of rβ7 signifies that rβ6 accesses p5 of rα2 . Finally, this
assignment violates the NSODA rule.

Example 3 In Figure 2, if rβ6 requests p6 of rα1 , the administrative role of domain α checks Table 3 for
NSODA rule and informs that the NSODA rule is valid because rα1 is not in SOD constraint of domain α .
Then, it verifies Table 4 for checking the NFPA rule, finding out that p6 is not a foreign permission of rα1 ,
rendering the NFPA valid. Then, it checks the NHPA rule by verifying Table 5 and informing that p6 is a
hierarchy permission of rα1 , thus indicating this request is invalid.

Example 4 Example 4: In Figure 2, if rα5 requests p8 of rβ7 , the administrative role of domain β according
to Table 3 does not have SOD constraint. Hence, the NSODA rule is valid. Then, it checks Table 5 for the
NFPA rule of domain β and finds out that p8 is not a direct permission of rβ7 and is a foreign permission of

rβ7 . This request is thus indicated to be invalid because it cannot satisfy the NFPA rule.

6. Analysis of the newly proposed cross-domain using Alloy

Alloy is a high-level language and a structural modeling tool based on the first-order logic. It has a mathematical
base under the influence of Z notation [7]. It uses the Alloy analyzer to create a micromodel yielding automatic
model validation and consists of several elements including signatures (sig), fields, facts, assertions (assert),
and predicates (pred). In Alloy signatures, (sig) denotes set of atoms. Atoms are uninterpreted and immutable,
consisting of fields to represent a relation between signatures; facts are used to define model constraints;
assertions (assert) check if the model satisfies the desired behavior. And predicates (pred) perform any required
operation in the model. Alloy has two commands: run and check. run produces instants of a model and check
violates the instruction if a counterexample is found.

Employing Alloy, this section specifies the formal specifications of the proposed approach and the three
rules (NSODA, NFPA, and NHPA). Then, the validity of the rules are analyzed using the Alloy analyzer.
Entities such as domain, role, and permission are considered as signatures (sig). The proposed approach and
cross-domain rules are implemented in Alloy in Figures 3 and 4, respectively.

6.1. Analysis of the cross-domain rules

To automatically analyze, Figure 2 is modeled in Alloy. In the following subsections, we describe the analysis
of NSODA, NFPA, and NHPA in the Alloy analyzer.

6.1.1. NSODA rule analysis

To check the NSODA rule, two predicates, pred exist_f_p and pred exist_h_p, (Figure 4) are used. Pred
exist_f_p verifies whether or not role r has foreign permission. If role r has foreign permission, then we
use pred nsoda_check to check the NSODA rule. Pred exist_h_p verifies whether or not role r has hierarchy
permission. If role r has heredity role, then we use pred nsodah_check to check the NSODA rule. With the
instruction check{}, we can verify the validity of predicate.

2535

NAZERIAN et al./Turk J Elec Eng & Comp Sci

sig domains{}

sig permissions{}

sig roles{da:set domains,

pa:set permissions,

fpa:set permissions}

one sig sod{sd:set roles}

one sig hierarchy{rh:roles->roles}

fact sod_fact{all rsod:sod|#rsod.sd=2}

fact fpa_fact{all r:roles,p:permissions |

p in r.fpa implies no ((pa.p).da & r.da)}

fact hierarchy{

all r1,r2:roles|r1 in r2.^(hierarchy.rh)

implies r2 not in r1.^(hierarchy.rh)

no r:roles|r in r.^(hierarchy.rh)}

fun roleinsod[risod:sod]:set roles

{risod.sd}

pred exist_f_p[r:roles]

{some p1:permissions|p1 in r.fpa}

pred exist_h_r[r:roles]

{some r3:roles| r3 in r.^(hierarchy.rh)}

pred nsoda_check[r:roles,p:permissions]

{some r1:roles|r1 in pa.p and no sd1:sod |

(r1+ pa.(r.fpa)) in roleinsod[sd1]

and r1 not in pa.(r.fpa) }

pred nsodah_check[r:roles,p:permissions]

{(some r1,r2:roles|r1 in pa.p and r2 in r.^

(hierarchy.rh) and no sd1:sod |

(r1+ pa.(r2.fpa)) in roleinsod[sd1]

and r1 not in pa.(r2.fpa))or

(some r1,r2:roles|r1 in pa.p and r2 in

(hierarchy.rh).r and no sd1:sod |

(r1+ pa.(r2.fpa)) in roleinsod[sd1]

and r1 not in pa.(r2.fpa))}

pred nfpa_nhpa_check[r1:roles,

p:permissions,r 2:roles]

{r1.da!=r2.da and p in r2.pa }

Figure 3. Conceptual model in Alloy. Figure 4. Cross-domain rules modeled in Alloy.

Example 5 In Figure 2, Role r6 has foreign permission p5 of role r2 . With regard to check{nsoda_check[r6 ,p7]},
NSODA rule is verified for pair (r6 ,p7) in Figure 2. The result shows that a counterexample has been found.
This request is invalid because role r6 has foreign permission p5 of role r2 , p7 is permission of role r3 , and
(r2 , r3) are in SOD constraint. Thus, r6 cannot have a permission of both roles. If pred nsoda_check is verified
for pair (r6 , p10), the result shows that there is no counterexample. Hence, this mapping does not violate the
NSODA rule.

Example 6 In Figure 2, role r6 has hierarchy role (r7). Thus, check{nsodah_check[r7 ,p6]} checks the NSODA
rule for pair (r7 ,p6). The result shows that a counterexample has been found and this request is invalid because
r6 has permission p5 of role r2 , p6 is permission of role r3 and (r2 , r3) are in SOD constraint.

Example 7 If pred nsodah_check is verified for pair (r7 , p10), the result indicates that there is no counterex-
ample. Hence, this mapping does not violate the NSODA rule. If role r does not have foreign permission and
heredity role, then foreign permission can be assigned to the role.

6.1.2. NFPA and NHPA rule analysis

To check the NFPA and NHPA rules, pred nfpa_nhpa_check in Figure 4 is used.

Example 8 check{nfpa_nhpa_check[r5 ,p20 ,r6]} is used to verify NFPA and NHPA rules for Triple (r5 ,p20 ,r6),
which means r5 request p20 of r6 . The result of execution shows that there is no counterexample and this map-
ping is valid because p20 is a direct permission of r6 (neither a foreign permission nor a hierarchy permission).

Example 9 If pred nfpa_nhpa_check is verified for Triple (r5 , p8 , r7), then the result shows that the mapping
is invalid because p8 is foreign permission of r7 , and r5 cannot request this permission of r7 .

2536

NAZERIAN et al./Turk J Elec Eng & Comp Sci

Example 10 If pred nfpa_nhpa_check is verified for Triple (r5 , p25 , r6), then the result shows that this
mapping is invalid because p25 is hierarchy permission of r6 , and r5 cannot request this permission of r6 .

7. Discussion
In an attempt to provide secure interopeartion between domains, this paper employed a permission-mapping
cross-domain to solve conflicts such as role hierarchy, role-specific SOD, user-specific SOD, role cardinality, and
user cardinality, which occur in role-mapping cross-domain. Moreover, the proposed method uses a decentralized
administrative model to manage permission mapping. In this section, the proposed approach has been compared
with those developed by other researchers in the relevant literature. First, we review which constraints (role
hierarchy, role-specific SOD, user-specific SOD, role cardinality, and user cardinality) were investigated and
solved by which researches as shown in the first two columns of Table 6. The third column of Table 6 shows
the method used for creating cross-domain. In [3], researchers proposed a framework for secure interoperation
in multidomain environments where role mapping and direct permission assignment were employed to create
cross-domains. Direct permission assignment was used when role mapping led to unauthorized access. Thus,
two classes of rules should be considered: 1) role mapping and 2) permission mapping. Park and Sandhu [37]
presented the concept of usage control (UCON). Moreover, Jianfeng et al.[4] presented a framework for secure
interoperation using UCON, where foreign subject attributes were mapped to local attributes, while formulating
several theorems and definitions to verify SOD and cyclic hierarchy constraints. When the system is extremely
large, the number of attributes will make it difficult to interpret them between domains.

There are two methods for managing the interaction between domains: centralized and decentralized.
In the centralized method, the policies of local domains are integrated by a trusted third party. It should be
aware of local domain policies. This will lead to security breaches because domains may sometimes contain
confidential information that should not be exposed. Decentralized policy is a mediator-free scheme to maintain
the security of every domain. In this paper, decentralized method is used, while the administrative role of every
domain verifies permission assignment between domains. If it does not violate the constraints of any domain,

Table 6. Comparison with existing works.

Approach Constraint Cross-domain Management Tools used

Shafiq et al. [2]
1-Role hierarchy
2-User-specific SOD
3-Role-specific SOD

Role mapping Centralized None

Huang and Krichner [1]

1-Role hierarchy
2-User-specific SOD
3-Role-specific SOD
4- Role cardinality
5- User cardinality

Role mapping Centralized CPN

Jinwei et al. [3] 1-Role hierarchy Role mapping
2-User-specific SOD and permission mapping Decentralized None

Lin et al. [30] None Role mapping Centralized CloudSim

This paper

1-Role hierarchy
2-User-specific SOD
3-Role-specific SOD
4- Role cardinality
5- User cardinality

Permission mapping Decentralized Alloy

2537

NAZERIAN et al./Turk J Elec Eng & Comp Sci

then permission of foreign role is assigned to a local role. In this regard, the forth column displays the policy
for interaction between domains.

The last column shows the tools used. In [1], CPN was used to solve cardinality and SOD constraint
violation. However, if the number of roles and domains are extremely large, then the CPN model will be
complicated and analysis will be extremely difficult and time-consuming.

8. Conclusions and future work
This paper intended to provide a secure interoperation in multidomain environments. For this purpose, a
foreign permission assignment was used to create a cross-domain in multidomain environments. The proposed
cross-domain solves conflicts such as role hierarchy, separation of duty, and cardinality found in a cross-domain
created by role mapping. At the next stage, autonomy of every domain was maintained by formally defining
three rules namely NSODA, NFPA, and NHPA. In this paper, every domain has RBAC policy. Therefore,
decentralized administrative was used to decide which foreign permission assignment is valid, i.e. does not
violate the cross-domain rules. Then, the proposed approach was illustrated through an example. Finally,
formal specifications of the model were implemented by Alloy to verify the correctness of the defined policies in
a formal language.

In future studies, we can focus on finding other policies that support hierarchy permission assignment
between domains so that the domains can be related to each other via interface domain. Furthermore, future
papers can cover temporal and partial resource sharing in secure interoperation in multidomains. Another idea
involves creating a secure interoperation in multidomain environments through attribute-based access control
policies.

References

[1] Huang H, Krichner H. Secure interoperation design in multi-domains environments based on colored Petri nets.
Inform Sciences 2013; 221: 591-606.

[2] Shafiq B, Joshi JBD, Bertino E, Ghafoor A. Secure interoperation in a multidomain environment employing RBAC
policies. IEEE T Knowl Data En 2005; 17: 1557-1577.

[3] Hu J, Li R, Lu Z. Establishing RBAC-based secure interoperability in decentralized multidomain environments. In:
Proceedings of 10th International Conference on Information Security and Cryptography; 29–30 November 2007;
Seoul, Korea. pp. 49-63.

[4] Lu J, Li R, Varadharajan V, Lu Z, Ma X. Secure interoperation in multidomain environment employing UCON
policies. In: International Conference on Information security; 2009; Springer, Heidelberg. pp. 395-402.

[5] Ultra JD, Pancho-Festin S. A simple model of separation of duty for access control models. Comput Secur 2017;
68: 69-80.

[6] Bijon KZ, Krishnan R, Sandhu R. Toward an attribute based constraints specification language. In: International
Conference on Social Computing; 8–14 September 2013; Alexandria, VA, USA. pp. 108-113.

[7] Jackson D. Software Abstraction: Logic, Language, and Analysis. Cambridge, MA, USA: MIT Press, 2006.

[8] Giammarco K. A formal method for assessing architecture model and design maturity using domain-independent
patterns. Procedia Comput Sci 2014; 28: 555-564.

[9] Cunha A, Garis A, Riesco D. Translating between Alloy specification and UML class diagrams annotate with OCL.
Softw Syst Model 2015; 14: 5-25.

2538

NAZERIAN et al./Turk J Elec Eng & Comp Sci

[10] Schaad A, D.Moffett J. A lightweight approach to specification and analysis of role-based access control extensions.
In: Proceedings of the 7th ACM Symposium on Access Control Models and Technologies; 3–4 June 2002; Monterey,
CA, USA. pp. 13-22.

[11] Jha S, Sural S, Vaidya J, Atluri V. Security analysis of temporal RBAC under an administrative model. Comput
Secur 2014; 46: 154-172.

[12] Massoni T, Gheyi R, Borba P. A UML class diagram analyzer. In: 3rd International Workshop on Critical System
Development with UML; January 2004; Lisbon, Portugal. pp. 100-114.

[13] Osborn S, Sandhu R, Munawer Q. Configuring role-based access control to enforce mandatory and discretionary
access control policies. ACM T Inform Syst Se 2000; 3: 85-106.

[14] Osborn S. Mandatory access control and role-based access control revisited. In: RBAC ’97 Proceedings of the second
ACM workshop on role-based access control; 6-7 November 1997; ACM New York, NY, USA. pp. 31-40.

[15] Sandhu R, Coyne EJ, Feinstein HL, Youman CE. Role-based access control models. IEEE Comput Soc 1996; 29:
38-47. doi.10.1109/2.485845.

[16] Bertino E. RBAC models – concepts and trend. Comput Secur 2003; 22: 511-514.

[17] Jin X, Krishnan R, Sandhu R. A unified attribute-based access control model covering DAC, MAC and RBAC. In:
Proceedings of the 26th Aunal IFIP WG 11.3 conference on Data and Application Security and Privacy; 11–13 July
2012; Paris, France. pp. 41-55.

[18] Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R. Proposed NIST standard for role-based access
control. ACM T Inform Syst Se 2001; 4: 224-74.

[19] Uğur A, Soğukpınar İ. Multilayer authorization model and analysis of authorization method. Turk J Electr Eng Co
2016; 24: 4915-4934. doi:10.3906/elk-1403-200.

[20] Bertino E, Bonatti PA, Ferrari E. TRBAC: a temporal role-based access control model. ACM T Inform Syst Se
2001; 4: 191-233. doi.10.1145/5019 78.501979.

[21] Ferreira A, Chadwick D, Farinha P, Correia R, Zao G, Chilro R, Antunes L. How to security break into RBAC: the
BTG-RBAC model. In: Annual Computer Security Applications Conference; 7–11 December 2009; Honolulu, HI,
USA. pp. 23-31. doi.10.1109/ACSAC.2009.12.

[22] Liu G, Zhang R, Song H, Wang C, Liu J. Ts-RBAC: A RBAC model with transformation. Comput Secur 2016; 60:
52-61.

[23] Fuchs L, Pernul G, Sandhu R. Roles in information security – a survey and classification of the research area.
Comput Secur 2011; 30: 748-769.

[24] Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for role-based administration of roles. ACM T Inform
Syst Se 1996; 2: 105-135.

[25] Sandhu R, Munawer Q. The ARBAC99 model for administration of roles. In: Proceeding 15th Annual computer
security applications conference; 6–10 December 1999; Phoenix, AZ, USA. pp. 229-38.

[26] Oh S, Sandhu R. A model for role administration using organization structure. In: Proceedings of the 7th ACM
Symposium on Access Control Models and Technologies; 3–4 June 2002; Monterey, California, USA. pp. 155-62.

[27] Kapadia A, Al-Muhtadi J, Campbell RH, Mickunas D. IRBAC 2000: Secure interoperability using dynamic role
translation. In: Proceedings of the 1st International Conference on Internet Computing; 26-29 June 2000; Las Vegas,
NV, USA. pp. 231-238.

[28] Al-Muhtadi J, Kapadia A, Campbell R, Mickunas D. The A-IRBAC2000 model: administrative interoperable role-
base access control. ACM T Inform Syst Se 2001; 3: 173-182.

[29] Yang Z, Wang J, Yang L, Yang R, Kou B, Chen J, Yang S. The RBAC model and implementation architecture in
multi-domain environment. Electron Commer Res 2013; 13: 273-289.

2539

NAZERIAN et al./Turk J Elec Eng & Comp Sci

[30] Lin G, Bie Y, Lei M. Trust based access control policy in multi-domain of cloud computing. J Comput 2013; 8:
1357-1365.

[31] Gong L, Qian X. Computational issues in secure interoperation. IEEE T Software Eng 1996; 22: 43-52. doi.
10.1109/32.481533.

[32] Zhu H, Duan S, Hong F, Lu K. An access-control policy based on sharing resource management for a multi-domains
environment. In: Proceedings of the Third International conference on Autonomic and Trusted Computing; 3–6
September 2006; Wuhan, China. pp. 439-448.

[33] Piromruen S, Joshi JBD. An RBAC framework for time constrained secure interoperation in multi-domain envi-
ronments. In: Proceeding of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems; 2–4 Feb 2005; Sedona, AZ, USA. pp. 36-45.

[34] Wang X, Feng D, Xu Z, Hu H. Mediator-free secure policy interoperation of exclusively-trusted multiple domain. In:
Proceedings of the International Conference on Information Security Practice and Experience; 21–23 April 2008;
Sydney, Australia. pp. 248-262.

[35] ANSI, American National standard for Information Technology ”Role-Based Access Control”. American National
Standard Institute, 2004.

[36] Esna-Ashari M, Rabiee HR, MirianHosseinabadi SH. Reliability of separation of duty in ANSI standard role-based
access control. Sci Iran 2011; 18: 1416-1424.

[37] Park J, Sandhu R. The UCONABC usage control model. ACM T Inform Syst Se 2004; 7: 128-174. doi.10.1145/984
334.984339.

2540

	Introduction
	Related works
	Preliminaries
	Proposed approach
	Permission-mapping cross-domain
	Cross-domain rules
	Not separation of duty assignment (NSODA)
	Not foreign permission assignment (NFPA)
	Not hierarchy permission assignment (NHPA)

	Decentralized administration
	Complexity analysis

	An illustrative example
	Analysis of the newly proposed cross-domain using Alloy
	Analysis of the cross-domain rules
	NSODA rule analysis
	NFPA and NHPA rule analysis

	Discussion
	Conclusions and future work

